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Campus de Gandia, Spain
E-mail: vgregori@mat.upv.es

Bernardino Roig
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1 Introduction

A sequence {xn} in a metric space (X, d) satisfying lim
n
d(xn, xn+1) = 0 is

called G-Cauchy [14]. This concept is weaker than the classical Cauchy’s con-
cept, and it is well known that both concepts agree in an ultrametic space
[1]. As usual, a metric (space) has been called G-complete if every G-Cauchy
sequence is convergent. A drawback of this concept is that a compact space
is not necessarily G-complete [14]. To overcome this inconvenience, in [9] the
authors have introduced the concept of weak G-completeness (Definition 2) in
such a manner that every compact space is weak G-complete.

Before continuing, it is worth to notice that the corresponding concept of
G-completeness in fuzzy setting was introduced by M. Grabiec [6] and it has
been extensively used for obtaining fixed point theorems in fuzzy setting [6,7,
12,5,15]. Discussions on this concept can be found in [16,8].

The aim of this paper is, basically, to characterize weak G-complete spaces
in a similar way to classical complet metric spaces and to obtain a fixed point
theorem. Then, in Theorem 1 we characterize the weak G-completeness by
means of nested sequences of non-empty closed sets satisfying that the Haus-
dorff distance between two consecutive sets of them tends to zero. Conse-
quently, we can state several characterizations of complete ultrametric spaces
(Corollary 1), since all the mentioned types of completeness agree in ultramet-
ric spaces. We also observe that in a G-complete metric space it is possible to
find, as in the classical case, nested sequences of non-empty closed sets with
empty intersection (Example 2).

With respect to the second aim of this paper we introduce a general fixed
point theorem for a continuous self-mapping f of a weak G-complete metric
space X, under the unique assumption that the classical iterative sequence
{fn(x)} to be G-Cauchy, for some x ∈ X (Theorem 2). As a corollary, ev-
ery asymptotically regular self-mapping of a weak G-complete metric space
has a fixed point. Obviously, the structure on X plays an interesting role in
order to obtain fixed point theorems. Indeed, strong structures on X lead to
weak contractive conditions on f (compare, for instance, Banach’s theorem
given for X complete and Edelstein’s theorem given for X compact). Then,
weak G-completeness concept is strategic to obtain fixed point theorems since
this structure is intermediate between completeness and compactness. So, we
observe, for instance, that Boyd and Wong’s theorem [2] can be stated for
weak G-complete spaces by weakening the condition on the gauge function ϕ
which involves f (Remark 2). In Example 5 we compare the usefulness of our
Theorem 2 in front of Banach’s, Matkowski’s and Edelstein’s theorems.

We also do some observations about the existence of cluster points for a
G-Cauchy sequence. For instance, it is proved that if a G-Cauchy sequence
in R has two distinct cluster points a and b (with a < b) then every point
of the interval [a, b] is a cluster point of the sequence. As a consequence we
give a fixed point theorem for continuous functions defined on closed intervals
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of R (Corollary 3). Throughout the paper appropriate examples illustrate the
theory.

The structure of the paper is as follows. In Section 3, after the preliminaries,
we characterize the weak G-completeness. The short Section 4 is devoted to
state the obtained results for ultrametric spaces. In Section 5 we give our fixed
point theorems among other considerations.

2 Preliminaries

In the following (X, d) is a metric space. Recall that a sequence {xn} converges
to x if lim

n
d(x, xn) = 0 and that {xn} is called Cauchy if lim

n,m
d(xn, xm) =

0. (X, d), or simply X, is called complete if every Cauchy sequence in X is
convergent.

Definition 1 [14] A sequence {xn} inX is said to be G-Cauchy if lim
n
d(xn, xn+1) =

0. (X, d), or simply X, is called G-complete if every G-Cauchy sequence in X
is convergent.

Definition 2 [8,9] A sequence {xn} in X is called G-convergent if it is G-
Cauchy and it has, at least, a cluster point. (X, d), or simply X, is called weak
G-complete if every G-Cauchy is G-convergent.

Recall that every Cauchy sequence with a cluster point is convergent and
that every sequence in a compact space has a cluster point. Now, it is clear
that a Cauchy sequence is G-Cauchy and also that a convergent sequence
is G-convergent. So, the following diagram of implications summarizes the
relationship among compactness and the distinct concepts of completeness.

compact −→ weak G-complete −→ complete
↑

G-complete

Our basic reference for general topology is [10].

