
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/146437

Alpuente Frasnedo, M.; Cuenca-Ortega, AE.; Escobar Román, S.; Meseguer, J. (2020). A
Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms.
Journal of Logical and Algebraic Methods in Programming. 110:1-36.
https://doi.org/10.1016/j.jlamp.2019.100501

https://doi.org/10.1016/j.jlamp.2019.100501

Elsevier



A Partial Evaluation Framework for Order-sorted Equational
Programs modulo Axioms?

M. Alpuentea, A. Cuenca-Ortegab, S. Escobara, J. Meseguerc

aVRAIN, Universitat Politècnica de València, Valencia, Spain
bUniversidad de Guayaquil, Guayaquil, Ecuador

cUniversity of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

Partial evaluation is a powerful and general program optimization technique with
many successful applications. Existing PE schemes do not apply to expressive
rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which
support: 1) rich type structures with sorts, subsorts, and overloading; and 2) equa-
tional rewriting modulo various combinations of axioms such as associativity, com-
mutativity, and identity. In this paper, we develop the new foundations needed
and illustrate the key concepts by showing how they apply to partial evaluation
of expressive programs written in Maude. Our partial evaluation scheme is based
on an automatic unfolding algorithm that computes term variants and relies on
high-performance order-sorted equational least general generalization and order-
sorted equational homeomorphic embedding algorithms for ensuring termination.
We show that our partial evaluation technique is sound and complete for convergent
rewrite theories that may contain various combinations of associativity, commuta-
tivity, and/or identity axioms for different binary operators. We demonstrate the
effectiveness of Maude’s automatic partial evaluator, Victoria, on several examples
where it shows significant speed-ups.

?This work has been partially supported by the EU (FEDER) and the Spanish MCIU under
grant RTI2018-094403-B-C32, by Generalitat Valenciana under grant PROMETEO/2019/098, and
by NRL under contract number N00173-17-1-G002. Angel Cuenca-Ortega has been supported by
the SENESCYT, Ecuador (scholarship program 2013).

Email addresses: alpuente@upv.es (M. Alpuente), angel.cuencao@ug.edu.ec
(A. Cuenca-Ortega), sescobar@upv.es (S. Escobar), meseguer@illinois.edu (J. Meseguer)

Preprint submitted to Elsevier December 10, 2019



1. Introduction

Partial evaluation (PE), also known as program specialization, is a semantics-
based program transformation technique in which a program is specialized to a part
of its input that is known statically (at specialization time) [27, 42]. Program spe-
cializers employ a very simple transformational technique: the selective symbolic
execution of the program [65]. The most straightforward application is to pro-
duce a new “residual program”, which typically runs faster (on the remaining input
data) than the original program (on all of its input data), while being guaranteed
to behave in the same way. Dramatic savings can be achieved in programs that
will be executed many times with few variations of their parameters since many
costly computations are performed once and for all during PE. Partial evaluation
has currently reached a point where theory and refinements have matured, substan-
tial systems have been developed, and realistic applications can benefit from partial
evaluation in a wide range of fields that transcend the optimization of programs by
far. Novel applications of partial evaluation include model-driven development,
domain-specific language engineering, generic programming, and test-case gener-
ation, just to mention a few [22, 26].

Narrowing-driven PE (NPE) [13, 12, 14, 15] is a generic algorithm for the
specialization of functional programs that are executed by narrowing, a symbolic
execution mechanism that extends term rewriting by replacing pattern matching
with unification [37, 61]. Essentially, narrowing consists of computing an appro-
priate substitution for a symbolic program call (input term) in such a way that the
program call becomes reducible by a program equation (that is implicitly oriented
as a rewrite rule), and then reducing it: both the rewrite rule and the term are instan-
tiated. As in logic programming, narrowing computations can be represented by a
(possibly infinite) finitely branching tree. Since narrowing subsumes both rewrit-
ing and SLD-resolution, it is complete in the sense of both functional programming
(computation of normal forms) and logic programming (computation of answers).
The NPE method generalizes the theoretical framework for the partial evaluation
of logic programs established in [50, 51] (also known as partial deduction, PD) to
functional logic programs, with the key concepts being extended to suitably cope
with functions and nested function calls (e.g., the closedness condition that ensures
that all calls that might occur during the execution of the specialized program are
covered by the specialized program itself). By combining the functional dimension
of narrowing with the power of logical variables and unification, the NPE approach
has better opportunities for optimization than the more standard PD (resp. PE) of
logic (resp. functional) programs [15].

To the best of our knowledge, partial evaluation has never been investigated
in the context of expressive rule-based languages like Maude, CafeOBJ, OBJ,

2



ASF+SDF, and ELAN, which support: (i) rich type structures with sorts, sub-
sorts, and overloading; and (ii) equational rewriting modulo various combinations
of axioms such as associativity (A), commutativity (C), and identity (U). When we
consider (i) and (ii) in a contemporary, algebraic (as well as logic) language such as
Maude, the key PE ingredients of [14] have to be further generalized to correspond-
ing (order-sorted) equational notions (modulo axioms): e.g., equational unfolding,
equational closedness, equational embedding, and equational abstraction; and the
associated partial evaluation techniques become more sophisticated and powerful.
In this paper, we develop such equational foundations and show how they apply to
the partial evaluation of expressive rule-based programs that are written in Maude.

In this paper, we deal with Maude’s order-sorted equational theories (Σ,E ]B)
that are decomposed as rewrite theories (Σ,B,~E) [53], where B is a set of com-
monly occurring axioms such as associativity, commutativity, and identity, and ~E
is a set of oriented convergent equations, i.e., a set of rules such that rewriting with
~E modulo B transforms every term into a unique irreducible form (see [56]). In
addition to rewriting in (Σ,B,~E), an order-sorted equational theory (Σ,E ]B) can
also be symbolically executed in Maude with the oriented equations ~E modulo the
axioms B by using the “folding variant narrowing strategy” of [36]. This form of
narrowing is useful for variant computation and (variant-based) equational unifi-
cation, and as we show in this paper, for partial evaluation. On the other hand,
unification modulo combinations of associativity, commutativity, and identity is
used by folding variant narrowing. The main idea1 of folding variant narrowing is
to “fold”, by subsumption modulo B, the (~E,B)-narrowing tree that can in practice
result in a finite, directed acyclic narrowing graph that symbolically and concisely
summarizes the (generally infinite) narrowing search space for (Σ,B,~E). When the
equational theory (Σ,E ]B) additionally has the finite variant property [25, 36],
a finite complete set of most general (~E,B)-variants exists for each term t, where
each (~E,B)-variant of t consists of a substitution σ and the (~E,B)-irreducible form
of tσ .

Let us motivate the power of our technique by reproducing the classical spe-
cialization of a parser w.r.t. a given grammar into a very specialized parser [42].

1The notion of folding in folding variant narrowing is essentially a subsumption notion applied to
some leaves of the narrowing tree, so that less general leaves are subsumed (folded into) more general
ones. Therefore, this notion is quite different from the classical folding operation of Burstall and
Darlington’s fold/unfold transformation scheme [21], where unfolding is essentially the replacement
of a call by its body, with appropriate substitutions, and folding is the inverse transformation, i.e., the
replacement of some piece of code by an equivalent function call. As for unfolding, following the
narrowing-driven partial evaluation approach of [14], we symbolically execute the function calls by
using Maude’s narrowing strategy for equational theories, i.e., the folding variant narrowing strategy.

3



The parser is encoded as an equational theory (Maude functional module), that
contains several language features that are unknown territory2 for state-of-the-art
(narrowing-driven) partial evaluation: (i) a hierarchy of sorts that defines the sorts
TSymbol (terminal symbols) and NSymbol (non-terminal symbols) as two subsorts
of the sort Symbol of all grammar symbols; and (ii) an associative-commutative
with identity operator _;_ for representing grammars (meaning that they are han-
dled as a multiset3 of productions), together with the operator __ that is used to
represent the input string and has the empty string as a right identity element.

Example 1. Consider the following equational theory (written in Maude4 syntax)
that defines a generic parser5 for languages generated by simple, right regular
grammars. We define a free constructor operator _|_|_ to represent the parser
configurations, where the first underscore represents the (terminal or non-terminal)
symbol being processed, the second underscore represents the current string pend-
ing recognition, and the third underscore stands for the considered grammar. We
provide two non-terminal symbols, init and S, and three terminal symbols, 0, 1,
and the finalizing mark eps (for ε , the empty string). These are useful choices for
this example, but they can be easily generalized to any terminal and non-terminal
symbols by defining a Maude parameterized theory. Parsing a string st according
to a given grammar Γ is defined by rewriting the configuration (init | st | Γ)
using the rules of the grammar (right-to-left) to incrementally transform st until
the final, success configuration (eps | eps | Γ) is reached.

fmod PARSER is
sorts Symbol NSymbol TSymbol String Production Grammar Parsing .
subsort Production < Grammar .
subsort TSymbol < String .

2Classical PE applies to rewrite theories (Σ, /0,~E) where Σ is untyped and there are no axioms
(B = /0). This is a very special case of the framework provided in this paper for any (Σ,B,~E) with Σ

being order-sorted and B being any combination of associativity, commutativity, and identity axioms.
3Multisets are very common data structures in Maude programming whose advantage is (at least)

twofold. Firstly, multisets are easy to define: you just need to declare a binary ACU operator plus
a constant (i.e., the identity element) that identifies the empty soup. Secondly, (nondeterministic)
element selection in a multiset is automatically performed by Maude’s extremely efficient ACU-
matching algorithm. Using sets would be a bit more elaborate since the set union operator is ACUI
(associative-commutative-identity-idempotent) and ACUI-unification is not directly supported by
Maude.

4In Maude 2.7.1, only equations with the attribute variant are used by the folding variant nar-
rowing strategy.

5In [32], a similar parser is encoded by using Maude rewrite rules that more naturally represent
the system evolution. However, laying the foundations for the partial evaluation of general Maude
rewrite theories is a matter for future research.

4



subsorts TSymbol NSymbol < Symbol .
ops 0 1 eps : -> TSymbol .
ops init S : -> NSymbol .
op mt : -> Grammar .
op __ : TSymbol String -> String [right id: eps].
op _->_ : NSymbol TSymbol -> Production .
op _->_._ : NSymbol TSymbol NSymbol -> Production .
op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .
op _|_|_ : Symbol String Grammar -> Parsing .
var E : TSymbol .
vars N M : NSymbol .
var L : String .
var G : Grammar .
eq (N | eps | ( N -> eps ) ; G)
= (eps | eps | ( N -> eps ) ; G) [variant] .

eq (N | E L | ( N -> E . M ) ; G)
= (M | L | ( N -> E . M ) ; G) [variant] .

endfm

The general case of the parser is defined by the second equation that, given
the configuration (N | E L | Γ), where (E L) is the string to be recognized,
searches for the grammar production (N -> E . M) in Γ to recognize symbol E,
and proceeds to recognize L starting from the non-terminal symbol M. Note that if
there are no two grammar productions in Γ of the form N -> E.M1 and N -> E.M2,
the equational theory produces unique normal forms for any input term of sort
Parsing, since there is always only one possible application of the second equa-
tion. Also note that the combination of subtypes and equational (algebraic) axioms
allows for a very compact definition.

For example, given the following grammar Γ that generates the language 0∗1∗:

init -> eps ; init -> 0 . init ; init -> 1 . S ; S -> eps ; S -> 1 . S

the initial configuration (init | 0 0 1 1 | Γ) is deterministically rewritten
modulo axioms as (init | 0 0 1 1 | Γ)→ (init | 0 1 1 | Γ)→ (init
| 1 1 | Γ)→ (S | 1 | Γ)→ (S | eps | Γ)→ (eps | eps | Γ).

We can specialize our parsing program to the productions of the given grammar
Γ by partially evaluating the input term (init | L | Γ), where L is a logical
variable of sort String. By applying our partial evaluator, we aim to obtain the
specialized parsing equations:

5



eq init | eps | Γ = eps | eps| Γ [variant] .
eq init | 0 L | Γ = init | L | Γ [variant] .
eq init | 1 L | Γ = S | L | Γ [variant] .
eq S | eps | Γ = eps | eps| Γ [variant] .
eq S | 1 L | Γ = S | L | Γ [variant] .

that still recognizes the string st by rewriting the simpler configuration (init |
st | Γ) to the final configuration (eps | eps | Γ). As discussed in Section 5,
the specialized program shows an impressive speed-up with respect to the original
parser.

Our contribution. This paper focuses on the foundations of our order-sorted equa-
tional partial evaluation system, i.e., the core notions, principles, and algorithms.
To the best of our knowledge, this is the first partial evaluation framework in the
literature for order-sorted equational theories that is able to cope with subsorts,
subsort polymorphism, convergent rules (equations), and equational axioms. We
base our partial evaluator on a suitably generalized version of the general NPE pro-
cedure of [14], which is parametric w.r.t. the unfolding rule used to construct finite
computation trees and also w.r.t. an abstraction operator that is used to guarantee
that only finitely many expressions are evaluated. For unfolding, we use folding
variant narrowing [36], which is an optimal narrowing strategy for convergent
equational theories that computes most general variants modulo algebraic axioms
and is efficiently implemented in Maude. For the abstraction, we rely on the order-
sorted equational least general generalization recently investigated in [8, 7]. As in
[13], we follow the on-line approach to PE that makes control decisions about spe-
cialization on the fly, which is simpler to describe and offers better opportunities
for powerful automated strategies than off-line partial evaluation [42, 24], where
decisions are made before specialization by using abstract data descriptions that
are represented as program annotations.

Related work. Program specialization has been investigated within different pro-
gramming paradigms and applied to a wide variety of languages. Among the vast
literature on program specialization, the partial evaluation of functional logic pro-
grams is the closest to our work. For the (rewriting-based) functional logic lan-
guage Escher, a partial evaluator was described in [45]. The work by Darling-
ton and Pull [28] is the most clear predecessor of narrowing-driven partial eval-
uation. They proposed the use of narrowing as an alternative to the combination
of instantiation and unfolding—in the sense of Burstall and Darlington [21]—to
perform partial evaluation. Their approach yielded a partial evaluator for the func-
tional language HOPE extended with unification. For the functional logic language
Curry [40], a partial evaluator based on needed narrowing was first proposed in [2].
The most recent partial evaluator for functional logic programs is described in [41],

6



which is able to deal with Curry programs that may contain non-deterministic op-
erations. For a recent discussion regarding the practical partial evaluation of main-
stream languages such as JavaScript, Ruby, and R, see [66]. Obviously, none of
these PE systems can deal with the salient features (subtype polymorphism and
computing modulo axioms) considered in this work.

Comparison with our previous work [5]. The partial evaluation of equational
programs modulo axioms was first investigated in an earlier conference paper [5].
Its development relied on two key notions: (order-sorted) homeomorphic embed-
ding modulo equational axioms and (order-sorted) equational least general gener-
alization (which is used for the formulation of equational abstraction). The novel
contributions with respect to [5] are as follows:

1. The homeomorphic embedding modulo equational axioms EB of [5] did not
scale up to realistic problems. Furthermore, the formalization in [5] did
not consider sorts and subsorts, so preposterous embedding tests such as
X:Bool EB (0 + suc(N:Nat)) succeed. The equational abstraction of [5]
was formalized by relying on the rather expensive equational least general
generalization calculus of [8], which significantly degraded the partial eval-
uator performance. In this article, we provide a more effective formulation
of both notions based on our recent results in [7] and [4], which increases the
specializing power of Victoria and has significantly boosted its performance.

2. A fuller treatment of all aspects is given, including more examples and de-
tailed explanations of the key notions, together with full formal proofs of all
technical results.

3. In line with the extended definitions, we have correspondingly extended our
technical results for dealing with sorts and subsorts in a finer way.

4. The experimental work has been improved in two ways:
(a) The prototype tool itself has been advanced so that now it is a fully

automated robust system that scales up to much more complex partial
evaluation problems than the semi-automated, preliminary prototype
in [5]. The new system relies on the high-performance implementa-
tion of the order-sorted homeomorphic embeddding modulo axioms of
[7] and the order-sorted least general generalization algorithm of [4]
so that it runs up to six orders of magnitude faster than the previous
implementation in [5].

(b) We experimentally evaluate the current prototype on more ambitious
partial evaluation problems, including the implementation of a com-
plete interpreter for an imperative language dealing with loops, condi-
tional statements, and arithmetic expressions in Section 4. By using

7



Victoria the interpreter is automatically improved without introducing
any ad-hoc primitives to the language semantics to guide the interpreter
specialization.

Plan of the paper. The rest of the paper is organized as follows. In Section 2, we
recall some necessary notions about order-sorted equational theories and narrow-
ing in the Maude language. Section 3 formalizes our partial evaluation scheme by
generalizing to the order-sorted and modulo axioms setting the key ingredientes of
NPE, namely unfolding (based on narrowing), closedness, homeomorphic embed-
ding, and abstraction (based on generalization). Section 4 illustrates the proposed
methodology by describing several specializations of the interpreter of an impera-
tive programming language. Section 5 presents some experiments with the partial
evaluator Victoria that implements our technique. The system demonstrates the
usefulness of our approach, with some specialized programs running up to two or-
ders of magnitude (100 times) faster than the original one. In Section 6, we draw
some conclusions and outline directions for our future work. The proofs of all of
technical results are given in Appendix A.

2. Preliminaries

Let us recall some key concepts of order-sorted, rewriting logic theories [53]
and equational unification [16]. We consider an order-sorted signature6 Σ=(Σ,S,≤)
that consists of a poset of sorts (S,≤) and an S∗×S-indexed family of sets Σ =
{Σs1...sn,s}(s1...sn,s)∈S∗×S of function symbols. The poset (S,≤) of sorts for Σ is par-
titioned into equivalence classes C1, . . . ,Cn (called connected components) by the
equivalence relation (≤∪≥)+. Throughout this paper, Σ is assumed to be preregu-
lar, so each term t has a least sort, denoted ls(t) (see [38]). Σ is also assumed to be
kind-complete [55], that is, for each sort s∈ S, its connected component in the poset
(S,≤) has a top sort under ≤, denoted [s] and called the connected component’s
kind, and for each function symbol f ∈ Σs1...sn,s, there is also an f ∈ Σ[s1]...[sn],[s]. An
order-sorted signature can always be extended to be kind-complete [55]. Maude
automatically checks preregularity and adds a new “kind” sort [s] at the top of the
connected component of each sort s ∈ S specified by the user and automatically
lifts each operator to the kind level. For technical reasons, it is useful to assume
that Σ has no ad-hoc overloading7. However, this assumption entails no real loss of

6This abuse of language of using Σ for both the triplet and the ranked set of function symbols is
useful, and is in fact the notation we use later.

7Given the overloaded operator f : s1 . . .sm −→ s0 and f : s′1 . . .s
′
n −→ s′0, subsort overloading

means that m = n and, for all i, 0 ≤ i ≤ n, si and s′i belong to the same connected component.

8



generality: any Σ can be transformed into a semantically equivalent signature with
no ad-hoc overloading (by symbol renaming). Note that avoiding ad-hoc overload-
ing ensures that Σ is sensible, in the sense that for any two typings f : s1 . . .sn −→ s
and f : s′1 . . .s

′
n −→ s′ of a n-ary function symbol f , if si and s′i are in the same

connected component of (S,≤) for 1 ≤ i ≤ n, then s and s′ are also in the same
connected component; this provides the right notion of unambiguous signature at
the order-sorted level.