3 Characterizing weak G-completeness

First, notice that if A, B are two subsets of X with A ⊂ B then the Hausdorff
distance between A and B is given by dH(B,A) = sup{d(b, A) : b ∈ B},
where d(b, A) = inf{d(b, a) : a ∈ A}. This distance could be infinite but this
observation has not any interest in our next context.

Definition 3 Let {Fn} be a nested sequence (Fn+1 ⊂ Fn, n = 1, 2, . . .) of
non-empty subsets of X. We will say that {Fn} has Hausdorff diameter (H-
diameter, for simplicity) zero if lim

n
dH(Fn, Fn+1) = 0.
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Recall that the diameter of a subset A of (X, d) is diam(A) = sup{d(x, y) :
x, y ∈ A}.

Theorem 1 (X, d) is weak G-complete if and only if every nested sequence of
non-empty closed sets with H-diameter zero has a non-empty intersection.

Proof Suppose that (X, d) is weak G-complete. Let {Fn} be a nested sequence
of non-empty closed sets which has H-diameter zero. We will prove that

⋂
n
Fn 6=

∅.
Put δn = dH(Fn, Fn+1) for all n ∈ N. Then, by hypothesis lim

n
δn = 0 and,

without lose of generality, we can suppose that δn is finite for each n ∈ N.
Take x1 ∈ F1. Since dH(F1, F2) = δ1 we can find x2 ∈ F2 such that

d(x1, x2) < δ1 + 1. For x2, analogously, we can find x3 ∈ F3 such that
d(x2, x3) < δ2 + 1

2 . In this way we construct, by induction on n, a sequence
{xn} where xn ∈ Fn, for all n ∈ N, and such that d(xn, xn+1) < δn+ 1

n . Conse-
quently, the sequence {xn} is G-Cauchy, since lim

n
d(xn, xn+1) ≤ lim

n
(δn+ 1

n ) =

0.
Hence, {xn} has a cluster point x, since X is weak G-complete. Suppose

that the subsequence {xnp} of {xn} converges to x.
For all p ∈ N we have, by construction, that {xnp

, xnp+1, xnp+2, . . . } ⊂ Fnp
.

In particular, {xnp , xnp+1 , xnp+2 , . . . } ⊂ Fnp . So, x ∈ Fnp for all p ∈ N, since

Fnp is closed. Then x ∈
∞⋂
p=1

Fnp 6= ∅.

Conversely, let {xn} be a G-Cauchy sequence in (X, d), and suppose that
each nested sequence of closed (non-empty) subsets of X with H-diameter zero
has a non-empty intersection.

Put An = {xn, xn+1, xn+2, . . . }, and let Fn = An for all n ∈ N (An denotes
the closure of An). Then {Fn} is a nested sequence of closed subsets of X. We
will show that {Fn} has H-diameter zero.

Let ε > 0. There exists n0 ∈ N such that d(xn, xn+1) < ε
2 for all n ≥ n0,

since {xn} is G-Cauchy, and consequently dH(An, An+1) = d(xn, An+1) < ε
2

for all n ≥ n0.
Let x ∈ Fn = An. Then, for the open ball B(x, ε2 ), centered at x, we have

that B(x, ε2 ) ∩An 6= ∅. Take a ∈ B(x, ε2 ) ∩An. We have that

d(x, Fn+1) ≤ d(x, a) + d(a, Fn+1) ≤ d(x, a) + d(a,An+1) ≤

≤ d(x, a) + dH(An, An+1) <
ε

2
+
ε

2
= ε for all n ≥ n0

Consequently, dH(Fn, Fn+1) ≤ ε for all n ≥ n0. So, {Fn} has H-diameter
zero, and, by hypothesis,

⋂
n
Fn 6= ∅.

Now,
⋂
n
Fn =

⋂
n
An and this last set is the set of cluster points of {xn}

[10], and so {xn} has, at least, a cluster point. Hence, {xn} is G-convergent.

By means of the previous theorem we obtain the following result.
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Proposition 1 Let d be the Euclidean metric on Rn. Then (Rn, d) is not weak
G-complete.

Proof Let {am} be the harmonic series in R, i.e., am =
m∑
i=1

1
i , m = 1, 2, . . .

Consider the open balls in Rn B(0, am) centered at the origin 0 with radius
am for m = 1, 2, . . .

Let Fm = Rn − B(0, am) for m = 1, 2, . . . Obviously, {Fm} is a nested
sequence of closed sets of Rn.

Now, δm = dH(Fm, Fm+1) = 1
m −

1
m+1 = 1

m(m+1) . Then lim
m
dH(Fm, Fm+1)

= 0, i.e., {Fm} has H-diameter zero, and
⋂
m
Fm = ∅. Hence (Rn, d) is not weak

G-complete.

The following example is appropriate to illustrate the diagram of Section
2

Example 1 (A weak G-complete non-compact non-G-complete space)
Let c, d ∈ R and k ∈ N such that c < d < k and consider A = [c, d] and
B = {k, k + 1, k + 2, . . . }. Take X = A ∪B and suppose X endowed with the
usual topology of R, restricted to X. Obviously, X is non-compact.

Clearly, a G-Cauchy sequence in X cannot take frequently values in B. So,
every G-Cauchy sequence is eventually in A and then it has a cluster point in
A, since A is compact. Consequently, X is weak G-complete.

Now, X is not G-complete since A is not G-complete. Indeed, the sequence
{xn}, where xn = c+ (d− c)| sin

√
n|, is G-Cauchy in A and obviously {xn} is

not convergent.

It is well known that a nested sequence of closed sets in a complete metric
space can have empty intersection. Is this fact possible in a G-complete metric
space? The answer is affirmative as proves the next example.

Example 2 [13] (Sierpinski’s metric space)
Let X = {1, 2, 3, . . . }. The function d(i, j) = 1 + 1

i+j for i 6= j and d(i, i) = 0

for all i, j ∈ X, is a metric on X [13].
Clearly B(i, 12 ) = {i}, so each point of X is isolated and the topology on

X generated by d is the discrete topology.
Clearly (X, d) is G-complete since all G-Cauchy sequences are eventually

constant.
Let Sn = {j ∈ X : d(j, n) ≤ 1 + 1

2n}. Obviously, Sn = {n, n+ 1, n+ 2, . . . }.
So {Sn} is a nested sequence of non-empty closed sets and

⋂
n
Sn = ∅.

Notice that in a G-complete metric space the intersection of a nested se-
quence of closed sets with H-diameter zero is not necessarily a unique point,
as shows the next example.

Example 3 (A compact G-complete metric space)
Let X = A∪B where A = {0} ∪ { 1n : n = 1, 2, 3, . . . }, and B = {2} ∪ {2 + 1

n :
n = 1, 2, 3, . . . }endowed with the usual metric d of R, restricted to X.
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Notice that { 1i } and {2 + 1
i } are open for each i = 1, 2, . . . and that local

bases at 0 and 2 are {0} ∪ { 1i ,
1
i+1 ,

1
i+2 , . . . }, and {2} ∪ {2 + 1

i , 2 + 1
i+1 , 2 +

1
i+2 , . . . }, respectively, where i = 1, 2, . . .

Obviously (X, d) is compact (and consequently, weak G-complete). We will
prove that (X, d) is G-complete.

Let {an} be a G-Cauchy sequence in X. If {an} is eventually constant then
{an} is convergent. Suppose that {an} is not eventually constant and, without
lose of generality, that an 6= an+1 for all n = 1, 2, . . .

Clearly, {an} cannot be frequently inA andB simultaneously since dH(A,B)
= 1 and {an} is G-Cauchy. Consequently, the sequence is eventually in A or B.
Suppose that {an} is eventually on A. We claim that {an} converges to 0. To
prove it, we suppose the contrary. If {an} is not convergent to 0 then for some
k0 ∈ N we have that {an} is frequently in [ 1

k0−1 , 1]. Choose ε > 0 such that

0 < ε < 1
k0
− 1

k0+1 . Since {an} is G-Cauchy, given ε > 0 we can find n0 ∈ N
such that |an − an+1| < ε for all n ≥ n0. Now, for each i ∈ N then exists ani

with ni > n0 such that ani ∈ [ 1
k0−1 , 1] and then |ani −ani+1| ≥ 1

k0
− 1
k0+1 > ε,

a contradiction.
If {an} is eventually in B then with a similar argument we can prove that

{an} converges to 2. So, (X, d) is G-complete.
Now, consider the nested sequence of closed sets {Fn} given by Fn = A ∪

{2 + 1
n , 2 + 1

n+1 , 2 + 1
n+2 , . . . } for n = 1, 2, 3, . . . We have that dH(Fn, Fn+1) =

d(2 + 1
n , 2 + 1

n+1 ) = 1
n(n+1) . Then lim

n
dH(Fn, Fn+1) = 0 and

⋂
n
Fn = A ∪ {2}.