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets. T
Σ,s(X )

and T
Σ,s denote the sets of terms and ground terms of sort s, respectively. Note that

s < s′ (s is a subsort of s′) implies the set of terms of sort s are a subset of the set
of terms of sort s′, i.e., T

Σ,s(X ) ⊆ T
Σ,s′(X ). We (ambiguously) write TΣ(X )

and TΣ for both the corresponding term algebras and for the underlying sets of
terms, i.e., TΣ(X ) = ∪s∈STΣ,s(X ) and TΣ = ∪s∈STΣ,s. Throughout this paper
we assume that T

Σ,s 6= /0 for every sort s because this affords a simpler deduction
system. The set of variables occurring in a term t is denoted by Var(t). In order
to simplify the presentation, we often disregard sorts when no confusion can arise.
Let→⊆ A×A be a binary relation on a set A. We denote its transitive closure by
→+, and its reflexive and transitive closure by→∗. A sequence of syntactic objects
o1, . . . ,on is denoted by ōn.

A position p in a term t is represented by a sequence of natural numbers (Λ

denotes the empty sequence, i.e., the root position). Positions are ordered by the
prefix ordering: p ≤ q, if ∃w such that p.w = q. Given a term t, we let Pos(t) and
PosΣ(t) respectively denote the set of positions and the set of non-variable positions
of t (i.e., positions where a variable does not occur). The expression t|p denotes the
subterm of t at position p, and t[u]p denotes the result of replacing the subterm t|p
by the term u at position p.

A substitution σ is a sorted mapping from a finite subset of X to T
Σ
(X ).

Substitutions are written as σ = {X1 7→ t1, . . . ,Xn 7→ tn} where the domain of σ

is Dom(σ) = {X1, . . . ,Xn} and the set of variables introduced by terms t1, . . . , tn is
written Ran(σ). The identity substitution is denoted id. Substitutions are homo-
morphically extended to T

Σ
(X ). The application of a substitution σ to a term

t is denoted by tσ . The restriction of σ to a set of variables V ⊂X is denoted
σ|V ; sometimes we write σ|t1,...,tn to denote σ|V where V = Var(t1)∪ ·· · ∪Var(tn).
Composition of two substitutions is denoted by σσ ′ so that t(σσ ′) = (tσ)σ ′.

A Σ-equation is an unoriented pair t = t ′, where t, t ′ ∈ T
Σ,s(X ) for some sort

s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces
a congruence relation =E on T

Σ
(X ) (see [54]). An equational theory (Σ,E ) is a

Otherwise, the overloading of f is called ad-hoc.

9



pair with Σ an order-sorted signature and E a set of Σ-equations. We omit Σ when
no confusion can arise.

A term t is more (or equally) general than t ′ modulo E , denoted by t ≤E t ′, if
there is a substitution γ such that t ′ =E tγ . A substitution θ is more (or equally)
general than σ modulo E , denoted by θ ≤E σ , if there is a substitution γ such that
σ =E θγ , i.e., for all x∈X ,xσ =E xθγ . Also, θ ≤E σ [V ] iff there is a substitution
γ such that, for all x ∈V,xσ =E xθγ . We also define t 'E t ′ iff t ≤E t ′ and t ′ ≤E t;
and similarly θ 'E σ .

An E -unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ .
CSUE (t = t ′) denotes a complete set of unifiers for the equation t = t ′ modulo E ,
so that any E -unifier is an E -instance of one of them. An E -unification algorithm
is complete if for any equation t = t ′ it generates a complete set of E -unifiers. Note
that this set needs not be finite. A unification algorithm is said to be finitary if it
always terminates. Note that a complete and finitary E -unification algorithm may
not exist even if a complete and finite set of E -unifiers exists.

A rewrite theory is a triple R = (Σ,E ,R), where (Σ,E ) is the equational theory
modulo which we rewrite and R is a set of rewrite rules. Rules are of the form l→ r
where terms l,r∈T

Σ,s(X ) for some sort s are respectively called the left-hand side
(or lhs) and the right-hand side (or rhs) of the rule and Var(r) ⊆ Var(l). The set
R of rules is required to be sort-decreasing, i.e., for each l→ r in R, and for each
well-sorted substitution σ , ls(lσ)≥ ls(rσ).

We define the one-step rewrite relation on TΣ(X ) for the set of rules R as
follows: t→R t ′ if there is a position p∈ Pos(t), a rule l→ r in R, and a substitution
σ such that t|p = lσ and t ′ = t[rσ ]p. The relation→R/E for rewriting modulo E is
defined as =E ◦ →R ◦ =E . A term t is called R/E -irreducible iff there is no term
u such that t →R/E u. A substitution σ is R/E -irreducible if, for every x ∈X ,
xσ is R/E -irreducible. We say that the relation →R/E is terminating if there is
no infinite sequence t1→R/E t2→R/E · · · tn→R/E tn+1 · · · . We say that the relation
→R/E is confluent if whenever t →∗R/E t ′ and t →∗R/E t ′′, there exists a term t ′′′

such that t ′ →∗R/E t ′′′ and t ′′ →∗R/E t ′′′. A rewrite theory (Σ,E ,R) is convergent
if R is sort-decreasing and the relation →R/E is confluent and terminating. In a
convergent order-sorted rewrite theory, for each term t ∈T

Σ
(X ), there is a unique

(up to E -equivalence) R/E -irreducible term t ′ that can be obtained by rewriting t to
R/E -irreducible or normal form, which is denoted by t →!

R/E t ′, or t↓R/E when t ′

is not relevant. For each x∈Dom(σ), σ↓R/E is defined as (σ↓R/E )(x) = σ(x)↓R/E .
A substitution σ is R/E -irreducible (normalized) iff xσ is so for each x∈Dom(σ).
For a set Q of terms, we denote by Q↓R/E the set of normal forms of the terms in
Q.

Since E -congruence classes can be infinite, →R/E -reducibility is undecidable

10



in general. Therefore, R/E -rewriting is usually implemented [44] by R,E -rewriting.
We define the relation→R,E on T

Σ
(X ) by t→p,R,E t ′ (or simply t→R,E t ′) iff there

is a non-variable position p ∈ PosΣ(t), a rule l→ r in R, and a substitution σ such
that t|p =E lσ and t ′= t[rσ ]p. To ensure completeness of R,E -rewriting w.r.t. R/E -
rewriting, we require strict coherence, ensuring that =E is a bisimulation for R,E -
rewriting [56]: for any Σ-terms u,u′,v if u =E u′ and u→R,E v, then there exists a
term v′ such that u′→R,E v′ and v =E v′. Note that, assuming E -matching is decid-
able, →R,E is decidable and notions such as confluence, termination, irreducible
term, and normalized substitution are defined for→R,E straightforwardly [56]. It
is worth noting that Maude automatically provides strict E -coherence completion
for rules and equations for any combination of associativity and/or commutativity
and/or identity axioms. That is, the specified rules and equations are automatically
completed with no need for user intervention.

2.1. Equational Theories as Rewrite Theories

Algebraic structures often involve axioms like associativity and/or commuta-
tivity of function symbols, which cannot be handled by ordinary term rewriting
[34] but are instead handled implicitly by working with congruence classes of
terms. This is why an equational theory is often decomposed into a disjoint union
E = E ]B, where B is a set of algebraic axioms (which are implicitly expressed
in Maude as attributes of their corresponding operator using the assoc, comm, and
id: keywords) that are used for B-matching, and E consists of (possibly condi-
tional) equations that are implicitly oriented from left to right as a set ~E of rewrite
rules (and operationally used as simplification rules modulo B). By doing this, a
(well-behaved) rewrite theory (Σ,B,~E) is defined, with ~E = {t → t ′ | t = t ′ ∈ E},
which satisfies all of the conditions that we need. This is formalized by the notion
of decomposition of the equational theory (Σ,E ) as follows.

Definition 1 (Decomposition [35]). Let (Σ,E ) be an order-sorted equational the-
ory. We call (Σ,B,~E) a decomposition of (Σ,E ) if E = E ]B and (Σ,B,~E) is an
order-sorted rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t = t ′ in B, we have Var(t) = Var(t ′), and linear,
i.e., for each t = t ′ in B, each variable occurs only once in t and in t ′.

2. B is sort-preserving, i.e., for each t = t ′ in B and substitution σ , we have
tσ ∈ T

Σ,s(X ) iff t ′σ ∈ T
Σ,s(X ). Furthermore, for each equation t = t ′ in

B, all variables in Var(t) and Var(t ′) have a common top sort.
3. B has a finitary and complete unification algorithm, which implies that B-

matching is decidable.

11



4. The rewrite rules in ~E are convergent, i.e., confluent, terminating, and strictly
coherent modulo B, and sort-decreasing.

We often abuse notation and say that (Σ,B,~E) is a decomposition of an order-
sorted equational theory (Σ,E ) even if E 6= E ]B but E is instead the explicitly
extended B-coherent completion of a set E ′ such that E = E ′]B.

Given the rewrite theory (Σ,B,~E), it is common to split the signature Σ into
two disjoint sets: defined symbols and constructor symbols. Defined symbols are
defined as D = { f ∈ Σ | ∃ f (t1, . . . , tn)→ r ∈ ~E}, and constructors8 are defined as
C = Σ\D .

In the following, we often consider rewrite theories (Σ,B,R) that are a decom-
position of an order-sorted equational theory, so that R = ~E.

2.2. Narrowing in Rewriting Logic

Narrowing generalizes term rewriting by allowing free variables in terms (as
in logic programming) and by performing unification (at non-variable positions)
instead of matching in order to (non-deterministically) reduce the term. Function
definition and evaluation are thus embedded within a symbolic logical framework
and features such as existentially quantified variables, unification, and function
inversion become available.

Definition 2 ((R,B)-narrowing [58]). Let R =(Σ,B,R) be an order-sorted rewrite
theory. The (R,B)-narrowing relation on TΣ(X ) is defined as t ;σ ,R,B t ′ (or just
t ;σ t ′) if there exist p ∈ PosΣ(t), a (renamed apart9) rule l → r in R, and a B-
unifier σ of t|p and l such that t ′ = (t[r]p)σ . The narrowing step t ;σ ,R,B t ′ is also
called a (R,B)-narrowing step. A term t is (R,B)-narrowable if there exist σ and t ′

such that t ;σ ,R,B t ′. Given the narrowing sequence α : (t0 ;θ1 t1 · · ·;θn tn), the
computed substitution of α is θ = (θ1 . . .θn)|Var(t0) and we may write t0 ;n

θ
tn.

8In what follows, we assume for simplicity that the notions of defined and constructor symbol
are independent of the symbol’s typing. However, in an order-sorted setting this need not be the
case. For a simple example, consider that for a sort Nat of natural numbers with constants 0 and
1, the addition function + can be declared as a constructor modulo the axioms B of associativity
(A), commutativity (C), and 0 as an identity (U). However, when we add the supersort Nat < Int
of integers, the definition of integer addition +, besides being also ACU, needs additional equations
in ~E and therefore is not a constructor. We assume throughout that, given a symbol f in Σ, all its
typings are either constructors or they are defined. The more general case illustrated by the above
example for number addition is left for future work.

9The renaming is chosen to ensure that every substitution is idempotent, i.e., σ satisfies Dom(σ)∩
Ran(σ) = /0 so that (tσ)σ = tσ .

12



Since (R,B)-narrowing has quite a large search space, suitable strategies are
needed to improve the efficiency of narrowing by getting rid of useless computa-
tions.

First, we define the notion of a narrowing strategy. Given a (R,B)-narrowing
sequence α : (t0 ;θ1 t1 · · ·;θn tn), we denote by αi the narrowing sequence αi : (t0
;θ1 t1 · · ·;θi ti), which is a prefix of α . Given an order-sorted rewrite theory R,
we denote by FullR(t) the (possibly infinite) set of all (R,B)-narrowing sequences
stemming from t.

Definition 3 (Narrowing Strategy). A narrowing strategy is a function of two ar-
guments: a rewrite theory R = (Σ,B,R) and a term t ∈ T

Σ
(X ), which we denote

by SR(t), such that SR(t)⊆ FullR(t). We require SR(t) to be prefix closed, i.e.,
for each narrowing sequence α ∈SR(t) of length n, and each i ∈ {1, . . . ,n}, we
also have αi ∈SR(t).

Narrowing strategies for rewrite theories that are complete (i.e., for every so-
lution, it computes a more general answer) under suitable conditions have been
investigated in [58, 62].

Example 2. The equational theory for exclusive-or has a decomposition into ~E
consisting of the (implicitly oriented) equations (1)-(3) below, and B the associa-
tivity and commutativity (AC) axioms for symbol ⊕:

X⊕0 = X (1) X⊕X = 0 (2) X⊕X⊕Y = Y (3)

Note that equations (1)-(2) are not strictly AC-coherent, but adding equation (3) is
sufficient to recover that property (see [63, 33]).

Given the term t = X ⊕Y , the following (~E,B)-narrowing steps can be proved
(only the bindings for the variables X and Y of the input term are shown and, by
applying the renaming apart technique, variables X and Y of the equations (1)-(3)
are respectively renamed as X ′ and Y ′)

X⊕Y ;φ1 X ′ using φ1 = {X 7→ 0,Y 7→ X ′} and Equation (1)
X⊕Y ;φ2 X ′ using φ2 = {X 7→ X ′,Y 7→ 0} and Equation (1)
X⊕Y ;φ3 0 using φ3 = {X 7→ X ′,Y 7→ X ′} and Equation (2)
X⊕Y ;φ4 Y ′ using φ4 = {X 7→ Y ′⊕X ′,Y 7→ X ′} and Equation (3)
X⊕Y ;φ5 Y ′ using φ5 = {X 7→ X ′,Y 7→ Y ′⊕X ′} and Equation (3)
X⊕Y ;φ6 U⊕Y ′ using φ6 = {X 7→ X ′⊕U,Y 7→ X ′⊕Y ′} and Equation (3)

As explained above, in order to provide a finitary and complete unification
algorithm for a decomposition (Σ,B,~E), two narrowing strategies are defined in
[36]: variant narrowing and folding variant narrowing. After introducing term
variants [25], these narrowing strategies are formalized in the following sections.

13



2.3. Term Variants

Intuitively, an (~E,B)-variant of a term t is the (~E,B)-irreducible form of an
instance tσ of t. That is, the variants of t are all of the possible (~E,B)-irreducible
terms to which instances of t evaluate. Note that variant terms are normalized.

Definition 4 (Term Variant [25]). Given a term t and an equational theory
(Σ,E ]B) with a decomposition (Σ,B,~E), we say that (t ′,θ) is a variant of t if
t ′ =B (tθ)↓~E,B, where Dom(θ)⊆Var(t) and Ran(θ)∩Var(t) = /0.

Example 3. Consider the following basic specification for the addition of natural
numbers without axioms:

0+M = M

s(N)+M = s(N +M)

The set of variants for the term X + 0 is infinite, since we have (0,{X 7→ 0}),
(s(0),{X 7→ s(0)}), . . ., (sk(0),{X 7→ sk(0)}). Analogously, the variants of the
term 0+Y are (0,{Y 7→ 0}), (s(0),{Y 7→ s(0)}), . . ., (sk(0),{Y 7→ sk(0)}).

In order to capture when a newly generated variant is subsumed by a previously
generated one, we introduce the notion of variant preordering with normalization.

Definition 5 (More General Variant [36]). Given a decomposition (Σ,B,~E) and
two term variants (t1,θ1),(t2,θ2) of a term t, we write (t1,θ1)≤~E,B (t2,θ2), mean-
ing (t1,θ1) is a more general variant of t than (t2,θ2), iff there is a substitution ρ

such that (θ1ρ)|Var(t) =B (θ2↓~E,B)|Var(t) and t1ρ =B t2.

Example 4. The term N+M has an infinite set of most general variants in the the-
ory of Example 3, since we have (M,{N 7→ 0}), (s(M),{N 7→ s(0)}), . . ., (sk(M),
{N 7→ sk(0)}). However, note that the variant (0,{N 7→ 0,M 7→ 0}) is subsumed
by (M,{N 7→ 0}) and is therefore discarded from the set of most general variants.
The set of most general variants of the term 0+M is finite and is {(M, id)}.

An equational theory has the finite variant property (FVP) (or it is called a finite
variant theory) iff there is a finite and complete set of most general variants for
each term. The specification of natural numbers of Example 3 is not a finite variant
theory, since the term N +M has an infinite number of most general variants, as
shown in Example 4. The equational theory for exclusive-or of Example 2 is a
finite variant theory as it is the following theory for Boolean expressions.

14



Example 5. Consider the following theory that declares the two Boolean con-
stants true and false. The key things to note are the special attributes assoc
and comm, meaning that the infix operators “and” and “or” obey associativity
and commutativity axioms:

fmod BOOL is
sort Bool .
ops true false : -> Bool .
op not : Bool -> Bool .
ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .
vars X Y : Bool .
eq not(true) = false [variant] .
eq not(false) = true [variant] .
eq X and true = X [variant] .
eq X and false = false [variant] .
eq X or true = true [variant] .
eq X or false = X [variant] .

endfm

There are five most general variants modulo AC for “X and Y”, which are:
(X and Y, id),(Y,{X 7→ true}),(X,{Y 7→ true}),(false,{X 7→ false}),(false,
{Y 7→ false}). Similarly, there are five most general variants for “X or Y”.

It is generally undecidable whether an equational theory has the FVP [18]; a
semi-decision procedure is given in [23, 57] that works well in practice, and another
technique based on the dependency pair framework is given in [36]. The procedure
in [23] is implemented in [11] and works by computing the variants of all flat terms
f (X1, . . . ,Xn) for any n-ary operator f in the theory and pairwise-distinct variables
X1, . . . ,Xn (of the corresponding sort); the theory does have the FVP iff there is a
finite number of most general variants for every such term [23].

2.4. The variant narrowing strategy

Given a decomposition (Σ,B,~E), applying narrowing without any restriction
can be very wasteful due to two main sources: (i) for axioms B such as associativity-
commutativity, the number of B-unifiers of an equation can be quite large; and (ii)
if we narrow a term in all possible positions, the narrowing tree may grow in an
explosive way. Let us first motivate the variant narrowing strategy with two ideas.
First, for computing variants in a decomposition we are only interested in normal-
ized terms and normalized substitutions, so we can restrict our interest to narrowing
derivations that provide only normalized substitutions and end in normalized terms,
whereas the unrestricted narrowing formalized in Definition 2 does not ensure that.