Then, at the light of Example 3 it arises the following open question.

Question 1 If every nested sequence of non-empty closed sets of X with H-
diameter zero has an intersection constituted by a unique element then, is
(X, d) G-complete?

4 Only for ultrametrics

Recall that a metric space (X, d) is called an ultrametric space if d(x, z) ≤
max{d(x, y), d(y, z)} for all x, y, z ∈ X. The following is a well-known result.

Proposition 2 [1] Let (X, d) be an ultrametric space. Then, a sequence {xn}
is Cauchy if and only if it is G-Cauchy.

The following corollary is a consequence of the above concepts and results.

Corollary 1 Let (X, d) be an ultrametric space. They are equivalent:

(i) (X, d) is G-complete.
(ii) (X, d) is weak G-complete.

(iii) (X, d) is complete.
(iv) Every nested sequence {Fn}of non-empty closed subsets of X with lim

n
diam(Fn)

= 0 has non-empty intersection.
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(v) Every nested sequence {Fn}of non-empty closed subsets of X with H-diameter
zero has non-empty intersection.

Proof By Proposition 2 and general topology results, we have that (i), (iii)
and (iv) are equivalent. Also, by Theorem 1 we have that (ii) and (v) are
equivalent.

Obviously (i) implies (ii). We prove that (ii) implies (i). Indeed, let {xn}
be a G- Cauchy sequence in X. By definition {xn} has a cluster point. Now,
by Proposition 2 {xn} is Cauchy and then {xn} is convergent in X.

Remark 1 Notice that every compact ultrametric space is G-complete.

Example 4 (A non-compact G-complete ultrametric space)
Consider the ultrametric d on [0, 1] given by d(x, y) = max{1 − x, 1 − y} if
x 6= y, and d(x, x) = 0 for all x, y ∈ [0, 1]. Then, each {x} is open for x 6= 1.
The open balls of radius r > 0 centered at 1 are B(1, r) =]1− r, 1].

Then, a sequence {xn} is G-Cauchy if and only if {xn} is eventually con-
stant or {xn} is a sequence converging to 1 with respect to the usual topology
of R. Consequently, every G-Cauchy sequence is convergent in ([0, 1], d) and
so ([0, 1], d) is G-complete.

Now, τ(d) is not compact. Indeed, for instance [0, 1] =
{
{x} : x ≤ 1

2

}
∪ ] 12 , 1], and clearly this open cover has not any finite subcover.

5 Fixed point theorems

Next, under the assumption that (X, d) is weak G-complete we will state our
fixed point theorem. The goal of our theorem is that we only need that the
iterative sequence {xn} to be G-Cauchy, instead of Cauchy which is mostly
demanded when X is complete.

Theorem 2 Let (X, d) be a weak G-complete metric space and let f : X → X
be a continuous mapping.

(i) Suppose there exists x ∈ X such that the iterative sequence {xn} is G-
Cauchy, where x1 = f(x), xn = f(xn−1) for n = 2, 3, . . . Then f has a
fixed point (more precisely, the cluster points of {xn} are fixed points for
f).

(ii) If in addition d(f(x), f(y)) < d(x, y) for x 6= y, x, y ∈ X, then the fixed
point is unique.

Proof (i) Suppose that the sequence {xn} is G-Cauchy, where x1 = f(x) for
some x ∈ X and xn = f(xn−1) for n = 2, 3, . . . Then {xn} has, at least, a
cluster point, say, c. Thus, there exists a subsequence {xpn}n of {xn}n such
that {xpn} converges to c. We will prove that {xpn−1}n also converges to c.

Indeed, let ε > 0. We can find n1 ∈ N such that d(xpn−1, xpn) < ε
2 for

all n ≥ n1 since {xn} is G-Cauchy. Also, we can find n2 ∈ N such that
d(xpn , c) <

ε
2 for all n ≥ n2, since {xpn}n converges to c.
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Take n0 = max{n1, n2}. Then for all n ≥ n0 we have that d(xpn−1, c) ≤
d(xpn−1, xpn) + d(xpn , c) <

ε
2 + ε

2 = ε and hence {xpn−1}n converges to c.

Now we have that 0 = lim
n
d(xpn , c) = lim

n
d (fpn(x), c) =

lim
n
d
(
f(fpn−1(x)), c

)
= d

(
f(lim

n
fpn−1(x)), c

)
= d

(
f(lim

n
xpn−1), c

)
=

d(f(c), c) by continuity of f and by the previous paragraph. Hence f(c) = c
and so c is a fixed point of f .

(ii) If d(f(x), f(y)) < d(x, y) for x, y ∈ X and x 6= y, and we suppose
that y0 is another fixed point of f , with y0 6= c, then we have d(c, y0) =
d(f(c), f(y0)) < d(c, y0), a contradiction.

Corollary 2 Let (X, d) be a weak G-complete metric space. Every asymptot-
ically regular self-mapping of X [3] has a fixed point.

Remark 2 (Explanatory notes about completeness and contractivity)
Let f be a self-mapping of (X, d). Many contractive conditions on f have been
given, in the literature, in order to assert the existence of fixed points for f .
These contractive conditions are related with the structure of X. The stronger
the structure on X, the weaker the contractive condition on f .

So, Banach’s fixed point theorem asserts that a self-contraction f of a
complete metric space X has a unique fixed point in X (f is a Banach con-
traction of X if there exists k ∈ [0, 1[ such that d(f(x), f(y)) ≤ k d(x, y) for all
x, y ∈ X). The same conclusion was obtained by Edelstein [4] on a compact
space X with the weaker contractive condition d(f(x), f(y)) < d(x, y) for all
x, y ∈ X.

Then, the weak G-complete structure is appropriate in order to relax con-
tractive conditions for f , given on a complete metric space. For instance, de-
note by Ψ the set of all non-decreasing functions ϕ : [0,∞[→ [0,∞[ such
that lim

n
ϕn)(t) = 0 for all t > 0. A mapping f : (X, d) 7→ (X, d) is called

ϕ-contractive if there exists ϕ ∈ Ψ such that d(f(x), f(y)) ≤ ϕ(d(x, y)) for all
x, y ∈ X. Clearly a Banach contractive mapping is of ϕ-contractive type. Boyd
and Wong [2] proved that a ϕ-contractive mapping on a complete metric space
has a unique fixed point, under the assumption that ϕ be upper semicontinu-
ous from the right. This result can be obtained from our Theorem 2 without
demanding any continuity condition on ϕ, but in a weak G-complete metric
space. We do not incorporate this result here, because Matkowski ([11]Theorem
1.2) has improved it proving such a result in a complete metric space. Notice,
following our argument, that every ϕ-contractive mapping satisfies the Edel-
stein’s contractive condition, since ϕ(t) < t for all t > 0, whenever ϕ ∈ Ψ .

Obviously, all the mentioned theorems can be applied on a compact space
X if f has the appropriated properties. Now, if f does not satisfy the Edel-
stein’s contractive condition on X, obviously f is not ϕ-contractive neither a
Banach contraction. The following example test the goodness of the mentioned
theorems.
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Example 5 Consider the self-mapping f of ]0,+∞[ given by f(x) = ln(1 + 1
x ).

We suppose ]0,+∞[ endowed with the usual metric of R.
At the moment, none of the above mentioned results can be applied since

]0,+∞[ is not complete.
Consider the iterative sequence {xn} where x0 = 1 and xn = f(xn−1) for

n = 1, 2, 3, . . . One can check that x3 satisfies x1 < x3 < x2 and, consequently,
f(I) ⊂ I, where I = [x1, x2], since f is decreasing. In particular, xn is in I for
n ≥ 1. Also, lim

n
|xn+1 − xn| = 0 (it is immediate using equation (1) below).

Hence {xn} is G-Cauchy and by Theorem 2 f has a unique fixed point in I.
Due to the form of f it is difficult to find a compact in which applying

Edelstein’s theorem. It is easier to consider the gauge function ϕ ∈ Ψ where
ϕ(t) = ln(1 + t) for all t ≥ 0, and look for, supposing x < y, where the next
equation is satisfied

|f(x)− f(y)| = ln
y(x+ 1)

(y + 1)x
≤ ln (1 + (y − x)) < y − x. (1)

After an easy computation it is obtained that a = −1+
√
5

2 is the least
positive number where (1) is satisfied whenever x, y ≥ a (curiously, a is the
inverse of the golden proportion). Now, if we consider the compact J = [a, f(a)]
it is immediate, as above, to check that f(J) ⊂ J . Then the theorems of
Edelstein and Matkowski prove the existence and uniqueness of a fixed point
for f in J .