15



Example 6. Continuing with Example 2, due to the prolific AC-unification algo-
rithm there are some redundant narrowing steps with non-normalized substitutions,
such as

X⊕Y ;φ7 X ′⊕U using φ7 = {X 7→ X ′⊕0,Y 7→U} and Equation (1)
X⊕Y ;φ8 U⊕X ′ using φ8 = {X 7→U,Y 7→ 0⊕X ′} and Equation (1)
X⊕Y ;φ9 Y ′ using φ9 = {X 7→ X ′⊕X ′,Y 7→ Y ′} and Equation (3)
X⊕Y ;φ10 Y ′ using φ10 = {X 7→ Y ′,Y 7→ X ′⊕X ′} and Equation (3)
X⊕Y ;φ11 Y ′⊕U using φ11 = {X 7→ X ′⊕X ′⊕Y ′,Y 7→U} and Equation (3)
X⊕Y ;φ12 U⊕Y ′ using φ12 = {X 7→U,Y 7→ X ′⊕X ′⊕Y ′} and Equation (3)

For instance, note that the narrowing step with substitution φ9 is not needed be-
cause the same effect is achieved with the normalized substitution φ1. Indeed, the
vu-narrow command of Maude 3.0 [31], which performs full (i.e., unrestricted)
narrowing with rules modulo axioms, (non-deterministically) computes 28 differ-
ent one-step narrowing derivations from the term X ⊕Y . When we consider nar-
rowing sequences instead of single steps, we can easily get a combinatorial ex-
plosion, since we have another 28 different one-step narrowing derivations after
any of the following ones (for simplicity, the three equation renamings have been
chosen to produce variables Z1⊕ Z2): X ⊕Y ;φ6 Z1⊕ Z2, X ⊕Y ;φ8 Z1⊕ Z2,
or X ⊕Y ;φ11 Z1⊕Z2. Also, there are many infinite narrowing sequences, such
as the one repeating substitution φ6 again and again: X ⊕Y ;φ6 Z1⊕ Z2 ;φ ′6
Z′1⊕Z′2 ;φ ′′6

Z′′1 ⊕Z′′2 ; · · · where φ ′6 = {Z1 7→U ′⊕Z′1,Z2 7→U ′⊕Z′2} and φ ′′6 =
{Z′1 7→U ′′⊕Z′′1 ,Z

′
2 7→U ′′⊕Z′′2}.

Our second idea is to give priority to most general narrowing steps, instead of
dealing with more instantiated ones, and to select one and only one narrowing step
among those having the same generality, following a don’t care approach. This has
three implications. The first is that the most general narrowing steps are rewrit-
ing steps (if any), and thus any (deterministic) rewrite step should be taken before
exploring (possibly non-deterministic) narrowing steps. This resembles the opti-
mization of narrowing known as normalizing narrowing (see, e.g., [39]). Thanks to
convergence modulo B, as soon as a rewrite step→~E,B is enabled in a term that also
has narrowing steps ;~E,B, such a rewrite step is always taken before any further
narrowing steps are applied. The idea of normalizing terms before any narrowing
step is taken is consistent with the implementation of rewriting logic [63], where
deterministic rewrite steps (with equations) are given priority w.r.t. more expen-
sive, non-deterministic rewrite steps (with rules). The second implication is that
variant narrowing goes much further than just giving priority to rewrite steps by
filtering out all narrowing steps that do not compute most general substitutions.

16



Namely, given two narrowing steps t ;
σ1,~E,B

t1 and t ;
σ2,~E,B

t2 in a decomposi-
tion (Σ,B,~E) such that σ1 ≤B σ2, we can safely disregard the narrowing step using
σ2 without losing completeness (c.f. [36, Theorem 4]). The third implication is
that we can pack together, in the same equivalence class, all narrowing steps with
equally general substitutions and select just one of them as the class representative,
thanks to convergence modulo B (see [36] for further details).

Example 7. The vu-narrow command of Maude 3.0 [31] computes 12 different
one-step narrowing derivations from the term X ⊕Y ⊕ X ⊕Y in the equational
theory of Example 2, whereas variant narrowing recognizes that the term is not yet
normalized, e.g., X ⊕Y ⊕X ⊕Y → 0 (by using Equation 2), and such a rewriting
step is more general than any other narrowing step from X ⊕Y ⊕X ⊕Y . Thus,
such narrowing steps can be disregarded by just choosing to rewrite the term. Note
that there are two other rewrite steps X ⊕Y ⊕X ⊕Y → Y ⊕Y (by using Equation
2) and X ⊕Y ⊕X ⊕Y → X ⊕X (by using Equation 2), and equational rewriting
in Maude will choose the one that rewrites the maximal ⊕-term possible due to
implicit coherence extensions for rewriting (see [63, 33]).

On the other hand, if we add a new (redundant) equation

X⊕X⊕Z⊕Z⊕Y = Y (4)

to the equational theory of Example 2, the vu-narrow command of Maude 3.0
computes 173 different one-step narrowing derivations for the more general term
X⊕Y . One of them is

X⊕Y ;µ Y ′′ using the B-unifier
µ = {X 7→ Y ′′⊕X ′′⊕Z′′,Y 7→ X ′′⊕Z′′}
and Equation (4)

which is an AC-instance of the narrowing step using substitution φ4 shown above:

X⊕Y ;φ4 Y ′ using φ4 = {X 7→ Y ′⊕X ′,Y 7→ X ′} and Equation (3)

Variant narrowing does discard the less general narrowing step with µ , keeping
only the more general narrowing step with φ4.

These optimizations are formalized as follows. First, a preorder between nar-
rowing steps is introduced that defines when a narrowing step is more general than
another narrowing step.

17



Definition 6 (Preorder and Equivalence of Narrowing Steps [36]). Given a de-
composition (Σ,B,~E), consider two narrowing steps α1 : t ;

σ1,~E,B
s1 and α2 :

t ;
σ2,~E,B

s2. Let V = Var(t). We write α1 �B α2 if σ1 ≤B σ2[V ] and α1 ≺B α2
if σ1 <B σ2[V ] (i.e., σ1 is strictly more general than σ2 on V ). We write α1 'B α2
if σ1 'B σ2[V ], i.e. α1 �B α2 and α2 �B α1.

The relation α1 'B α2 between narrowing steps defines a set of equivalence
classes of narrowing steps. In what follows, we will be interested in choosing a
unique representative α ∈ [α]'B in each equivalence class of narrowing steps from
t. Therefore, α will always denote the chosen unique representative α ∈ [α]'B that
is minimal w.r.t. the order �B.

The relation �B provides an improvement on narrowing executions in two
ways. First, narrowing steps with more general computed substitutions will be
selected instead of narrowing steps with more specific computed substitutions. As
a particular case, when both a rewriting step and a narrowing step are available
for (even different positions of) the same term, the rewriting step will always be
chosen. Second, the relation 'B provides a further optimization, since just one
narrowing (or rewriting) step is chosen for each equivalence class, which further
reduces the width of the narrowing tree.

The described strategy is formalized by the notion of variant narrowing.

Definition 7 (Variant Narrowing [36]). Given a decomposition (Σ,B,~E) and a
narrowing step α : t ;

σ ,~E,B t ′, α is a variant narrowing step if it satisfies: (i) σ|Var(t)

is (~E,B)-irreducible and (ii) α is the chosen unique representative of its
'B-equivalence class.

Following the notation of [36], a variant narrowing step from t to t ′ in (Σ,B,~E)
with substitution σ is denoted as t ;

σ ,~E,B t ′.

A variant narrowing strategy could be easily defined by allowing only variant
narrowing steps. However, we provide a more sophisticated narrowing strategy in
the following section.

2.5. The folding variant narrowing strategy

The variant narrowing strategy defined above is a strategy in the sense of Defi-
nition 3, i.e., it always returns a subset of the narrowing steps that are available for
each term. Note, however, that it has no memory of previous steps –just the input
term to be narrowed– hence, it incurs no memory overhead. More sophisticated
strategies can be developed by introducing some sort of memory that can avoid the
repeated generation of useless or unnecessary computation steps. This is the case
of the folding narrowing strategy of [36], which, when combined with the variant

18



narrowing strategy, provides the folding variant narrowing strategy which is com-
plete for variant generation of a term and it terminates when the input term has a
finite set of most general variants.

In Definition 8 below, we introduce a folding narrowing relation on term vari-
ants. Folding narrowing allows the deployed variant narrowing tree to be seen as
a graph, where some leaves are connected to other nodes by implicit “fold” ar-
rows. This definition normalizes each computed variant, which is not performed
in the original definition of [36]. Note that we easily extend the variant narrowing
strategy to variants, i.e., (t,θ);

σ ,~E,B (t ′,θ ′) iff t ;
σ ,~E,B t ′ and θ ′ = θσ .

Definition 8 (Folding Variant Narrowing Strategy). Let R = (Σ,B,~E) be a de-
composition. Given a Σ-term t, the frontier from term variant I = (t, id) is defined
as

Frontier(I)0 = {(t↓~E,B, id)},
Frontier(I)n+1 = {(y↓~E,B,(ρσ)↓~E,B) | (∃(z,ρ) ∈ Frontier(I)n : (z,ρ);

σ ,~E,B (y,ρσ))∧
(@k ≤ n,(w,τ) ∈ Frontier(I)k : (w,τ)≤~E,B (y,ρσ))},
n≥ 0

The folding variant narrowing strategy, denoted by VN	R , is defined as

VN	R(t) = {α | α : t ;k
σ ,~E,B t ′∧∃k ≥ 0 : (t ′,σ) ∈ Frontier((t, id))k}

Example 8. For the input term X ⊕Y , the computed VN	R steps in the equational
theory of Example 2 are as follows.

(i) (X⊕Y, id);φ1 (X
′,φ1), using φ1 = {X 7→ 0,Y 7→ X ′} and Equation (1),

(ii) (X⊕Y, id);φ2 (X
′,φ2), using φ2 = {X 7→ X ′,Y 7→ 0} and Equation (1),

(iii) (X⊕Y, id);φ3 (0,φ3), using φ3 = {X 7→ X ′,Y 7→ X ′} and Equation (2),
(iv) (X⊕Y, id);φ4 (Y

′,φ4), using φ4 = {X 7→Y ′⊕X ′,Y 7→X ′} and Equation (3),
(v) (X⊕Y, id);φ5 (Y

′,φ5), using φ5 = {X 7→X ′,Y 7→Y ′⊕X ′} and Equation (3),
(vi) (X ⊕Y, id) ;φ6 (U ⊕Y ′,φ6), using φ6 = {X 7→ X ′⊕U,Y 7→ X ′⊕Y ′} and

Equation (3).

where all computed substitutions are normalized. Non-normalized narrowing steps
such as

(X⊕Y, id);φ9 (Y
′,φ9), using φ9 = {X 7→ X ′⊕X ′,Y 7→Y ′} and Equa-

tion (3)

19



are not in VN	R because they are all subsumed by a variant narrowing step that
computes the normalized version of the same substitution, e.g., (Z,φ1)≤~E,B (Z,φ9).
Furthermore, the sequence (X ⊕Y, id);φ6 (Z1⊕Z2,φ6);φ ′6

(Z′1⊕Z′2,φ6φ ′6) cor-
responding to the two-step prefix of the infinite variant narrowing derivation of
Example 6 is not in VN	R because (Z1⊕Z2,φ6)≤~E,B (Z′1⊕Z′2,φ6φ ′6).

For a decomposition (Σ,B,~E), completeness of folding variant narrowing w.r.t.
(~E,B)-normalized substitutions is proved in [36, Theorem 4].

3. Specializing Convergent Equational Theories modulo Axioms

In this section, we introduce a partial evaluation algorithm for the decompo-
sition (Σ,B,~E) of an equational theory (Σ,E ), with E = E ]B, that is based on
computing folding variant narrowing trees, and we establish the correctness of the
transformation system. Our partial evaluation algorithm extends the general NPE
procedure of [14], which is parametric w.r.t. an unfolding rule to construct finite
derivations for an expression and an abstraction operator used to guarantee that
only finitely many expressions are evaluated.

This section is organized as follows. In Section 3.1, we recall the key ideas
of the NPE approach. In Section 3.2, we discuss how the specialization of pro-
grams that contain sorts, subsorts, rules, and equational axioms is significantly
more elaborate. In Section 3.3, we present the general algorithm for order sorted
equational partial evaluation modulo axioms based on folding variant narrowing.
Local termination of the general algorithm is discussed in Section 3.4, whereas
global termination is discussed in Section 3.5. In Section 3.6, a post-processing
algorithm is presented that gets rid of unnecessary symbols and further optimizes
the program.

3.1. The NPE Approach
Given a convergent set E of equations (oriented into a set ~E of rewrite rules) and

a set Q of input terms, the aim of NPE [14] is to derive a new set ~E ′ of rules (called
a partial evaluation of ~E w.r.t. Q, or a partial evaluation of Q in ~E) which computes
the same answers and irreducible forms (w.r.t. narrowing) as ~E for any term that is
inductively covered (closed) by the calls in Q (henceforth called specialized calls).
This is achieved by ensuring that every term (and subterm) in the leaves of the
(partially unfolded) execution tree for each t ∈ Q that can be narrowed in ~E can
also be (correspondingly) narrowed in ~E ′. Roughly speaking, ~E ′ is obtained by
first constructing a (possibly partial) finite narrowing tree for each input term t
and then gathering together the set of resultants tθ1⇒ t1,. . . , tθk⇒ tk that can be
constructed by considering the leaves of the tree, say t1, . . . , tk, and the computed

20



substitutions θ1, . . . ,θk of the associated branches of the tree (i.e., a resultant rule is
associated to each root-to-leaf derivation of the partial narrowing tree). Resultants
perform what in fact is an n-step computation in ~E, with n> 0, by means of a single
step computation in ~E ′. The unfolding process is iteratively repeated for every
narrowable subterm of t1, . . . , tk that is not covered by the root nodes of the already
deployed narrowing trees. This ensures that resultants form a complete description
covering all calls that may occur at run-time in ~E ′. As discussed below, local
and global termination criteria are generally imposed to ensure both termination of
the expansion of each narrowing tree and termination of recursively constructing
narrowing trees, respectively.

In contrast to the partial deduction of logic programs, in classical NPE the no-
tion of closedness is not a mere syntactic subsumption check that every subterm
occurring in the leaves of the tree(s) is a substitution instance of one of the terms
in Q. Instead, in order to properly deal with nested function calls, the closed-
ness notion recurses over the structure of the terms [14]. Informally, a Σ-term t
is considered Q-closed w.r.t. Σ (we often say that t is closed w.r.t. Q and Σ, or
just closed w.r.t. Q when no confusion can arise) iff either: (i) it does not contain
defined function symbols of Σ, or (ii) there exists a substitution θ and a (possibly
renamed) q ∈Q such that t = qθ , and the terms in θ are recursively Q-closed w.r.t.
Σ. For instance, given a free binary constructor symbol • (i.e., it does not obey any
structural axioms such as associativity or commutativity), the term t = a • (Z • a)
is closed w.r.t. Q = {a•X ,Y •a} or {X •Y}, but it is not with Q being {a•X}.

Let us illustrate the classical NPE method with the following example that
shows its ability to perform deforestation [64], a popular transformation that nei-
ther standard partial evaluation nor partial deduction can achieve [14]. Essentially,
the aim of deforestation is to eliminate useless intermediate data structures, thus
reducing the number of passes over data.

Example 9. Consider the following Maude program that computes the mirror im-
age of a (non-empty) binary tree, which is built with the free constructor _{_}_ that
stores an element as root above two given (sub-)trees, its left and right children.
Note that this is a simple specialization problem, where the considered program
does not contain any equational attributes either for _{_}_ or for the operation
flip defined therein:

fmod FLIP-TREE is protecting NAT .
sort NatTree . subsort Nat < NatTree .
vars R L : NatTree . var N : Nat .
op _{_}_ : NatTree Nat NatTree -> NatTree .
op flip : NatTree -> NatTree .
eq flip(N) = N [variant] .

21



flip(flip(T))
{T 7→N}

ww
{T 7→L {N} R}

++
flip(N)

��

flip(flip(R) {N} flip(L))

��
N flip(flip(L)) {N} flip(flip(R))

Figure 1: Folding variant narrowing tree for the goal flip(flip(T)).

eq flip(L {N} R) = flip(R) {N} flip(L) [variant] .
endfm

By executing in Maude the input term flip(flip(T)), this program returns the
original tree T back, but it first computes an intermediate, mirrored tree flip(T)
of T, which is then flipped again.

Let us partially evaluate the input term flip(flip(T)) following the NPE
approach. We compute the folding variant narrowing tree depicted10 in Figure 1.
This tree does not contain, altogether, uncovered calls in its leaves. Thus, after
introducing the new symbol dflip, we get the following residual program:

eq dflip(N) = N .
eq dflip(L {N} R) = dflip(L) {N} dflip(R) .

which is completely deforested, since the intermediate tree constructed after the
first application of flip is not constructed in the residual program using the spe-
cialized definition of dflip. This is equivalent to the program generated by de-
forestation [64] but with a much better11 performance (see Section 5). Note that
the fact that folding variant narrowing [36] ensures normalization of terms at each
step is essential for computing the calls flip(flip(R)) and flip(flip(L)) that
appear in the rightmost leaf of the tree in Figure 1, which are closed w.r.t. the root
node of the tree.

When we specialize programs that contain sorts, subsorts, rules, and equational
axioms, things get considerably more involved, as discussed in the following sec-
tion.

3.2. Partial evaluation of convergent rules modulo axioms
Let us motivate the problem by considering the following variant of the flip

function of Example 9 for (binary) graphs instead of trees.

10We show narrowing steps in solid arrows and rewriting steps in dotted arrows.
11Similarly to [64], the optimal program dflip(T) = T cannot be produced by our equational

NPE technique.

22



0
}} !!

1 2
}} !!

3 // 4

tt 0
}} !!

2
}} !!

1

4

++

3oo

Figure 2: A binary graph (left) and its flipped version (right).

Example 10. Consider the following Maude program for flipping binary graphs
whose nodes may contain explicit, left and right references (pointers) to their child
nodes in the graph. We use symbol # to denote an empty pointer. The BinGraph
constructor _;_ obeys associativity, commutativity, and identity (ACU) axioms so
that it can be seen as a multiset of nodes { R1 I R2 }, with R1 and R2 being refer-
ences and I the node identifier. We provide for an unbounded number of (natural)
node identifiers by establishing the subsort relation Nat < Id .

fmod GRAPH is
pr NAT .
sorts BinGraph Node Id Ref .
subsort Node < BinGraph . subsort Id < Ref . subsort Nat < Id .
op {___} : Ref Id Ref -> Node . op mt : -> BinGraph .
op _;_ : BinGraph BinGraph -> BinGraph [assoc comm id: mt] .
op # : -> Ref . --- Void pointer

endfm

We are interested in flipping a graph and define a function flip that takes a binary
graph and returns the flipped graph.

var I : Id . vars R1 R2 : Ref . var BG : BinGraph .
op flip : BinGraph -> BinGraph .
eq [E1] : flip(mt) = mt [variant] .
eq [E2] : flip({R1 I R2} ; BG) = {R2 I R1} ; flip(BG) [variant] .

We can represent the graph shown on the left-hand side of Figure 2 as the
following term g of sort BinGraph:

{ 1 0 2 } ; { # 1 # } ; { 3 2 4 } ; { # 3 4 } ; { # 4 0 }

By invoking flip(g), the graph shown on the right-hand side of Figure 2 is com-
puted.

In order to specialize the previous program for the call flip(flip(BG)), we
need several PE ingredients that have to be generalized to the corresponding (order-
sorted) equational notions: (i) equational closedness, (ii) equational embedding,

23



and (iii) equational generalization. These notions are discussed in the following
sections.

3.3. Equational closedness and the generalized Partial Evaluation scheme

In order to extend the NPE approach to convergent equational theories (Σ,B,~E),
we need to start by constructing a finite (possibly partial) (~E,B)-narrowing tree for
each input term t in the set Q of specialized calls using the folding variant nar-
rowing strategy [36], and then extracting the specialized rules tσ ⇒ r (resultants)
for each narrowing derivation t ;+

σ ,~E,B
r in the tree. In order to guarantee that

all possible executions for t in the original program (Σ,B,~E) are covered by the
specialization, we need to formalize an extended notion of closedness ensuring
that any (~E,B)-narrowable subterm in the leaves of the tree can also be narrowed
modulo B using the specialized rules. This ensures that resultants form a complete
description covering all calls that may occur at run-time.

Let us define a general notion of equational closedness which relies on sub-
sumption modulo B for theories whose function symbols (both defined and con-
structor symbols) can obey a set B of equational axioms.

Definition 9 (Equational Closedness). Let (Σ,B,~E) be an equational theory de-
composition and Q be a finite set of Σ-terms, i.e., terms that are built from Σ and a
countably infinite set of variables X . Assume the signature Σ splits into a set D of
defined function symbols and a set C of constructor symbols, so that Σ = D ]C .
We say that a Σ-term t is closed modulo B (w.r.t. Q and Σ), or simply B-closed, if
closedB(Q, t) holds, where the predicate closedB is defined as follows:

closedB(Q, t) ⇔



true if t ∈X
closedB(Q, t1)∧ . . .∧ closedB(Q, tn) if t = c(tn), c ∈ C , n≥ 0∧

x 7→t ′∈θ closedB(Q, t ′) if ∃q ∈ Q,∃θ such that
root(t) = root(q) ∈D and
qθ =B t

f alse otherwise

A set T of terms is closed modulo B (w.r.t. Q and Σ) if closedB(Q, t) holds for each
t in T . A set R of rules is closed modulo B (w.r.t. Q and Σ) if the set that can be
formed by taking the right-hand sides of all of the rules in R also is closed modulo
B. We often omit Σ when no confusion can arise.

Example 11. In order to partially evaluate the program in Example 10 w.r.t. the
input term flip(flip(BG)), we set Q = {flip(flip(BG))} and start by con-

24



flip(flip(BG))

[E1]
{BG 7→ mt}

xx

[E2]
{BG 7→ {R1 I R2} ; BG’}

**
flip(mt)

[E1]

��

flip({R2 I R1} ; flip(BG’))

[E2]

��
mt {R1 I R2} ; flip(flip(BG’))

Figure 3: Folding variant narrowing tree for the goal flip(flip(BG)).

structing the folding variant narrowing tree that is shown12 in Figure 3.
When we consider the leaves of the tree, we identify two requirements for Q-

closedness, with B being ACU: (i) closedB(Q, t1) with t1 = mt and (ii) closedB(Q, t2)
with t2 = {R1 I R2} ; flip(flip(BG’)). The call closedB(Q, t1) holds straight-
forwardly (i.e., it is reduced to true) since the mt leaf is a constant and cannot be
narrowed. The call closedB(Q, t2) also returns true because _;_ is constructor,
{R1 I R2} is a flat constructor term, and flip(flip(BG’)) is a (syntactic) re-
naming of the root of the tree.

We now show an example that requires using B-matching in order to ensure
equational closedness modulo B.

Example 12. Let us add a new sort BinGraph? to the program in Example 10
to encode bogus graphs that may contain spurious nodes in a supersort Id? and
homomorphically extend the rest of symbols and sorts. For simplicity, we just con-
sider one additional constant symbol e of sort Id?.

sorts BinGraph? Id? Node? Ref? .
subsorts BinGraph Node? < BinGraph? .
subsort Node < Node? .
subsort Id < Id? .
subsorts Ref Id? < Ref? .
op e : -> Id? .
op {___} : Ref? Id? Ref? -> Node? .
op _;_ : BinGraph? BinGraph? -> BinGraph? [assoc comm id: mt] .
vars I I1 : Id . var I? : Id? .
vars R1 R2 : Ref . vars R1? R2? : Ref? .
var BG : BinGraph . var BG? : BinGraph? .

12To ease reading, the arcs of the narrowing tree are labelled with the corresponding equation
applied at each narrowing step.

25



1

��

0

��
e:: ��

3
UU

1

��

0

��
299

��
3

UU

Figure 4: Fixing a graph.

Let us consider a function fix that receives an extended graph BG?, an unwanted
node I?, and a new content I, and that traverses the graph replacing I? by I.

op fix : Id Id? BinGraph? -> BinGraph? .
eq [E3] : fix(I, I?, {R1? I? R2?} ; BG?) =

fix(I, I?, {R1? I R2?} ; BG?) [variant] .
eq [E4] : fix(I, I?, {I? I1 R2?} ; BG?) =

fix(I, I?, {I I1 R2?} ; BG?) [variant] .
eq [E5] : fix(I, I?, {R1? I1 I?} ; BG?) =

fix(I, I?, {R1? I1 I} ; BG?) [variant] .
eq [E6] : fix(I, I?, BG) = BG [variant] .

For example, consider the following term t of sort BinGraph?:

{# 1 e} ; {e 0 #} ; {e e 3} ; {e 3 #}

that represents the graph shown on the left-hand side of Figure 4. By invoking
fix(2, e, t), we can fix the graph t by computing the corresponding transformed
graph shown on the right-hand side of Figure 4, where the unwanted constant e has
been replaced with 2.

Now assume we want to specialize the above function fix w.r.t. the input
term fix(2, e, {R1 I R2} ; BG?), that is, a bogus graph with at least one
non-spurious node {R1 I R2} (it is non-spurious because of the sort of variable
I). Following the proposed methodology, we set Q = {fix(2, e, {R1 I R2}
; BG?)} and start by constructing the folding variant narrowing tree shown in
Figure 5.

The right leaf {R1 I R2} ; BG is a constructor term and cannot be unfolded.
The first three branches to the left of the tree are closed modulo ACU with the root
of the tree in Figure 5. For instance, for the left leaf

t = fix(2, e, {R1?’ 2 R2?’} ; BG?’ ; {R1 I R2})

26



fix(2, e, {R1 I R2} ; BG?)

[E3]
{BG? 7→ {R1?’ e R2?’} ; BG?’}

xx
[E4]

{BG? 7→ {e I1 R2?’} ; BG?’}

��

[E5]
{BG? 7→ {R1?’ I1 e} ; BG?’}

&&

[E6]
{BG? 7→ BG}

++
{R1 I R2} ; BG

fix(2, e, {R1?’ 2 R2?’} ;
BG?’ ; {R1 I R2})

fix(2, e, {R1?’ I1 2} ;
BG?’ ; {R1 I R2})

fix(2, e, {2 I1 R2?’} ;
BG?’ ; {R1 I R2})

Figure 5: Folding variant narrowing tree for the goal fix(2, e, {R1 I R2} ; BG?).

the condition closedB(Q, t) is reduced13 to true because t is an instance (modulo
ACU) of the root node of the tree, and the subterm
t ′ =({R1?’ 2 R2?’} ; BG?’) occurring in the corresponding ACU-matcher is
a constructor term. The other two branches can be proved ACU-closed with the
tree root in a similar way.

Example 13 (Example 12 continued). Now let us assume that the function flip
of Example 10 is replaced by the following definition extended to (bogus graphs of
sort) BinGraph?, where the former equation E2 is an instance of the new equation
E2x:

op flip : BinGraph? -> BinGraph? .
eq [E1x] : flip(mt) = mt [variant] .
eq [E2x] : flip({R1? I? R2?} ; BG?)

= {R2? I? R1?} ; flip(BG?) [variant] .

We specialize the whole program containing functions flip and fix w.r.t. input
term flip(fix(2, e, flip(BG))); that is, take a graph BG, flip it, then fix any
occurrence of nodes e, and finally flip it again. A partial folding variant narrow-
ing tree for the input term is shown in Figure 6. Note that the right branch of the
tree has been stopped at this point (the stopping criterion is formalized in Sec-
tion 3.4 below) to avoid infinite unfolding by using equation E2x. Unfortunately
this tree does not represent all possible computations for (any ACU-instances of)
the input term, since the narrowable redexes occurring in the tree leaves are not

13Note that this is only true because pattern matching modulo ACU is used for checking closed-
ness.

27



flip(fix(2, e, flip(BG)))

[E1x]
{BG 7→ mt}

uu

[E2x]
{BG 7→ BG’ ; {R1 I R2}}

**
flip(fix(2, e, mt))

[E6]

��

flip(fix(2, e, flip(BG’) ;
{R2 I R1}))

flip(mt)

[E1x]

��
mt

Figure 6: Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG))).

a recursive instance of the only partially evaluated call so far, flip(fix(2, e,
flip(BG))). That is, the term

flip(fix(2, e, flip(BG’) ; {R2 I R1}))

in the rightmost leaf is not ACU-closed w.r.t. the root node of the tree. As in NPE,
we need to introduce a methodology that recurses (modulo B) over the structure of
the terms to augment the set of specialized calls in a controlled way, so as to ensure
that all possible calls are covered by the specialized program.

We are now ready to formulate the backbone of our partial evaluation method-
ology for equational theories that crystallize the ideas of the example above. We
define a generic algorithm (Algorithm 1) that is parameterized by:

1. a narrowing relation (with narrowing strategy S ) that constructs search
trees,

2. an unfolding rule UNFOLD that determines when and how to terminate the
construction of the trees, and

3. an abstraction operator ABSTRACT that is used to guarantee that the set of
terms obtained during partial evaluation (i.e., the set of deployed narrowing
trees) is kept finite.

Note that, by using the notion of decomposition, the partial evaluation of an
equational theory (Σ,E ] B) can be seen as a particular case of this parameter-
ized algorithm that is defined for rewrite theories (Σ,B,~E), and we prefer to keep
it generic for further instantiations of this algorithm to deal with more complex
rewrite theories.

Informally, the algorithm proceeds as follows. Given the input theory R and
the set of terms Q, the first step consists in applying the unfolding rule
UNFOLD(Q,R,S ) to compute a finite (possibly partial) narrowing tree in R for

28



Algorithm 1 Partial Evaluation for Equational Theories
Require:

An order-sorted rewrite theory R = (Σ,B,~E) and a set of terms Q to be spe-
cialized in R, and a narrowing strategy S

Ensure:
A set Q′ of terms s.t. Q and UNFOLD(Q′,R,S ) are closed modulo B w.r.t. Q′

1: function EQNPE(R,Q,S )
2: Q← Q↓~E,B
3: repeat
4: Q′← Q
5: L ← UNFOLD(Q′,R,S )
6: Q← ABSTRACT(Q′,L ,B)
7: until Q′ =B Q
8: return Q′

each term t in Q and return the set L of the (normalized) leaves of the trees. Then,
instead of proceeding directly with the partial evaluation of the terms in L , an
abstraction operator ABSTRACT(Q,L ,B) is applied that properly combines each
uncovered term in L with the (already partially evaluated) terms of Q so that the
infinite growing of Q is avoided. The abstraction phase yields a new set of terms
which may need further specialization, and, thus, the process is iteratively repeated
while new terms are introduced.

Note that Algorithm 1 does not explicitly compute a partially evaluated theory
R ′ = (Σ,B,~E ′). It does so implicitly, by computing the set Q′ of partially evalu-
ated terms (that unambiguously determine ~E ′ as the set RQ′,R of resultants tσ ⇒ r
associated to the root-to-leaf derivations t ;+

σ ,~E,B
r in the tree, with t in Q′), such

that the closedness condition for ~E ′ modulo B w.r.t. Q′ is satisfied.
For the correctness of Algorithm 1, we require any instance of the generic

abstraction operator ABSTRACT(Q,L ,B) to agree with the following definition.

Definition 10 (Equational Abstraction). Given the finite set of terms T and the
already evaluated set of terms Q, ABSTRACT(Q,T,B) returns a new set Q′ such
that:

1. if v ∈ Q′, then there exists u ∈ (Q∪T ) and a renamed version v′ of v, such
that u|p =B v′θ for some position p and substitution θ , and

2. for all t ∈ (Q∪T ), t is closed with respect to Q′ modulo B.

Roughly speaking, condition (1) ensures that the abstraction operator does not
“create” new function symbols (i.e., symbols not present in the input arguments),

29



whereas condition (2) ensures that the resulting set of terms “covers” (modulo
B) the calls previously specialized and that equational closedness is preserved
throughout successive abstractions.

There are two correctness issues for a PE procedure: termination, i.e., given
any input goal, execution should always reach a stage at which there is no way
to continue; and (partial) correctness and completeness, i.e., the residual program
behaves as the original one for the considered input terms (provided PE terminates).
The basic completeness of the transformation is ensured whenever R ′ is closed
modulo B w.r.t. Q′, i.e., every call in (the right-hand side of the rules in) R ′ is a
(recursive) instance (modulo B) of a term in Q′.

The following lemma is the main result in this section and establishes that the
function EQNPE of Algorithm 1 reaches the B-closedness condition upon termi-
nation, independently from the narrowing strategy, unfolding rule, and abstraction
operator. This is a key property of partial evaluation frameworks that is necessary
to achieve completeness of the specialization.

Lemma 11. Let R = (Σ,B,~E) be a decomposition of an equational theory (Σ,E ),
S a narrowing strategy, and Q a set of terms. If EQNPE(R,Q,S ) terminates
computing the set Q′ of terms, then: (1) Q is B-closed w.r.t. Q′, and (2) also the
rules in the resulting partially evaluated theory R ′ are B-closed w.r.t. Q′.

In order to ensure the termination of the algorithm, the partial narrowing trees
must be finite and the iterative construction of the partial trees must eventually
terminate while still guaranteeing that the desired amount of specialization is re-
tained and that the equational closedness condition is reached. In the following
subsection, we present a simple but useful solution to the termination problem by
introducing appropriate unfolding and abstraction functions that fit the narrowing
strategies described in Section 2 for specializing equational theories.

3.4. Termination of the PE process

Partial evaluation involves two classical termination problems: the so-called
local termination problem (the termination of unfolding, or how to control and
keep the expansion of the narrowing trees finite, which is managed by an unfolding
rule), and global termination (which concerns termination of recursive unfolding,
or how to stop recursively constructing more and more narrowing trees).

The problem of obtaining (sensibly expanded) finite narrowing trees essen-
tially boils down to defining suitable unfolding rules that somehow ensure that
infinite unfolding is not performed. In the following section, we introduce an
unfolding rule that attempts to maximize unfolding while retaining termination.
Our strategy is based on the use of a homeomorphic embedding relation (i.e., a

30



structural preorder) under which a term t is greater than (i.e., it embeds) another
term t ′, written as t ′ E t, if t ′ can be obtained from t by deleting some parts (e.g.,
s(0+s(X))∗s(X +Y ) embeds s(X)∗s(Y )), which we suitably define to work mod-
ulo axioms B. Homomorphic embedding modulo B is used by our strategy as a way
to stop (R,B)-narrowing derivations.

Embedding relations are very popular for ensuring termination of symbolic
methods and program optimization techniques because embedding relations are
well-quasi-orderings, i.e., given a finite signature, for every infinite sequence of
terms t1, t2, . . . , there exist i < j such that ti E t j. Therefore, when iteratively com-
puting a sequence t1, t2, . . . , tn, finiteness of the sequence can be guaranteed by
using the embedding as a whistle [47]: whenever a new expression tn+1 is to be
added to the sequence, we first check whether tn+1 embeds any of the expressions
already in the sequence. If that is the case, we say that E whistles, i.e., it has
detected (potential) non-termination and the computation has to be stopped. Oth-
erwise, tn+1 can be safely added to the sequence and the computation proceeds. For
instance, if we work modulo commutativity, we must stop a sequence where the
term s(0+ s(X))∗ s(X +Y ) occurs after s(Y )∗ s(X +0) since it embeds it modulo
the commutativity of + and ∗. This is simple but less crude than imposing ad hoc
depth bounds and it still guarantees termination (finite unfolding) in all cases.

Following [6, 7], we extend the homeomorphic embedding (“syntactically sim-
pler”) relation on nonground terms [47] to the order-sorted, semantic case of work-
ing modulo axioms. Variations of [47] are used in termination proofs for term-
rewriting systems [30] and for ensuring local termination of partial deduction [17].
Given a term t, we let dte denote the kind of t, i.e., dte= [ls(t)].

Definition 12 (Order-sorted Symbolic Homeomorphic Embedding [7]). The
order-sorted symbolic embedding relation Ĕ over TΣ(X )s is defined as follows

Variable Diving Coupling

dxe=dye
xĔy

∃i∈{1,...,n} : sĔ ti
sĔ f (t1,...,tn)

∀i∈{1,...,n} : si Ĕ ti
f (s1,...,sn)Ĕ f (t1,...,tn)

Roughly speaking, the Variable inference rule allows dealing with (order-sorted)
variables in terms, while the Diving and Coupling inference rules are similar to the
pure (syntactic) homeomorphic embedding definition. Since we assume that Σ has
no ad-hoc overloading, the terms f (s1, . . . ,sn) and f (t1, . . . , tn) in the Coupling
inference rule belong to the same kind; hence, no extra check is needed. Nor is
an extra check required for the Diving rule for the same reason since it simply
traverses the term structure.

31



It is worth noting that, while it seems natural to consider that X:A Ĕ Y:B for
the case when A is a subsort of B (which holds because [A] = [B], hence dxe= dye),
the practical usefulness of having X:A Ĕ Y:B is less evident for the case when B
is a subsort of A (which holds for the very same reason). However, consider an
overloaded operator g, with g : A→ A and g : B→ B, with A > B. In a context
of symbolic execution where logical variables are considered, it could be the case
of having a computation sequence (t1, . . . ti, . . . , t j, t j+1 . . .), with ti = g(X :A), t j =
g(Y :B), and t j+1 = g(X :A), where t j+1 derives from t j by a symbolic execution step
(e.g., think of a narrowing step from g(Y :B) by using a program rule g(g(X :A))→
g(X :A)). Hence, the fact that g(X :A)Ĕg(X :B) allows any risk of non-termination
to be detected at t j, i.e., before generating t j+1; this prevents an infinite sequence
like g(X :A), . . . ,g(X ′:A), . . . ,g(X ′′:A), . . . from being generated.

In [7], the equational extension (modulo B) of Ĕ, in symbols ĔB, is defined in
the natural way as follows.

Definition 13 (Order-sorted Symbolic Homeomorphic Embedding Modulo B [5]).
The order-sorted B-embedding relation ĔB is (ren

=B)◦ (Ĕ)◦ (
ren
=B), where v ren

=Bv′ iff
there is a renaming substitution σ for v′ such that v =B v′σ .