On the other hand, Banach’s theorem cannot be applied to f defined on J .
Indeed, suppose that for x, y ∈ J there exists k ∈ [0, 1[ such that |f(x)−f(y)| ≤
k |x− y|.

Take x = a, y ∈ J . We have that |f(a)− f(y)| = ln (a+1)y
(y+1)a ≤ k (y − a) and

so
ln

(a+1)y
(y+1)a

y−a ≤ k for all y ≥ a. Consequently lim
y→a

ln
(a+1)y
(y+1)a

y−a ≤ k < 1. Now, it is

easy to prove that the last limit is 1, a contradiction.

Remark 3 It is worth to notice that, in an artificial way, one can construct
a self-mapping g, modifying f in Example 5 on a week G-complete space, in
which the theorems of Edelstein and Matkowski cannot be applied.

Indeed, consider X = J ∪ {b, 1, 2, 3, . . . } with 0 < b < a. Let g : X → X

defined by g(x) =

 f(x) x ∈ [a, f(a)]
f(a) x ∈ {1, 2, 3, . . . }
2 x = b

Notice that g is well defined. The iterative sequence {yn} given by y0 = 1
and yn = g(yn−1) for n = 1, 2, 3, . . . is in J for n ≥ 1, and it agrees with the
above sequence {xn}. Then, it is easy to prove that {yn} is G-Cauchy in X,
which is a weak G-complete metric space (by simple comparison with Example
1), and then by (i) of Theorem 2 g has a fixed point in X.

Now, X is not compact. On the other hand |g(b) − g(a)| = 2 − f(a) >
1 > a − b. Then Edelstein’s contractive condition is not satisfied and, conse-
quently, there is not any gauge function ϕ ∈ Ψ satisfying on X the Matkowski’s
contractive condition for g.
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Hence, Eldestein’s and Matkowski’s theorems cannot be applied on g.

Remark 4 It is well known that every Cauchy sequence in a metric space with
a cluster point converges to it. The case of G-Cauchy sequences is different. A
G-Cauchy sequence {xn} can have many cluster points and even if {xn} has
only a cluster point it could not be convergent to it ([9], Example 3.7).

In the case of Rn endowed with the usual Euclidean metric the situation is
nice. Indeed, every G-Cauchy sequence with a unique cluster point converges
to it, since Rn is locally compact ([8], Proposition 3.9).

The study of the particular case of R is completed in the following propo-
sition.

Proposition 3 Let {an} be a G-Cauchy sequence in R provided with the usual
metric. If a and b are two distinct cluster points of {an}, and suppose a < b,
then each point of the interval [a, b] is a cluster point of {an}.

Proof Suppose that a and b, with a < b, are two cluster points of {an}.
Let {apn} and {aqn} be two subsequences of {an} converging to a and b,

respectively. Let x ∈]a, b[. We will prove that x is a cluster point of {an}.
Let ε > 0. We choose ε such that ε < 1

2 min{x− a, b− x} to avoid trivial
discussions. We will show that the sequence {an} is frequently in ]x− ε, x+ ε[.
We can find n0 ∈ N such that the following three conditions are simultaneously
satisfied:

apn ∈ ]a− ε, a+ ε[ , aqn ∈ ]b− ε, b+ ε[ , |an − an+1| < ε for all n ≥ n0.

We choose aqm ∈ ]b − ε, b + ε[ such that m ≥ n0. Let apl with pl > qm
and such that apl is the first element after aqm satisfying apl ∈]a − ε, a + ε[.
We have that a + ε < x − ε < x + ε < b − ε, hence we get im ∈ N such that
qm < im < pl and such that aim ∈ [x−ε, x+ε[, since {an} is G-Cauchy, where
im > m.

Now choose aqm′ with aqm′ > pl such that aqm′ is the first element after
apl satisfying aqm′ ∈]b− ε, b+ ε[. Now choose apl′ as we did earlier considering
aqm′ . Again we will get pl < qm′ < im′ < pl′ such that aim′ ∈ [x − ε, x + ε],
thus we get frequent elements of the sequence in [x− ε, x+ ε].