Example 14. Consider the following equational theory (written in Maude syntax)
that defines the signature of natural numbers. The defined sort hierarchy has top
sort Nat and (disjoint) subsorts Zero and NzNat (for non-zero natural numbers).
The sort Nat is generated from the constant 0 (of sort Zero) and the successor
operator suc14 (of sort NzNat). We also define the associative and commuta-
tive natural addition operator symbol _+_ for sort Nat but add two extra subsort-
overloaded definitions.

fmod NAT is
sorts Zero NzNat Nat .
subsorts Zero NzNat < Nat .
op 0 : -> Zero .
op suc : Nat -> NzNat .
op _+_ : Zero Zero -> Zero [assoc comm] .
op _+_ : NzNat Nat -> NzNat [assoc comm] .
op _+_ : Nat Nat -> Nat [assoc comm] .

endfm

Then, we have 1 + X:Nat ĔB Y:Nat + (1 + 2) because Y:Nat + (1 + 2) is
equal to 1 + (2 + Y:Nat) modulo the associativity and commutativity of _+_,

14For simplicity, we represent natural numbers in decimal notation; e.g., 2 for suc(suc(0)).

32



and 1 + X:Nat is homeomorphically embedded into 1 + (2 + Y:Nat). Similarly,
1 + X:Zero ĔB Y:Nat + (1 + 2) and 1 + X:NzNat ĔB Y:Nat + (1 + 2) hold.

A well-quasi ordering � on terms is a transitive and reflexive binary relation
such that, for any infinite sequence of terms t1, t2, . . . with a finite number of op-
erators, there exist i, j with i < j and ti � t j. Similarly to the pure homeomorphic
embedding E, the order-sorted symbolic homeomorphic embedding relation ĔB is
a well-quasi-order on the set of terms TΣ(X ) for class-finite15 theories.

Lemma 14. Given a class-finite theory (Σ,B), the order-sorted symbolic homeo-
morphic embedding relation ĔB is a well-quasi ordering on the set TΣ(X ).

Strictly speaking, the restriction to class-finite theories rules out theories that
contain identity axioms. However, dealing with identity poses no practical problem
for partial evaluation based on (folding) variant narrowing. This is because the
deployed (folding) variant narrowing traces only contain (~E,B)-normalized terms;
hence, embedding tests are always performed between terms in which the identity
elements have been already removed by (~E,B)-normalization.

In this paper, we use the high-performance implementation of the order-sorted
symbolic homeomorphic embedding relation ĔB given in [7], where a comparison
of increasingly efficient implementations of ĔB can be found. State of the art lo-
cal control rules based on homeomorphic embedding do not check for embedding
against all previously selected expressions but rather only against those in its se-
quence of covering ancestors [19]. This increases the efficiency of the checking
and allows the whistle ĔB to blow later. The following unfolding function instan-
tiates the function UNFOLD of Algorithm 1 by using the embedding relation in a
constructive way to produce finite narrowing trees and then extract the leaves from
the trees.

We need the following auxiliary notion. We say that a narrowing derivation
D is admissible w.r.t. ĔB if and only if it does not contain a pair of comparable
narrowing redexes (i.e., rooted by the same operation symbol) s and t, where s
precedes t in D, such that sĔBt.

Definition 15 (Unfolding function). Given the rewrite theory R = (Σ,B,~E) and
a term t0 to be specialized in R, we define UNFOLD(t0,R,S ), for S = VN	R , as

15B is called class-finite if all of the B-equivalence classes of terms in the quotient term algebra
T

Σ
(X )/=B are finite. This includes the class of permutative equational theories B, where s =B

t implies that the terms s and t contain the same symbols with the same number of occurrences
[20]. The class of permutative equational theories includes any combination of associativity and/or
commutativity axioms.

33



the set of terms

Un f oldĔB(t0,R) = {tn | t0 ;n tn ∈ VN	R(t0),
t0 ;n−1 tn−1 is admissible w.r.t. ĔB and
either @w : t0 ;n tn ; w ∈ VN	R(t0)
or t0 ;n tn is not admissible w.r.t. ĔB.}

Given a set Q of terms, we also define Un f oldĔB(Q,R) =
⋃

t∈QUn f oldĔB(t,R).

Note that the function Un f oldĔB(Q,R) of Definition 15 computes a finite (possi-
bly partial) folding variant narrowing tree in R for each term t in Q and returns the
set of the (normalized) leaves of the trees. Derivations are stopped when there is
no further folding variant narrowing steps or the embedding whistle blows.

Example 15 (Example 13 continued). Consider again the (partial) folding vari-
ant narrowing tree of Figure 6. The narrowing redex

t = flip(fix(2, e, flip(BG’)) ; {R2 I R1})

in the right branch of the tree embeds modulo ACU the tree root

u = flip(fix(2, e, flip(BG)))

Since the whistle uĔBt blows, the unfolding of this branch is stopped.

The following result establishes the termination of the unfolding process.

Theorem 1 (Local Termination). Let R = (Σ,B,~E) be a decomposition of an
equational theory (Σ,E ]B) and Q be a finite set of terms. The computation of
Un f oldĔB(Q,R) terminates.

Nontermination of the function EQNPE in Algorithm 1 can be caused not only
by the creation of an infinite narrowing tree but also by never reaching the equa-
tional closedness condition. Unlike local control, which is parametric w.r.t. the
decision whether to stop or to proceed with the expansion, since it is safe to ter-
minate the evaluation at any point, the global control does not allow this flexibility
because we cannot stop the iterative extension of the set Q of partially evaluated
expressions until all function calls in this set are B-closed w.r.t. Q itself.

34



3.5. Global Termination of Equational NPE
For global termination, partial evaluation relies on an abstraction operator to

ensure that the iterative construction of a sequence of partial narrowing trees ter-
minates while still guaranteeing that the desired amount of specialization is re-
tained and that the equational closedness condition is reached. In order to avoid
constructing infinite sets, instead of just taking the union of the set L of (possibly
non-closed modulo B) terms in the leaves of the tree and the set Q of specialized
calls, the sets Q and L are generalized. Hence, the abstraction operator returns a
safe approximation A of Q∪L so that each expression in the set Q∪L is closed
w.r.t. A. Let us show how we can define a suitable abstraction operator by using the
notion of equational least general generalization modulo B (lggB) [8] so that we do
not lose too much precision despite the abstraction. For more sophisticated global
control, homeomorphic embedding can be combined with other techniques such as
global trees, characteristic trees, or trace terms (see, e.g., [48] and its references).

Generalization is the dual of unification [59]: generalization (resp. unifica-
tion) appear as the supremum (resp. infimum) operator in the lattice order of
(unsorted) terms (up to renaming). Roughly speaking, the generalization prob-
lem (also known as anti-unification) for two or more expressions means finding
their least general generalization, i.e., the least general expression t such that all
of the given expressions are instances of t under appropriate substitutions. For in-
stance, the expression father(X,Y) is a generalizer of both father(john,sam)
and father(tom,sam), but their least general generalizer is father(X,sam).

For order-sorted theories, neither more general unifiers (mugs) nor least gen-
eral generalizers (lggs) are generally unique, but there are always finite sets of
them [9]. In [10], the notion of least general generalization is extended to work
modulo equational axioms B, where function symbols can obey any combination
of associativity, commutativity, and identity axioms (including the empty set of
such axioms). Unlike the untyped case, there is in general no unique lgg in the
framework of [8], due to both the order-sortedness and to the equational axioms.
Instead, there is always a finite, minimal and complete set of lggs so that any other
generalizer has at least one of them as a B-instance.

Formally, given an order-sorted signature Σ and a set of algebraic axioms B, a
generalization modulo B of the nonempty set of Σ-terms {t1, . . . , tn} is a pair 〈t,Θ〉,
where Θ = {θ1, . . . ,θn} is a set of substitutions, such that, Dom(θi) = Dom(θ j)
for all i, j ∈ {1, . . . ,n}, and for all i = 1, . . . ,n, tθi =B ti. The pair 〈t,Θ〉 is the
least general generalization modulo B of a set of terms S, written lggB(S), if (1)
〈t,Θ〉 is a generalization of S and (2) for every other generalization 〈t ′,Θ′〉 of S,
t ′ is more general than t modulo B. In this paper, we use the high-performance
implementation of the order-sorted least general generalization modulo B given in
[4].

35



Given the current set Q of already specialized calls, in order to augment Q with
a new set T of terms, the abstraction operator ABSTRACT(Q,T,B) of Algorithm 1
is particularized to an abstraction function that relies on the notion of best matching
set (BMS), an order-sorted equational extension of [1] that is aimed at avoiding
loss of specialization due to generalization. The notion of BMS is used in the
abstraction process when selecting the most appropriate terms of Q to be selected
for generalizing T , in the sense of providing least general generalizations.

Roughly speaking, we determine the best matching set for t in a set U of
terms w.r.t. B, BMSB(U, t), as follows: for each ui in U , we compute the set
Wi = lggB({ui, t}) and select the subset M of minimal upper bounds of the union
W =

⋃
iWi. Then, the term uk belongs to BMSB(U, t) if at least one element in the

corresponding Wk belongs to M. Let us present a simple motivating example, with
B = /0.

Example 16. Let Q = { f (g(x)), f (g(a)), f (z)} and t = f (g(b)). To compute the
best matching set for t in Q, we first consider the set

W = lgg({ f (g(x)), f (g(b))})∪ lgg({ f (g(a)), f (g(b))})∪ lgg({ f (z), f (g(b))})
= { f (g(x)), f (g(y)), f (z)}

Now, the minimally general elements of W are f (g(x)) and f (g(y)), and thus we
have BMSB(Q, t) = { f (g(x)), f (g(a))}.

Definition 16 (Best Matching Set modulo B). Let U = {u1, . . . ,un} be a set of
terms and t be a term. Given the decomposition (Σ,B,~E) of (Σ,E ] B), con-
sider the sets of terms Wi = {w | 〈w,{θ1,θ2}〉∈ lggB({ui, t})}, for i = 1, ..,n, and
W =

⋃n
i=1Wi. The best matching set BMSB(U, t) for t in U modulo B is the set of

those terms uk ∈U such that the corresponding Wk contains a minimally general
element w of W under ≤B, i.e., there is no different element w′ in W (modulo the
relation 'B induced by ≤B) such that w <B w′.

The following example illustrates the definition.

Example 17. Let t = g(1)⊗1⊗g(Y ), U ≡ {1⊗g(X),X⊗g(1),X⊗Y}, and con-
sider B to consist of the associativity and commutativity axioms for the constructor
symbol ⊗. To compute the best matching set for t in U, we first compute the sets of
lggB’s of t with each of the terms in U:

W1 = lggAC({g(1)⊗1⊗g(Y ),1⊗g(X)}) = {〈Z⊗1,{{Z/g(1)⊗g(Y )},{Z/g(X)}}〉,
〈Z⊗g(W ),{{Z/1⊗g(1),W/Y},{Z/1,W/X}}〉}

W2 = lggAC({g(1)⊗1⊗g(Y ),X⊗g(1)}) = {〈Z⊗g(1),{{Z/1⊗g(Y )},{Z/X}}〉}
W3 = lggAC({g(1)⊗1⊗g(Y ),X⊗Y )}) = {〈Z⊗W,{{Z/1,W/g(1)⊗g(Y )},{Z/X ,W/Y}}〉}

36



Now, the set M of minimal upper bounds of the set W1 ∪W2 ∪W3 is M = {〈Z⊗
1,{{Z/g(1)⊗ g(Y )},{Z/g(X)}}〉,〈Z⊗ g(1),{{Z/1⊗ g(Y )},{Z/X}}〉} and thus
we have: BMSAC(U, t) = {1⊗g(X),X⊗g(1)}.

Now we are able to instantiate the function ABSTRACT(Q,T,B) of Algorithm
1 with the following equational abstraction function absĔB(Q,T ) that relies on ĔB,
the notion of best matching set, and equational least general generalization.

Definition 17 (Equational Least General Abstraction Function). Let Q,T be two
sets of terms. We define absĔB(Q,T ) as follows:


absĔB(. . .absĔB(Q,{t1}), . . . ,{tn}) if T = {t1, . . . , tn},n > 1
Q if T = /0 or T = {X},with X ∈X

absĔB(Q,{t1, . . . , tn}) if T = {t},with t = c(t1, . . . , tn), c ∈ C
generalizeB(Q,Q′, t) if T = {t},with t = f (t1, . . . , tn), f ∈D

where Q′ = {t ′ ∈ Q | root(t) = root(t ′) and t ′ĔBt}, and the function generalize is:

generalizeB(Q, /0, t) = Q∪{t}
generalizeB(Q,Q′, t) = Q if t is B-closed w.r.t. Q
generalizeB(Q,Q′, t) = absĔB(Q\BMSB(Q′, t),Q′′↓~E,B) (otherwise)

where Q′′={l | q∈ BMSB(Q′, t),〈w,{θ1,θ2}〉 ∈ lggB({q, t}),x ∈Dom(θ1∪θ2), l ∈
{w,xθ1,xθ2}}. Recall that Dom(θ1∪θ2) = Dom(θ1) = Dom(θ2).

Roughly speaking, the equational least general abstraction function proceeds
as follows. We distinguish the cases when the considered term t either: i) is a
variable, or ii) is not a variable. In the first case, the term is simply ignored. In the
second case, if t does not B-embed any term in Q, it is just added. However, if t
B-embeds some comparable term in Q, we distinguish two cases. If t is already
Q-closed, then it is simply discarded. Otherwise, the given term is generalized by
computing the lggB of t w.r.t. each of its best matching terms, and the abstraction
function is recursively applied to add the B-normalized version of w and of the
terms in the matching substitutions θ1 and θ2.

Note that the roles of Q and T in the definition of absĔB(Q,T ) are not symmet-
ric, that is, absĔB(Q,T ) 6= absĔB(T,Q) in general. This is deliberate since when
we add a new set T of calls to the set Q of already specialized calls, we want to
preserve as much as possible the potential specialization achieved by partially eval-
uating Q. For instance, for B = /0, Q = { f (g(1))}, and T = {g(1), f (1)}, we have
absĔB(Q,T )= { f (g(1)),g(1), f (1)}whereas absĔB(T,Q)= {g(1), f (X)} because

37



f (1)ĔB f (g(1)) but f (g(1)) 6ĔB f (1). Hence, absĔB(T,Q) does not achieve poly-
variant specialization16. Actually, it would unnecessarily replace with f (X) the
original specialized call f (g(1)) (while simply adding f (1) does not jeopardize
termination as f (g(1)) 6ĔB f (1)), thus losing any potential specialization.

The following results establish the correctness and termination of the equa-
tional least general abstraction function.

Proposition 18. The function absĔB of Definition 17 is an abstraction operator in
the sense of Definition 10.

Theorem 2. The equational least general abstraction function absĔB terminates.

Finally, the main result of this section follows from Theorem 1 and Proposition
18.

Theorem 3 (Global Termination). Algorithm 1 terminates for the unfolding func-
tion Un f oldĔB and the equational least general abstraction function absĔB .

Let us illustrate the use of absĔB in the following specialization problem.

Example 18. Let us consider again Example 17 and assume Q = {1 ⊗ g(X)} and
T = {g(1) ⊗ 1 ⊗g(Y )}. The call absĔB(Q,T ) invokes

generalizeB(Q,Q′,g(1)⊗1⊗g(Y ))

with Q′ = {1 ⊗ g(X)}, which in turn calls absĔB(Q\BMSB(Q′, t),Q′′), where

BMSB(Q′, t) = {1⊗g(X)}
Q′′ = {Z⊗1,Z⊗g(W ),g(X),g(1)⊗g(Y ),1⊗g(Y ),1⊗g(X)}

This in turn calls to absĔB( /0,Q′′), which amounts to the sequence of imbricated
calls

absĔB(absĔB( /0,Z⊗1),{Z⊗g(W ),g(X),g(1)⊗g(Y ),1⊗g(y),1+g(X)})

and since terms Z⊗ 1,Z⊗ g(W ) and g(X) do not embed 1⊗ g(X), then the three
terms are added yielding the new call

absĔB({Z⊗1,Z⊗g(W ),g(X)},{g(1)⊗g(Y ),1⊗g(y),1⊗g(X)})

that returns the set {Z⊗1,Z⊗g(W ),g(X)} since all three terms g(1)⊗g(Y ),1⊗
g(y) and 1+g(X) are AC-closed. That is, absĔB(Q,T ) = {Z⊗1,Z⊗g(W ),g(X)}.

38



flip(fix(2, e, flip(BG) ; BG’))

[E1x]
{BG 7→ mt,BG’ 7→ BG”}

uu

[E2a]
{BG 7→ BG” ; {R1 I R2}, BG’ 7→ BG’’’}

**
flip(fix(2, e, BG”))

[E6]

��

flip(fix(2, e, BG’’’ ;
flip(BG”) ; {R2 I R1}))

flip(BG”)

[E1x]
{BG” 7→ mt}

��

[E2a]
{BG” 7→ BG’’’ ; {R1 I R2}}

))
mt {R2 I R1} ; flip(BG’’’)

Figure 7: Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG) ; BG’)).

flip(BG’’’)

[E1x]
{BG 7→ mt}

yy

[E2a]
{BG’’’ 7→ BG’’’’ ; {R1 I R2}}

))
mt {R2 I R1} ; flip(BG’’’’)

Figure 8: Folding variant narrowing tree for the goal flip(BG’’’).

Example 19 (Example 15 continued). Consider again the (partial) folding vari-
ant narrowing tree of Figure 6 with the leaf
t = flip(fix(2, e, flip(BG’) ; {R2 I R1})) in the right branch of the tree
and the tree root u = flip(fix(2, e, flip(BG))). We apply the equational
least general abstraction function with Q = {u} and T = {t}.

Since t is operation-rooted, we call generalizeB(Q,Q′, t) with Q′ = Q, which
in turn calls to absĔB(Q\BMSACU(Q′, t),Q′′), with BMSACU(Q′, t) = Q and Q′′ =
{w,v}, where w = flip(fix(2,e,flip(BG);BG’)) is the only ACU least gen-
eral generalization of u and t and v = {R2’ I’ R1’}. Then the call returns the
set {w}. However, this means that the previous folding narrowing tree of Figure 6
is now discarded, since the previous set of input terms Q = {u} is now replaced by
Q′ = {w}.

We start from scratch and the tree that results for the new call w is shown in
Figure 7. The right leaf embeds the root of the tree and is B-closed w.r.t. it. The left
leaf mt is a constructor term. For the middle leaf t ′′= {R2 I R1} ; flip(BG’’’)
the whistle flip(BG”) ĔACU t ′′ blows and we stop the derivation. However, it is

16Polyvariance [51] is the ability to produce more than one specialized definitions for a single
original function in the same specialization.

39



not B-closed w.r.t. w and we have to add it to the set Q′, obtaining the new set of
input terms Q′′ = {w,flip(BG’’’)}. The specialization of the call flip(BG’’’)
amounts to constructing the folding variant narrowing tree of Figure 8, which is
trivially ACU-closed w.r.t. its root.

Example 20 (Example 19 continued). Since the two trees in Figures 7 and 8 do
represent all possible computations for (any ACU-instance of)
u = flip(fix(2, e, flip(BG))), the partial evaluation process ends. Actu-
ally, u is an instance of the root of the tree in Figure 7 with {BG’ 7→ mt} because
of the identity axiom. The set Q′′′ = {flip(fix(2,e,flip(BG);BG′)),flip(BG′′′)}
is the computed specialization. Now we can extract the set of resultants tσ ⇒ r
associated to the root-to-leaf narrowing derivations in the two trees, which yields:

eq flip(fix(2, e, flip(mt))) = mt .
eq flip(fix(2, e, flip({R1 I R2} ; BG’))) =

flip(fix(2, e, flip(BG’) ; {R2 I R1})) .
eq flip(fix(2, e, flip(mt) ; mt)) = mt .
eq flip(fix(2, e, flip(mt) ; BG ; {R1 I R2})) =

{R2 I R1} ; flip(BG) .
eq flip(fix(2, e, flip({R1 I R2} ; BG) ; BG’)) =

flip(fix(2, e, flip(BG) ; {R2 I R1} ; BG’)) .
eq flip(mt) = mt .
eq flip(BG ; {R1 I R2}) = {R2 I R1} ; flip(BG) .

The reader may have realized that the specialization call
flip(fix(2,e,flip(BG))) should really return the same term BG, since the vari-
able BG is of sort BinGraph instead of BinGraph?, i.e.,
flip(fix(2, e, flip(BG))) = BG. The resultants above traverse the given graph
and return the same graph. Though the code may seem inefficient, we have con-
sidered this example because it allows all the different stages of the PE process to
be illustrated.

The following example shows how a better specialization can be obtained.

Example 21. Let us now overload the flip operator, having simultaneously two
declarations for the flip symbol that are related in the subsort ordering Bingraph
< Bingraph?:

op flip : BinGraph -> BinGraph .
op flip : BinGraph? -> BinGraph? .

and four equations: E1, E2, E2a, and E2b. By specializing the call
t = flip(fix(2,e,flip(BG))), the subtype definition of flip allows Maude
to simplify the term t using equation E6, which eliminates the occurrence of the

40



flip(fix(2, e, flip(BG)))

[E6]

��
flip(flip(BG))

[E1]
{BG 7→ mt}

tt
[E2]

{BG 7→ {R1 I R2} ; BG’}
++

flip(mt)

[E1]

��

flip({R2 I R1} ; flip(BG’))

[E2]

��
mt {R1 I R2} ; flip(flip(BG’))

Figure 9: Folding variant narrowing tree for the goal flip(fix(2, e, flip(BG))).

fix symbol. All the leaves in the narrowing tree for t, shown in Figure 9, are B-
closed w.r.t. the set of calls {flip(fix(2,e,flip(BG))),flip(flip(BG’))}.
This leads to the following specialized equations:

eq flip(fix(2,e,flip(mt))) = mt .
eq flip(fix(2,e,flip({R1 I R2} ; BG))) = {R1 I R2} ; flip(flip(BG)) .
eq flip(flip(mt)) = mt .
eq flip(flip({R1 I R2} ; BG)) = {R1 I R2} ; flip(flip(BG)) .

The use of folding variant narrowing during partial evaluation provides good
overall behavior regarding both the elimination of intermediate data structures and
the propagation of information. Moreover, the following result establishes that
the executability requirements imposed on the original theory are preserved by
the transformation; e.g., no infinite o diverging computations are encoded in the
residual program.

Theorem 4. The PE of a decomposition (Σ,B,~E) is a decomposition.

In the following section, we extend the classical post-processing transformation
[14] to the order-sorted case modulo axioms to deliver a final partially evaluated
program without any redundant or undesirable derivation that could not be proven
in the original program.

3.6. Post-processing renaming modulo axioms
The basic PE algorithm of Section 3 incorporates only the basic scheme of a

complete partial evaluator. The resulting partial evaluations can be further opti-
mized by eliminating redundant function symbols and unnecessary repetition of
variables. Essentially, we introduce a new function symbol for each specialized
term and then replace each call in the specialized program by a call to the corre-
sponding renamed function.

41



Definition 19 (Independent Renaming [14]). An independent renaming ρ for a
set of Σ-terms T is a mapping from terms to terms defined as follows: for t ∈ T
with root(t) = f being a function symbol, ρ(t) = ft(xn), where xn are the distinct
variables in t in the order of their first occurrence and ft is a new function symbol,
which does not occur in Σ or T and is different from the root symbol of any other
ρ(t ′), with t ′ ∈ T and t ′ 6= t. By abuse, we let ρ(T ) denote the set T ′ = {ρ(t) | t ∈
T}.

The renaming post-processing can be formally defined as follows.

Definition 20 (Post-partial Evaluation). Let T be a finite set of terms and R ′ the
(rewrite theory computed as a) partial evaluation of the rewrite theory R w.r.t. T
s.t. R ′ is T -closed modulo B. Let ρ be an independent renaming for T . We define
the post-partial evaluation R ′′ of R w.r.t. T (under ρ) as follows:

R ′′ =
⋃

t∈T{ρ(t)θ → renρ(r) | tθ → r ∈R ′}

where the nondeterministic renaming function renρ is defined as follows:

renρ(t) =

t if t ∈X

c(renρ(tn)) if t = c(tn), c ∈ C

ρ(u)θ ′ if ∃θ ,∃u ∈ T such that t =B uθ and
θ ′ = {x 7→ renρ(xθ) | x ∈ Dom(θ)}

t otherwise

Note that, while the independent renaming suffices to rename the left-hand
sides of resultants (since they are mere instances of the specialized calls), the right-
hand sides are renamed by means of the auxiliary function renρ , which recursively
replaces each call in the given expression by a call to the corresponding renamed
function (according to ρ).

Theorem 5. The post-partial evaluation of a decomposition (Σ,B,~E) is a decom-
position.

Finally, we state and prove the strong correctness of our partial evaluation tech-
nique. The proof proceeds essentially as follows. First, we prove the soundness
(resp. completeness) of the transformation, i.e., we prove that, for each answer
computed by folding variant narrowing in the original (resp. specialized) program,
there exists a more general answer (modulo B) in the specialized (resp. original)

42



init | L | Γ

{L 7→eps}tt {L7→0 L’} ��
{L 7→1 L’}
**

eps | eps | Γ init | L’ | Γ S | L’ | Γ

{L’7→eps}tt {L’ 7→1 L”} ))
eps | eps | Γ S | L” | Γ

Figure 10: Folding variant narrowing tree for the goal init | L | Γ.

S | L” | Γ

{L” 7→eps}uu {L” 7→1 L”’} ))
eps | eps | Γ S | L”’ | Γ

Figure 11: Folding variant narrowing tree for the goal S | L” | Γ.

program. Then, by using the minimality of folding variant narrowing, we conclude
the strong correctness of the method, i.e., the answers computed in the original and
the partially evaluated programs coincide (modulo B).

Theorem 6 (Strong Correctness and Completeness of Post-partial Evaluation).
Let R = (Σ,B,~E) be a decomposition of an equational theory (Σ,E ]B), u be a
Σ-term, and Q be a finite set of Σ-terms. Let ρ be an independent renaming of
Q, u′ = renρ(u) and Q′ = renρ(Q). Let R ′ = (Σ,B, ~E ′) be a partial evaluation
of R w.r.t. Q (under the renaming ρ). If ~E ′ and u′ are closed modulo B w.r.t.
Q′, then (u;∗

σ ,~E,B
v) ∈ VN	R(u) if and only if (u′;∗

σ ′,~E ′,B
v′) ∈ VN	R ′(u), where

v′ =B renρ(v).

Example 22 (Example 21 continued). Consider the following independent renam-
ing for the specialized calls:

{flip(flip(BG)) 7→ dflip(BG), flip(fix(2,e,flip(BG))) 7→ flix(BG)}

The post-processing renaming derives the renamed program

eq flix(mt) = mt .
eq flix({R1 I R2} ; BG) = {R1 I R2} ; dflip(BG) .
eq dflip(mt) = mt .
eq dflip({R1 I R2} ; BG’) = {R1 I R2} ; dflip(BG’) .

Example 23. Consider again the elementary parser defined in Example 1 and the
initial configuration init | L | Γ. Following the PE algorithm, we construct

43



the two folding variant narrowing trees that are shown in Figures 10 and 11. Now
all leaves in the tree are closed w.r.t. Q and we get the following specialized parser:

eq init | eps | Γ = eps | eps | Γ [variant] .
eq init | 0 L | Γ = init | L | Γ [variant] .
eq init | 1 | Γ = eps | eps | Γ [variant] .
eq init | 1 1 L | Γ = S | L | Γ [variant] .
eq S | eps | Γ = eps | eps | Γ [variant] .
eq S | 1 L | Γ = S | L | Γ [variant] .

where the third and fourth equations are specialized versions of the following equa-
tion of Example 1

eq init | 1 L | Γ = S | L | Γ [variant] .

This is because the embedding test does not whistle until the expression
S | L’ | Γ is reached.

By applying the post-partial evaluation transformation with the independent
renaming ρ = {init | L | Γ 7→ finit(L), S | L | Γ 7→ fS(L), eps |
eps | Γ 7→ feps}, we get the following specialized program (note that we obtain
finit(1 eps) = feps, but it is simplified to finit(1) = feps modulo identity)

eq finit(eps) = feps . eq finit(1) = feps .
eq finit(0 L) = finit(L) . eq fS(eps) = feps .
eq finit(1 1 L) = fS(L) . eq fS(1 L) = fS(L) .

which gets rid of the grammar Γ (and hence of costly ACU-matching operations)
while still recognizing the string st by rewriting the simpler configuration finit(st)
to the final configuration feps.

4. Specializing the interpreter of an imperative programming language

As a final example, let us discuss several specializations of the interpreter of
an imperative language whose implementation as a Maude equational theory is
publicly available at the webpage of our tool, Victoria. The interpreter provides
the standard semantics of a simple imperative language that transforms program
configurations P | M, where M belongs to sort Memory and represents the program
memory, and P is an imperative program that may contain assignment instructions,
conditional statements, arithmetic expressions, and loops. For simplicity, the inter-
preter assumes that, in an initial configuration P0 | M0, the memory M0 is initialized
with default values for all the variables in the program P0 and thus it contains pairs
[x,v] for each program variable x in P0.

Consider we want to specialize the interpreter w.r.t. the following input term
configuration

44



x := 0 ; if (x = 0) then y := 0 fi ; skip | M (Conf1)

where the Maude variable M stands for an unspecified program memory and is the
only logic or symbolic variable in the input term, whereas program variables x and
y are handled as constants by the interpreter.

Our tool Victoria returns the following extremely specialized version of the
interpreter for the given input term, which can be seen as a compiled version written
in Maude

eq x := 0 ; if (x = 0) then y := 0 fi ; skip | M [x,N1] [y,N2]
= skip | M [x,0] [y,0] [variant] .

Given the independent renaming

ρ = {“x := 0 ; if (x = 0) then y := 0 fi ; skip | M” 7→ f1(M),
“skip | M [x,0] [y,0]” 7→ f2(M)}

the final, renamed version of the program is

eq f1(M [x,N1] [y,N2]) = f2(M) [variant] .

Let us now consider the case when the interpreter is specialized w.r.t. a more inter-
esting configuration P | M, where there is a second logic variable N (in addition to
M) that appears in P and belongs to sort Nat of natural numbers.

x := 2 ; i := N ; c := 0 ;
while (i < x) do

i := i + 1 ; c := c + i od ; skip (Conf2)
| M

In this case, Victoria returns the following specialized interpreter

eq x := 2 ; i := 0 ; c := 0 ;
while (i < x) do i := i + 1 ; c := c + i od ; skip
| M [c,N1] [i,N2] [x,N3]

= skip | M [c,3] [i,2] [x,2] [variant] .
eq x := 2 ; i := 1 ; c := 0 ;

while (i < x) do i := i + 1 ; c := c + i od ; skip
| M [c,N1] [i,N2] [x,N3]

= skip | M [c,2] [i,2] [x,2] [variant] .
eq x := 2 ; i := 2 + N ; c := 0 ;

while (i < x) do i := i + 1 ; c := c + i od ; skip
| M [c,N1] [i,N2] [x,N3]

= skip | M [c,0] [i,2 + N] [x,2] [variant] .

45



Given the independent renaming

ρ = {“x := 2 ; i := N; c := 0 ;
while (i < x) do

i := i + 1 ; c := c + i od ; skip | M” 7→ f1(N,M),

“skip | M [c,0] [i,N] [x,2]” 7→ f2(N,M)}

the final, renamed version of the program is

eq f1(0, M [c,N1] [i,N2] [x,N3]) = f2(0,M) [variant] .
eq f1(1, M [c,N1] [i,N2] [x,N3]) = f2(1,M) [variant] .
eq f1(2 + N, M [c,N1] [i,N2] [x,N3]) = f2(2 + N,M) [variant] .

Furthermore, if we make the memory of the previous input configuration more
concrete (without any logic variable M)

x := 2 ; i := N ; c := 0;
while (i < x) do i := i + 1 ; c := c + i od ; skip (Conf3)
| [c,0] [i,0] [x,0]

then our tool returns a simpler version of the same specialized program

eq f1(0) = f2(0) [variant] .
eq f1(1) = f2(1) [variant] .
eq f1(2 + N) = f2(2 + N) [variant] .

Note that this specialized program has no axiom, since the memory was defined as
a multiset using an ACU symbol and it has been completely eliminated.

However, consider we specialize the interpreter w.r.t. the following symbolic
configuration

x := N ; i := 0 ; c := 0;
while (i < x) do i := i + 1 ; c := c + i od ; skip (Conf4)

| [c,0] [i,0] [x,0]

where the logical variable N occurs in the assignment for the program variable x
that controls the number of loop iterations. Then, our tool returns the following
specialized version of the interpreter

eq x := 0 ; i := 0 ; c := 0;
while (i < x) do i := i + 1 ; c := c + i od ; skip
| [c,0] [i,0] [x,0]

46



= skip | [c,0] [i,0] [x,0] [variant] .
eq x := 1 + N ; i := 0 ; c := 0;

while (i < x) do i := i + 1 ; c := c + i od; skip
| [c,0] [i,0] [x,0]

= if (i < x) then i := i + 1 ; c := c + i fi;
while (i < x) do i := i + 1 ; c := c + i od ; skip
| [c,1] [i,1] [x,1 + N] [variant] .

eq if (i < x) then i := i + 1 ; c := c + i fi ;
while (i < x) do i := i + 1 ; c := c + i od ; skip
| [c,N1] [i,N2 + 1 + N3] [x,N2] .

= skip | [c,N1] [i,N2 + 1 + N3] [x,N2] [variant] .
eq if (i < x) then i := i + 1 ; c := c + i fi ;

while (i < x) do i := i + 1 ; c := c + i od ; skip
| [c,N1] [i,N2] [x,N2 + 1 + N3]

= if (i < x) then i := i + 1 ; c := c + i fi ;
while (i < x) do i := i + 1 ; c := c + i od ; skip
| [c,N1 + N2] [i,N2 + 1] [x,N2 + 1 + N3] [variant] .

Given the independent renaming

ρ = {“x := N; i := 0; c := 0;
while (i < x) do
i := i + 1; c := c + i od; skip

| [c,0] [i,0] [x,0]” 7→ f1(N),

“skip | M [c,N1] [i,N2] [x,N3]” 7→ f2(N1,N2,N3),

“if (i < x) then
i := i + 1; c := c + i fi;

while (i < x) do
i := i + 1; c := c + i od; skip

| [c,N1] [i,N2] [x,N3]” 7→ f3(N1,N2,N3)}

the final, renamed version of the program is

eq f1(0) = f2(0,0,0) [variant] .
eq f1(1 + N) = f3(1,1,1 + N) [variant] .
eq f3(N1,N2 + 1 + N3,N2) = f2(N1,N2 + 1 + N3,N2) [variant] .
eq f3(N1,N2,N2 + 1 + N3) = f3(N1 + N2,N2 + 1,N2 + 1 + N3) [variant] .

Note that this specialization does not offer much improvement over the original
interpreter, as expected because the while loop has been unrolled only once.

47



Original PE before renaming PE after renaming
Benchmark Data Time (ms) Time (ms) Speedup Time (ms) Speedup

Parser
100k 164 39 76,22 33 79,88
1M 10.561 411 96,11 348 96,70
5M 275.334 2.058 99,25 1.685 99,39

Double-flip
100k 188 143 23,94 76 59,57
1M 1.636 1.427 12,78 759 53,61
5M 8.425 7.503 10,94 4.100 51,34

Flip-fix
100k 203 177 12,81 143 29,56
1M 1.955 1.778 9,05 1.427 27,01
5M 10.185 9.219 9,48 7.458 26,77

KMP
100k 401 57 85,78 36 91,02
1M 3.872 531 86,29 331 91,45
5M 19.932 2.530 87,31 1.661 91,67

Interpreter
1k 5 3 40,00 2 60,00

10k 53 22 58,49 12 77,36
100k 520 248 52,30 112 78,46

Table 1: Experimental results

Interestingly, the specialization time is negligible in all these examples thanks
to the (order-sorted) equational least general generalization of [7] and the home-
omorphic embedding modulo equational axioms of [4]. This in contrast to our
previous prototype tool in [5], which exceeded a generous timeout of several hours
(similar to the specialization times for a comparable language interpreter in [49]).
Furthermore, the size of the specialized program (after renaming) is less than 10%
of the size of the original interpreter.

5. Experiments

We have implemented and experimentally evaluated the transformation frame-
work presented in this article in the automatic partial evaluator Victoria17 for Maude
equational theories. Victoria has been implemented in Maude and consists of about
ten thousand lines of code.

Table 1 contains the experiments that we have performed using an Intel Core2
Quad CPU Q9300(2.5GHz) with 6 Gigabytes of RAM running Maude v2.7.1 and
considering the average of ten executions for each test. These experiments together
with the source code of all examples are publicly available at Victoria’s website.
We have considered the four Maude programs previously discussed in the paper:

17Publicly available at http://safe-tools.dsic.upv.es/victoria.

48



Figure 12: Specialization of the Parser example with Victoria

Parser (Example 1), Double-flip (Example 9), Flip-fix (Example 10), and an im-
plementation of the interpreter for an imperative language (the example discussed
in Section 4). We have also considered the classical KMP string pattern matcher
[14]. For all five Maude programs, we consider input data of three different sizes:
one hundred thousand elements, one million elements, and five million elements.
Here elements refer to graph nodes for Double-flip and Flip-fix, list elements for
Parser and KMP, and the value assigned to variable x in the configuration Conf2 of
Section 4 for Interpreter. We have benchmarked three versions of each program on
these data: original program, partially evaluated program (before post-processing
renaming), and final specialization (with post-processing renaming). We do not ex-
plicitly show the specialization times since they are negligible for all problems (<
100 ms), which means it is up to 6 orders of magnitude faster than the preliminary
prototype tool in [5].

The relative speedups that we achieved thanks to specialization are given in
the Speedup column(s) and computed as the percentage 100× (OriginalTime−
PETime)/OriginalTime. For all of the examples, the partially evaluated programs
achieve a significant improvement in execution time when compared to the original
program, both with and without renaming, but even more noticeable after renam-
ing. The average improvement for these benchmarks is 67.6%. Often, the price

49



Figure 13: Specialized Parser after renaming using Victoria

paid is the size of the residual program, which may grow linearly with the size
of the specialized call. For the KMP test, the maximum improvement is 91.67%.
That is, the achieved speedup is 12 (OriginalTime/PETime), which is comparable
to the average speedup of 14 that is achieved by both the partial evaluator ECCE
[43] and the PE tool of [3] (actually, the generated residual programs are identical
to [3] on this benchmark). This shows that our new partial evaluation scheme is a
conservative extension of previous approaches on comparable examples.