Example 6 Consider the sequence {an} where an = sin(
√
nπ2 ). This sequence

takes values in [−1, 1], and one can check that {an} is G-Cauchy. We have
that sin(

√
(4m+ 1)2 π2 ) = 1 for m = 0, 1, 2, . . . and sin(

√
(4m+ 3)2 π2 ) = −1

for m = 0, 1, 2, . . . Then −1 and 1 are cluster points of {an} and consequently
all points of [−1, 1] are cluster points of {an}.

The following is a Corollarly of Theorem 2, using Proposition 3.

Corollary 3 Let f : [a, b] → [a, b] be a continuous mapping on the finite
interval [a, b] of R endowed with the usual metric of R. If the iterative sequence
x1 = f(x), xn = f(xn−1), n = 2, 3, . . . , is G-Cauchy for some x ∈ [a, b], then
{xn} is convergent to a fixed point of f .
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Proof Obviously {xn} has a cluster point since [a, b] is compact. We will see
that {xn} has only a cluster point. Suppose the contrary and let c1 and c2 be
two cluster points of {xn} with c1 < c2. By Proposition 3 every point of [c1, c2]
is a cluster point of {xn}. Then by (i) of Theorem 2 each point of [c1, c2] is
a fixed point for f and therefore f is the identity function on [c1, c2]. Let xp
be the first element of {xn} which is in [c1, c2]. Then xp+1 = f(xp) = xp and
clearly xp+i = xp for all i ≥ 1 and consequently xp is the only point of [c1, c2]
which is cluster point of {xn}, a contradiction. Then, {xn} has only a cluster
point and by (i) of Theorem 2 and Remark 4 {xn} converges to a fixed point
of f .

Remark 5 The last corollary shows the most commonly method, (roughly)
used in computation, to prove the existence of a fixed point for a real function.

Example 7 Suppose R endowed with the usual metric and let k be an integer
with k ≥ 2. Denote by [x] the floor function and let f be the real function
given by

f(x) =


0 x ≤ 0

[x] +
√
x− [x] 0 < x < k

k x ≥ k
It is an easy exercise to verify that f is continuous on R. If we denote

K = [0, k] then it is obvious that f has not any fixed point out of K. So,
consider the restriction g of f to K.

Let x ∈ K with x < k. We construct the iterative sequence {xn} as follows:
x1 = g(x) = [x] +

√
x− [x] and xn = g(xn−1) for n ≥ 2. Observing that[

[x] +
√
x− [x]

]
= [x], it is easy to verify that

xn = [x] + 2n
√
x− [x] (2)

Then, xn+1 − xn = 2n+1
√
x− [x]− 2n

√
x− [x].

Consequently, lim
n

(xn+1 − xn) = 0 and thus {xn} is G-Cauchy in the com-

pact K. Then, by Corollary 3, the sequence {xn} converges to a fixed point of
f .

Attending to Equation (2) we have that lim
n
xn = x if [x] = x, i.e. if x ∈ Z

and, in other case, lim
n
xn = [x] + 1. So, all integers in K are fixed points for g

and they can be obtained as limit of iterative sequences. (It is easy to observe
that they are the only fixed points for g).

Now, g does not fulfill the Edelstein’s contractive condition. Indeed, take

c ∈ Z with 0 ≤ c < k and let s = c + 1
2 . Then we have g(s) − g(c) =

√
1
2 >

1
2 = s− c. Consequently, neither Banach’s theorem nor Matkowski’s theorem
can be applied on g.

References

1. N. Bourbaki, Topologie Générale II, Herman, Paris 1974.



12 Valent́ın Gregori et al.

2. D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proceedings of the American
Mathematical Society 20 (1969) 458-469.

3. F.E. Browder, W.V. Petryshyn, The solution by iteration of nonlinear functional equa-
tions in Banach spaces, Bulletin of the American Mathematical Society 72 (1966) 571-
575.

4. M. Edelstein, On fixed and periodic points under contractive mappings, Journal London
Mathematical Society 37 (1962) 74-79.

5. J.X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and systems 46
(1) (1992) 107-113.

6. M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1989)
385-389.

7. V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and
Systems 125 (2002) 245-252.
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