Moreover, matching modulo axioms such as associativity, commutativity, and
identity are fairly expensive operations that are massively used in Maude, which
can sometimes be drastically reduced after specialization. For instance, when we
specialized the Parser of Example 1 using our tool Victoria, as illustrated in Fig-
ure 12, it moves from a program with ACU and U-right operators to a program
without axioms, as illustrated in Figure 13; note that Victoria displays both the old
and new signature with their axioms to help the reader understand the independent
renaming. This transformation power cannot be achieved by traditional NPE nor
competing on-line partial evaluation techniques, such as conjunctive partial deduc-
tion or positive supercompilation [15].

50



6. Conclusion and Future Work

Partial evaluation is a program optimization technique that is particularly ef-
fective at eliminating unnecessary overheads. We have laid the foundations for
building the first fully automated partial evaluation system for Maude equational
theories. Our specializer implements novel control criteria that ensure both local
and global termination, which required classical partial evaluation notions to be
correctly and efficiently generalized to the equational case; e.g., the order-sorted
symbolic homeomorphic embedding modulo axioms and the order-sorted equa-
tional least general generalization that allow us to define equational closedness and
abstraction. We have evaluated our practical implementation of the system, Victo-
ria, and have shown that it specializes programs quickly and achieves significant
increases in speed on realistic examples.

The development of a complete partial evaluator for the entire Maude lan-
guage requires dealing with some features that are not considered in this work
and experimenting with more refined heuristics that maximize the specialization
power. Future implementation work will focus on: (i) extending the equational
NPE framework to deal with more complex rewrite theories that may include (con-
ditional) rules, equations, and axioms; and (ii) developing refined heuristics that
can lead to further optimizations under mild assumptions (e.g., based on identify-
ing subtheories that enjoy the finite variant property and other commonly occurring
properties).

We believe that advancing current PE research ideas for order-sorted rewrite
theories may open up new opportunities for optimization in rewriting logic pro-
gram semantics development frameworks, e.g., [60]. Also, besides serving as a
powerful tool to boost program performance, it will also be a significant driver of
new symbolic reasoning features in Maude and further improvements in Maude’s
narrowing infrastructure.

Acknowledgments

We gratefully thank Demis Ballis and Julia Sapiña for many helpful discus-
sions. We also thank the anonymous reviewers for their careful reading of our
manuscript and their many insightful comments and suggestions.

References

References

[1] E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Improving
Control in Functional Logic Program Specialization. In Proc. of SAS ’98,
pages 262–277. Springer LNCS 1503, 1998.

51



[2] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation
Framework for Curry Programs. In H. Ganzinger, D. A. McAllester, and
A. Voronkov, editors, Proc. Logic Programming and Automated Reasoning,
6th International Conference, LPAR’99, volume 1705 of Lecture Notes in
Computer Science, pages 376–395. Springer, 1999.

[3] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme
for Multi-Paradigm Declarative Languages. Journal of Functional and Logic
Programming, 2002, 2002.

[4] M. Alpuente, D. Ballis, A. Cuenca-Ortega, S. Escobar, and J. Meseguer.
ACUOS2 : A high-performance system for modular ACU generalization with
subtyping and inheritance. In F. Calimeri, N. Leone, and M. Manna, editors,
Logics in Artificial Intelligence - 16th European Conference, JELIA 2019,
Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes
in Computer Science, pages 171–181. Springer, 2019.

[5] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Partial Eval-
uation of Order-Sorted Equational Programs Modulo Axioms. In Proc. of
26th Int’l Symposium on Logic-Based Program Synthesis and Transforma-
tion, LOPSTR 2016, volume 10184 of LNCS, pages 3–20. Springer, 2017.

[6] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Homeomor-
phic embedding modulo combinations of associativity and commutativity ax-
ioms. In F. Mesnard and P. J. Stuckey, editors, Logic-Based Program Syn-
thesis and Transformation - 28th International Symposium, LOPSTR 2018,
Frankfurt/Main, Germany, September 4-6, 2018, Revised Selected Papers,
volume 11408 of Lecture Notes in Computer Science, pages 38–55. Springer,
2018.

[7] M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Order-sorted
Homeomorphic Embedding modulo Combinations of Associativity and/or
Commutativity Axioms. Fundamenta Informaticae, 2019. To appear.

[8] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A Modular Order-
sorted Equational Generalization Algorithm. Information and Computation,
235:98–136, 2014.

[9] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda Order-Sorted General-
ization. Electr. Notes Theor. Comput. Sci., 246:27–38, 2009.

52



[10] M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda A Modular Equational
Generalization Algorithm. In M. Hanus, editor, Logic-Based Program Syn-
thesis and Transformation - 18th International Symposium, LOPSTR 2008,
Valencia, Spain, July 17-18, 2008, Revised Selected Papers, volume 5438 of
Lecture Notes in Computer Science, pages 24–39. Springer, 2009.

[11] M. Alpuente, S. Escobar, J. Sapiña, and A. Cuenca-Ortega. Inspecting maude
variants with GLINTS. TPLP, 17(5-6):689–707, 2017.

[12] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy
Functional Logic Programs. In Proc. of the ACM SIGPLAN Conf. on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM’97, pages
151–162. ACM, New York, 1997.

[13] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven Partial Evaluation
of Functional Logic Programs. In H. R. Nielson, editor, Proc. of the 6th
European Symp. on Programming, ESOP’96, pages 45–61. Springer LNCS
1058, 1996.

[14] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional
Logic Programs. ACM TOPLAS, 20(4):768–844, 1998.

[15] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional and
Logic Program Specialization. ACM Computing Surveys, 30(3es):9es, 1998.

[16] F. Baader and W. Snyder. Unification theory. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes),
pages 445–532. Elsevier and MIT Press, 2001.

[17] R. Bol. Loop Checking in Partial Deduction. Journal of Logic Programming,
16(1&2):25–46, 1993.

[18] C. Bouchard, K. A. Gero, C. Lynch, and P. Narendran. On Forward Closure
and the Finite Variant Property. In Proc. of the 9th Int’l Symposium on Fron-
tiers of Combining Systems (FroCos 2013), volume 8152 of Lecture Notes in
Computer Science, pages 327–342. Springer-Verlag, Berlin, 2013.

[19] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for
Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In
V. Saraswat and K. Ueda, editors, Proc. 1991 Int’l Symp. on Logic Program-
ming, pages 117–131, 1991.

53



[20] H. Bürckert, A. Herold, and M. Schmidt-Schauß. On Equational Theories,
Unification, and (Un)decidability. Journal of Symbolic Computation, 8(1–
2):3–49, 1989.

[21] R. Burstall and J. Darlington. A Transformation System for Developing Re-
cursive Programs. Journal of the ACM, 24(1):44–67, 1977.

[22] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades
later. Commun. ACM, 56(2):82–90, Feb. 2013.

[23] A. Cholewa, J. Meseguer, and S. Escobar. Variants of variants and the finite
variant property. Technical report, CS Dept. University of Illinois at Urbana-
Champaign, february 2014.

[24] N. H. Christensen and R. Glück. Offline partial evaluation can be as accurate
as online partial evaluation. ACM Trans. Program. Lang. Syst., 26(1):191–
220, 2004.

[25] H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid
of some algebraic properties. In J. Giesl, editor, RTA, volume 3467 of Lecture
Notes in Computer Science, pages 294–307. Springer, 2005.

[26] W. R. Cook and R. Lämmel. Tutorial on Online Partial Evaluation. In
O. Danvy and C. Shan, editors, Proc.IFIP Working Conference on Domain-
Specific Languages, DSL 2011, volume 66 of EPTCS, pages 168–180, 2011.

[27] O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation, Int’l Sem-
inar, Dagstuhl Castle, Germany. Springer LNCS 1110, 1996.

[28] J. Darlington, Y. Guo, and H. Pull. Constraints unify functional and logic
programming. Technical report, Department of Computing, Imperial College,
London, 1991.

[29] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, pages 243–320. Elsevier, Amsterdam, 1990.

[30] N. Dershowitz and J.-P. Jouannaud. Notations for Rewriting. Bulletin of the
European Association of Theoretical Computer Science, 43:162–172, 1991.

[31] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Rubio, and
C. Talcott. Programming and symbolic computation in Maude. J. Log. Algebr.
Meth. Program., 2019. To appear.

54



[32] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, and C. L. Tal-
cott. Associative unification and symbolic reasoning modulo associativity
in Maude. In V. Rusu, editor, Rewriting Logic and Its Applications - 12th
International Workshop, WRLA 2018, Held as a Satellite Event of ETAPS,
Thessaloniki, Greece, June 14-15, 2018, Proceedings, volume 11152 of Lec-
ture Notes in Computer Science, pages 98–114. Springer, 2018.

[33] F. Durán and J. Meseguer. A Maude coherence checker tool for conditional
order-sorted rewrite theories. In P. C. Ölveczky, editor, WRLA, volume 6381
of Lecture Notes in Computer Science, pages 86–103. Springer, 2010.

[34] S. Eker. Associative-Commutative Rewriting on Large Terms. In
R. Nieuwenhuis, editor, Rewriting Techniques and Applications, 14th Inter-
national Conference, RTA 2003, Proceedings, volume 2706 of Lecture Notes
in Computer Science, pages 14–29. Springer, 2003.

[35] S. Escobar, J. Meseguer, and R. Sasse. Variant Narrowing and Equational
Unification. Electronic Notes Theoretical Computer Science, 238(3):103–
119, 2009.

[36] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal
variant termination. J. Log. Algebr. Program., 81(7-8):898–928, 2012.

[37] M. Fay. First Order Unification in an Equational Theory. In Proc of 4th Int’l
Conf. on Automated Deduction, CADE’79, pages 161–167, 1979.

[38] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoret-
ical Computer Science, 105:217–273, 1992.

[39] M. Hanus. The Integration of Functions into Logic Programming: From
Theory to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

[40] M. Hanus. Functional Logic Programming: From Theory to Curry. In
A. Voronkov and C. Weidenbach, editors, Programming Logics - Essays in
Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer
Science, pages 123–168. Springer, 2013.

[41] M. Hanus and B. Peemöller. A partial evaluator for Curry. In Proc. of 23rd
International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2014), pages 55–71. Universität Halle-Wittenberg, 2014.

[42] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

55



[43] J. Jørgensen, M. Leuschel, and B. Martens. Conjunctive Partial Deduction in
Practice. In Proc. of LOPSTR’96, pages 59–82. Springer LNCS 1207, 1996.

[44] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental Construction of
Unification Algorithms in Equational Theories. In Proc. of 10th Colloquium
on Automata, Languages and Programming (ICALP 1983), volume 154 of
LNCS, pages 361–373. Springer, 1983.

[45] L. Lafave and J. P. Gallagher. Constraint-based partial evaluation of rewriting-
based functional logic programs. In N. E. Fuchs, editor, Proc. Logic Pro-
gramming Synthesis and Transformation, 7th International Workshop, LOP-
STR’97, volume 1463 of Lecture Notes in Computer Science, pages 168–188.
Springer, 1998.

[46] M. Leuschel. Advanced Techniques for Logic Program Specialisation. PhD
thesis, 1997.

[47] M. Leuschel. Improving Homeomorphic Embedding for Online Termination.
In P. Flener, editor, Proc. of 8th International Workshop on Logic Program-
ming Synthesis and Transformation, (LOPSTR 1998), volume 1559 of LNCS,
pages 199–218. Springer, 1998.

[48] M. Leuschel and M. Bruynooghe. Logic program specialisation through par-
tial deduction: Control issues. TPLP, 2(4-5):461–515, 2002.

[49] M. Leuschel, S. Craig, and D. Elphick. Supervising Offline Partial Eval-
uation of Logic Programs Using Online Techniques. In G. Puebla, editor,
Logic-Based Program Synthesis and Transformation, 16th International Sym-
posium, LOPSTR 2006, Venice, Italy, July 12-14, 2006, Revised Selected
Papers, volume 4407 of Lecture Notes in Computer Science, pages 43–59.
Springer, 2007.

[50] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programming. Jour-
nal of Logic Programming, 11:217–242, 1991.

[51] B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduc-
tion while Allowing Flexible Polyvariance. In L. Sterling, editor, Proc. of
ICLP’95, pages 597–611. MIT Press, 1995.

[52] P. Melliès. On a duality between Kruskal and Dershowitz theorem. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, ICALP, volume 1443 of Lecture
Notes in Computer Science, pages 518–529. Springer, 1998.

56



[53] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[54] J. Meseguer. Membership Algebra As a Logical Framework for Equational
Specification. In F. Parisi-Presicce, editor, Proc. of 12th International Work-
shop on Recent Trends in Algebraic Development Techniques, WADT’97, vol-
ume 1376 of LNCS, pages 18–61. Springer, 1997.

[55] J. Meseguer. Order-Sorted Rewriting and Congruence Closure. In B. Jacobs
and C. Löding, editors, Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, volume 9634 of
Lecture Notes in Computer Science, pages 493–509. Springer, 2016.

[56] J. Meseguer. Strict Coherence of Conditional Rewriting Modulo Axioms.
Theor. Comput. Sci., 672:1–35, 2017.

[57] J. Meseguer. Variant-based satisfiability in initial algebras. Sci. Comput.
Program., 154:3–41, 2018.

[58] J. Meseguer and P. Thati. Symbolic Reachability Analysis using Narrowing
and its Application to Verification of Cryptographic Protocols. Higher-Order
and Symbolic Computation, 20(1-2):123–160, 2007.

[59] G. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press, 1970.

[60] V. Rusu, D. Lucanu, T. Serbanuta, A. Arusoaie, A. Stefanescu, and G. Rosu.
Language definitions as rewrite theories. J. Log. Algebr. Meth. Program.,
85(1):98–120, 2016.

[61] J. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Com-
mutativity and Associativity. Journal of the ACM, 21(4):622–642, 1974.

[62] P. Thati and J. Meseguer. Complete symbolic reachability analysis using
back-and-forth narrowing. Theor. Comput. Sci., 366(1-2):163–179, 2006.

[63] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002.

[64] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theo-
retical Computer Science, 73:231–248, 1990.

[65] D. Weise, R. Conybeare, E. Ru, and S. Seligman. Automatic Online Partial
Evaluation. In J. Hughes, editor, FPCA, volume 523 of Lecture Notes in
Computer Science, pages 165–191. Springer, 1991.

57



[66] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton, G. Du-
boscq, D. Simon, and M. Grimmer. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, pages 662–676, New York, NY, USA, 2017. ACM.

58



Appendix A. Proofs of Technical Results

In this appendix, we demonstrate the main technical results of the paper, to-
gether with other important results for equational partial evaluation. We prove the
following properties of our scheme:

1. (Section Appendix A.1) We prove that the closedness condition is reached
by the generic Algorithm 1 independently from the narrowing strategy, un-
folding rule, and abstraction operator.

2. (Section Appendix A.2) We prove the correctness and termination of the
equational least general abstraction function.

3. (Section Appendix A.3) We prove that the use of the order-sorted symbolic
homeomorphic embedding modulo B ensures termination of each iteration
of Algorithm 1.

4. (Section Appendix A.4) We prove that the use of the equational least general
abstraction function ensures termination of Algorithm 1.

5. (Section Appendix A.5) We prove that a partially evaluated program satisfies
the same executability conditions imposed on the original program.

6. (Section Appendix A.6) We prove that a partially evaluated program is
strongly correct and complete w.r.t. the folding variant narrowing compu-
tations of the original program.

Appendix A.1. B-closedness after EqNPE

We prove that the function EQNPE of Algorithm 1 reaches the closedness con-
dition independently from the narrowing strategy, unfolding rule, and abstraction
operator. In order to demonstrate this result, we first prove the transitivity of the
equational closedness relation (Definifion 9).

We use the following auxiliary notion. We define the maximal number of
nested symbols in a term t, depth(t), as follows: depth(X) = 1, for X ∈ X ;
depth(t) = 1+max({depth(t1), ...,depth(tn)}), for t = f (t1, ..., tn), f ∈ Σ, n ≥ 0.
The function max computes the maximum of a set on numbers.

Lemma 21. If term t is B-closed w.r.t. a set T1 of terms, and T1 is B-closed w.r.t. a
set T2 of terms, then t is B-closed w.r.t. T2.

Proof. We proceed by induction on the depth of t.
Since the base case depth(t) = 1 is trivial, we proceed with the inductive case.

Let depth(t) = k + 1, k ≥ 0, and assume the property holds for all t ′ such that
depth(t ′) ≤ k. Since t is B-closed w.r.t. T1 (and depth(t) > 1), following the
definition of closedness we need to distinguish two cases:

59



1. If t is headed by a constructor symbol, then t ≡ c(t1, . . . , tn), c ∈ C , and the
set {t1, . . . , tn} is B-closed w.r.t. T1. Since depth(ti)≤ k, i = 1, . . . ,n, then by
the induction hypothesis, closedB(T2, ti) holds for all i = 1, . . . ,n. Hence, by
definition of closedness, t is also B-closed w.r.t. T2.

2. If there exist s1 ∈ T1 and substitution θ1 such that root(t) = root(s1)∈D and
s1θ1 =B t, then closedB(T1,s′) holds for all x 7→ s′ ∈ θ1. Since s1 ∈ T1, then by
hypothesis we have that s1 is B-closed w.r.t. T2. Hence, there exists s2 ∈ T2
such that s2θ2 =B s1 (since s1 is also headed by a defined function symbol),
and closedB(T2,s′′) holds for all x 7→ s′′ ∈ θ2. Then, we have that there is a
term s2 ∈ T2 such that s2θ2θ1 =B s1θ1 =B t. To prove that t is B-closed w.r.t.
T2 we only need to show that closedB(T2, t ′) holds for all x 7→ t ′ in θ1θ2.
Since depth(s′) ≤ k for all x 7→ s′ ∈ θ1, then by the induction hypothesis,
we have that closedB(T2,s′) also holds for all x 7→ s′ ∈ θ1. Finally, since
closedB(T2,s′′) holds for all x 7→ s′′ ∈ θ2, it is immediate that xθ2θ1 is B-
closed w.r.t. T2 for all x ∈ Dom(θ2θ1), which ends the proof.

Lemma 11. Let R = (Σ,B,~E) be a decomposition of an equational theory (Σ,E ),
S a narrowing strategy, and Q a set of terms. If EQNPE(R,Q,S ) terminates
computing the set Q′ of terms, then: (1) Q is B-closed w.r.t. Q′, and (2) also the
rules in the resulting partially evaluated theory R ′ are B-closed w.r.t. Q′.

Proof. Consider the following sequence Q0, · · · ,Qn of term sets that are computed
at the successive iterations of the EQNPE function of Algorithm 1, where Q0 = Q
and for all i, 1≤ i≤ n, we have Qi = ABSTRACT(Qi−1,UNFOLD(Qi−1,R,S ),B).

Claim (1). Let us first prove that each Qi−1 is B-closed w.r.t. Qi, for 1≤ i≤ n.
From fact (2) of Definition 10 we have that, for i > 0, if t ∈Qi−1, then t is B-closed
with respect to Qi, and Claim (1) follows by transitivity (Lemma 21).

Claim (2). Since Qn = ABSTRACT(Qn−1,UNFOLD(Qn−1,R,S ),B), by using
again fact (2) from Definition 10, for all t ∈ UNFOLD(Qn−1,R,S ), t is B-closed
with respect to Qn. Now, since Qn = Qn−1, the unfolding set UNFOLD(Qn,R,S )
is B-closed w.r.t. Qn, hence so are the right-hand sides of the rules in R ′ and the
proof is done.

Appendix A.2. Correctness and termination of the abstraction function
In the following, we demonstrate the correctness and the termination abstrac-

tion function of Definition 17.
Let us define the complexity of a set of terms as follows.

Definition 22 (Complexity of a set of terms). Let T be a set of terms. The com-
plexity MT of T is the finite multiset of natural numbers corresponding to the depth
of the terms of T : MT = {depth(t) | t ∈ T}.

60



The set of finite multisets over IN is denoted by M(IN). We consider the well
founded total ordering ≺mul over multisets by extending the well founded ordering
< on IN to the set M(IN) of finite multisets over IN.

Definition 23 (Multiset ordering). Given M,M′ ∈M(IN), M ≺mul M′ if and only
if there exist X ⊆M,X ′ ⊆M′ such that M = (M′ \ X ′)∪X and, for all n ∈ X, there
exists n′ ∈ X ′, such that n < n′, where < is the standard strict partial order over IN.

The set M(IN) is well founded under the multiset ordering≺mul since IN is well
founded under < [30].

Now, the desired result can be proved.

Proposition 18. The function absĔB of Definition 17 is an abstraction operator in
the sense of Definition 10.

Proof. Following the definition of an abstraction operator (Definition 10), we need
to prove that

1. if s ∈ absĔB(Q,T ) then there exists t ∈ (Q∪T ) such that t|p =B sθ for some
position p and substitution θ and

2. for all t ∈ (Q∪T ), t is B-closed w.r.t. absĔB(Q,T ).

Condition (1) is trivially fulfilled, since absĔB only applies the lggB operator, which
cannot introduce function symbols not appearing in Q or T . Now we prove Condi-
tion (2) by well-founded induction on MQ∪T .

If Q∪T = /0 (MQ∪T = /0), then absĔB( /0, /0) = /0, and the proof is done.
Let us consider the inductive case Q∪ T 6= /0 (MQ∪T 6= /0), and assume that

T is not empty (otherwise the proof is trivial). Then, T = T0 ∪ {t}, with T0 =
{t1, . . . , tn−1}. By the inductive hypothesis, the property holds for all Q? and for all
T ? such that MQ?∪T ? <mul MQ∪T .

Following the definition of absĔB, we now consider three cases:

1. If t is a variable symbol, or t is a constant value c ∈ C , then

Q′ = absĔB(Q,T )
= absĔB(Q,T0∪{t})
= absĔB(absĔB(. . .absĔB(Q, t1), . . . , tn−1), t)
= absĔB(absĔB(Q,T0), t)
= absĔB(Q,T0).

Since MQ∪T0 <mul MQ∪T0∪{t} = MQ∪T then, by the inductive hypothesis,
Q∪T0 is B-closed with respect to the terms in Q′, and by the definition of
B-closedness, so is Q∪T0∪{t}= Q∪T .

61



2. If t ≡ c(s1, . . . ,sm), c ∈ C , m > 0, then by definition of absĔB

Q′ = absĔB(Q,T )
= absĔB(Q,T0∪{t})
= absĔB(absĔB(Q,T0),c(s1, . . . ,sm))

= absĔB(absĔB(Q,T0),{s1, . . . ,sm})
= absĔB(. . .absĔB(absĔB(Q,T0),s1), . . . ,sm)

= absĔB(Q,T0∪{s1, . . . ,sm}).

Since MQ∪T0∪{s1,...,sm}<mul MQ∪T0∪{c(s1,...,sm)} = MQ∪T then, by the induc-
tive hypothesis, Q∪ T0 ∪{s1, . . . ,sm} is B-closed with respect to the terms
in q′, and by the definition of B-closedness, so is Q∪T0∪{c(s1, . . . ,sm)} =
Q∪T .

3. If t ≡ f (s1, . . . ,sm), f ∈F , m≥ 0, then by definition of absĔB

Q′ = absĔB(Q,T )
= absĔB(Q,T0∪{t})
= absĔB(absĔB(Q,T0), t)
= generalizeB(absĔB(Q,T0),W, t).

where W = {t ′ ∈ absĔB(Q,T0) | root(t) = root(t ′) and t ′ĔBt}. Assume that
Q′′ = absĔB(Q,T0) 6= /0 (since the case when absĔB(Q,T0) is /0 is straightfor-
ward). Here we distinguish three cases, which correspond to the three case
values of the function generalizeB in definition of absĔB, given by
generalizeB(Q′′,W, t)

(a) Q′′∪{t} when W = /0. Since MQ∪T0 <mul MQ∪T then, by the inductive
hypothesis, Q∪ T0 is B-closed w.r.t. Q′′, and therefore it is B-closed
w.r.t. Q′ = Q′′∪{t}. Then, the claim follows trivially from the fact that
t is B-closed w.r.t. Q′′∪{t}.

(b) Q′′ when t is B-closed w.r.t. Q′′. Since MQ∪T0 <mul MQ∪T then, by the
inductive hypothesis, Q∪T0 is B-closed w.r.t. Q′′, and therefore Q∪T
is B-closed w.r.t. Q′′.

(c) absĔB(W ′,S) where W ′ = Q\BMSB(W, t) and S={l | q ∈ BMSB(W, t),
〈w,{θ1,θ2}〉 ∈ lggB({q, t}),x ∈ Dom(θ1 ∪θ2), l ∈ {w,xθ1,xθ2}}. By
definition of B-closedness and lggB, given 〈w,{θ1,θ2}〉 ∈ lggB({q, t}),
q and t are B-closed w.r.t. {w,xθ1,xθ2} for x ∈ Dom(θ1∪θ2). There-
fore BMSB(W, t)∪{t} is B-closed w.r.t. S. Note that BMSB(W, t) ⊆
W ⊆Q and W ′ ⊆Q. Therefore, MW ′∪S <mul MQ∪T0∪{t} = MQ∪T and,
by the inductive hypothesis, W ′ ∪ S is B-closed w.r.t. absĔB(W ′,S).

62



By Lemma 21, BMSB(W, t)∪{t} is B-closed w.r.t. S and W ′∪ S is B-
closed w.r.t. absĔB(W ′,S) implies BMSB(W, t)∪{t} is B-closed w.r.t.
absĔB(W ′,S) and the conclusion follows.

Theorem 2. The equational least general abstraction function absĔB terminates.

Proof. The termination of the abstraction function absĔB can be proved by well-
founded induction of MQ∪T . The proof is similar to the proof of Proposition 18.

Appendix A.3. Local termination of partial evaluation

In order to prove Lemma 14, we first prove that the order-sorted symbolic
homeomorphic embedding relation Ĕ (without axioms) of Definition 12 is a wqo
on the set TΣ(X ). This is an easy consequence of Kruskal’s Tree Theorem.

Lemma 24. The order-sorted symbolic homeomorphic embedding relation Ĕ of
Definition 12 is a well-quasi ordering on the set TΣ(X ).

Proof. The proof is similar to [46]. We need the following concept from [29] that
we adapt to fixed-arity symbols. Let <∼ be a relation on a set S of symbols. Then
the embedding extension of <∼ is a relation <∼emb on terms, constructed (only) from
the symbols in S , which is inductively defined as follows:

1. t <∼emb f (t1, ..., tn) if t <∼emb ti for some i;

2. f (s1, . . . ,sn)
<∼emb g(t1, . . . , tn) if f <∼ g and ∀i ∈ {1, . . . ,n} : si

<∼emb ti.

We define the relation <∼ on the set S = (Σ∪X ) of symbols as the least
relation satisfying:

1. x <∼ y if x ∈X , y ∈X , and dxe= dye;
2. f <∼ f if f ∈ Σ.

This relation is a wqo on S (because Σ is finite). Therefore, by Higman-Kruskal’s
theorem (see e.g., [29]), its embedding extension to terms, <∼emb, (which is by
definition identical to Ĕ) is a wqo on TΣ(X ). 2

Now, we are ready to prove that ĔB is a well-quasi ordering on the set TΣ(X ).

Lemma 14. Given a class-finite theory (Σ,B), the order-sorted symbolic homeo-
morphic embedding relation ĔB is a well-quasi ordering on the set TΣ(X ).

63



Proof. A binary relation � is noetherian (i.e., well-founded) on a set X if and only
if its dual relation� (defined as u� v iff u 6� v) is well on X , i.e., in every sequence
(xi)i∈N of elements of X , there exist i < j such that xi � x j [52]. Since Ĕ is a wqo
(by Lemma 24), the result follows for class-finite theories from (i) the fact that >B

(i.e., the dual of ≤B) is well-founded [20], and (ii) Ĕ is compatible with (
ren
=B). 2

Now we are able to prove that our equational PE scheme always produces finite
equational variant narrowing specializations.

Theorem 1. Let R = (Σ,B,~E) be a decomposition of an equational theory (Σ,E]
B) and Q be a finite set of terms. The computation of Un f oldĔB(Q,R) terminates.

Proof. The proof is immediate from Lemma 14.

Nontermination of the PE algorithm can be caused not only by the generation
of an infinite narrowing tree but also by never reaching the closedness condition,
implying the infinite generation of finite narrowing trees. In the following, we
demonstrate global termination of the PE algorithm.

Appendix A.4. Global termination of partial evaluation

We define the notion of a non-embedding set, which allows us to characterize
sets that can be ordered as a sequence of terms that fulfill a well-quasi order.

Definition 25 (Non-embedding Set). A finite set Q of terms is called non-embedding
if all its comparable elements (i.e., rooted by the same operation symbol) can be
ordered into a sequence t1, . . . , tn that satisfies

∀i, j ∈ {1, . . . ,n}, i < j⇒ ti 6ĔB t j

Lemma 26. Given a non-embedding set Q of terms and a set T of terms, the set
absĔB(Q,T ) of terms is non-embedding.

Proof. It is immediate from Definition 17.

Theorem 3. Algorithm 1 terminates for the unfolding function Un f oldĔB and the
equational least general abstraction function absĔB .

Proof. Let R be a rewrite theory and t0 be a term. Consider the following sequence
Q0, · · · ,Qn of term sets that are computed at the successive iterations of the function
EQNPE of Algorithm 1, where Q0 = {t0} and for all i, 1 ≤ i ≤ n, we have Qi =

absĔB(Qi−1,Un f oldĔB(Qi−1,R)). The proof follows directly from the following
facts:

64



• The number of sets of incomparable terms (i.e., rooted by different operation
symbols) which can be formed using a finite number of defined function
symbols is finite.

• By Lemma 14 and Lemma 26, each Qi is a non-embedding set.

• By Theorem 1, the computation of each set Un f oldĔB(Qi−1,R), i ≥ 1, ter-
minates.

• By Theorem 2, the function absĔB terminates and, hence, each iteration of
Algorithm 1 terminates.

Appendix A.5. Preservation of executability conditions
We first give proper definitions for a complete set of resultants of a folding

variant narrowing tree and the related notion of (indiscriminate) complete special-
ization of (a decomposition of) an equational theory based on folding variant nar-
rowing. Given the folding variant narrowing derivation (t ;+

σ ,~E,B
t ′) ∈ VN	R(t),

recall the resultant of this derivation is (tσ ⇒ t ′).

Definition 27 (Complete Resultant Set). Let R = (Σ,B,~E) be a decomposition
of an equational theory (Σ,E ) and t0 be a Σ-term. We define CRS(t0) as any finite
subset of the resultants for all of the derivations in VN	R(t0) such that it is complete,
i.e., for each (t0 ;σ1,~E,B

t1 · · · tn−1 ;σn−1,~E,B
tn) ∈ VN	R(t0), n > 0, there exists 0 <

i≤ n such that (t0σi−1⇒ ti) ∈CRS(t0).
Given a finite set Q of Σ-terms, by abuse we denote CRS(Q)= {CRS(t) | t ∈Q}.

Definition 28 (B-closed Variant Narrowing Specialization (CVNS)). Let R =
(Σ,B,~E) be a decomposition of an equational theory (Σ,E ]B) and Q be a finite
set of Σ-terms that is B-closed w.r.t. itself. We define a B-closed variant narrow-
ing specialization (CVNS) of Q in R as the rewrite theory R ′ = (Σ,B, ~E ′) with ~E ′

being a strict B-coherence completion of a complete set of resultants CRS(Q) and,
for every resultant l⇒ r ∈CRS(Q), r is B-closed w.r.t. Q.

Since each equational NPE produced by Algorithm 1 is a CVNS18, it suffices to
prove that every CVNS is a decomposition.

Lemma 29 (Any CVNS is a decomposition). Let R = (Σ,B,~E) be a decompo-
sition of an equational theory (Σ,E ]B) and Q be a finite set of Σ-terms that is

18Note that we do not need to explicitly compute the strict B-coherence completion of the partially
evaluated program since the specialized program will be automatically completed by Maude.

65



B-closed w.r.t. itself. Every CVNS R ′ of R w.r.t. Q is a decomposition of the
equational theory (Σ,E ]B).

Proof. Assume R ′ = (Σ,B, ~E ′). Following Definition 1, we must prove that
the set ~E ′ of rewrite rules is convergent, i.e., sort-decreasing, terminating, con-
fluent, and strictly coherent modulo B. Sort-decreasingness and termination are
straightforward, since t →∗~E ′,B t ′ implies t →∗~E,B t ′. From Definition 28, strict B-
coherence holds trivially for a CVNS. Confluence modulo B is a direct conse-
quence of the fact that only minimal, most-general folding variant narrowing se-
quences are generated among all enabled narrowing sequences [36, Theorem 5],
i.e., no overlaps are introduced at the root position in the left-hand sides of the
computed resultants, for all l→ r, l′→ r′ ∈CRS(Q), @σ : lσ =B l′σ . On the other
hand, if there exist σ and p, with p 6= Λ, such that (l|p)σ =B l′σ for resultants
l → r, l′ → r′ ∈ CRS(Q), then (l|p)σ →∗~E,B (l[r′]p)σ and lσ →∗~E,B rσ . By conflu-
ence of R modulo B, ∃w,w′ : (l[r′]p)σ →∗~E,B w,rσ →∗~E,B w′,w =B w′. In the CVNS
R ′, we have that lσ →~E ′,B rσ and (l|p)σ →~E ′,B (l[r′]p)σ . Since R ′ is B-closed
w.r.t. Q, ∃u,u′ : (l[r′]p)σ →∗~E ′,B u,rσ →∗~E ′,B u′,u =B u′.

Lemma 29 immediately implies the following results.

Theorem 4. The PE of a decomposition (Σ,B,~E) is a decomposition.

Theorem 5. The post-partial evaluation of a decomposition (Σ,B,~E) is a decom-
position.

Appendix A.6. Strong correctness and completeness of Partial Evaluation

Let us prove strong correctness (resp. completeness) of the transformation, i.e.,
we prove that for each narrowing sequence computed by folding variant narrow-
ing in the original (resp. specialized) program there exists a corresponding folding
variant narrowing sequence in the specialized (resp. original) program up to renam-
ing (modulo B). Let us first motivate some relevant issues about strong correctness
and completeness.

Note that strong correctness is generally difficult in narrowing-driven partial
evaluation (see [14] for details), since there might be Σ-terms that are reducible
in ~E ′ by narrowing while not being reducible by narrowing in ~E. For example,
consider the following decomposition (Σ, /0,~E) with

~E = { f (x) → 0
g(x) → x },

66



and let Q = { f (g(x)), f (x),g(0)} be the set of input terms to be specialized. A
partial evaluation of Q in R using ordinary narrowing (and stopping the unfolding
of narrowing trees at depth one) may produce the following transformed program

~E ′ = { f (g(x)) → f (x)
f (g(x)) → 0

f (x) → 0
g(0) → 0 }.

But now the term f (g(Z)) has more narrowing sequences in ~E ′ than in ~E, i.e.,
f (g(Z));id,~E ′ 0 and f (g(Z));{Z 7→0},~E ′ f (0);id,~E ′ 0 whereas only f (g(Z));∗

id,~E
0.

Therefore, note that applying an independent renaming f (g(x))→ f ′(x) is critical
not only to remove unnecessary symbols but also to ensure that there is no possible
confusion between terms of the original and the specialized programs (and their
evaluations). However, thanks to using folding variant narrowing, the specialized
version of ~E using our methodology is

~E ′′ = { f (g(x)) → 0
f (x) → 0
g(0) → 0 }

and folding variant narrowing returns only a simplification sequence f (g(Z));∗
id,~E ′′

0

(using either the first or the second equation in ~E ′′) because the folding variant nar-
rowing strategy always generates minimal, most general narrowing sequences (see
Definitions 7 and 8).

Note that the specialized program must be closed in order to ensure that all
terms in the specialized program are correctly evaluated. For example, consider
the program ~E above and the set Q = { f (g(x))} of input terms to be specialized.
A partial evaluation of Q in ~E could be ~E ′′′ = { f (g(x))→ f (x), f (g(x))→ 0} but
this program is not closed w.r.t. Q, since the expression f (x) cannot be rewritten to
0 in ~E ′′′.

Lemma 30 (Strong Correctness and Completeness of PE). Let R =(Σ,B,~E) be
a decomposition of an equational theory (Σ,E ]B), u be a Σ-term, and Q be a fi-
nite set of Σ-terms. Let R ′ = (Σ,B, ~E ′) be an equational NPE of R w.r.t. Q. If
~E ′ and u are closed modulo B w.r.t. Q, then (u;∗

σ ,~E,B
v) ∈ VN	R(u) if and only if

(u;∗
σ ′,~E ′,B

v′) ∈ VN	R ′(u), where v′ =B v.

Proof. Similar to the proof of Theorem 3.18 in [14], by replacing closedness with
B-closedness and narrowing in a convergent TRS ~E with folding variant narrowing

67



in a decomposition (Σ,B,~E). The completeness result follows straightforwardly
from Lemma 11 and the strong completeness of folding variant narrowing w.r.t.
(~E,B)-normalized substitutions in the decomposition (Σ,B,~E), proved in [36, The-
orem 4], The strong correctness is immediate from the fact that, unlike ordinary
narrowing, folding variant narrowing only computes minimal, most general nar-
rowing sequences [36, Theorem 5].

In order to prove that strong correctness and completeness are not lost after
renaming modulo B, we need the following.

Definition 31 (Overlap modulo B). A term s overlaps modulo B a term t if there
is a nonvariable subterm s|u of s such that s|u and t unify modulo B. If s = t, we
require that t be unifiable modulo B with a proper nonvariable subterm of s.

Definition 32 (Independence modulo B). A set of terms S is independent modulo
B if there are no terms s and t in S such that s overlaps t modulo B.

The following lemma formalizes a fundamental technical property of indepen-
dent sets of terms modulo B which allows us to prove that the specialized program
does not compute additional solutions for an input term that could not be computed
in the original program.

Lemma 33. Let S be an independent set of terms, t an S-closed term modulo B,
and t |u a subterm of t such that u ∈ PosΣ(t). If t |u unifies modulo B with some term
s ∈ S, then s≤B t |u.

Proof. Similar to the proof of Lemma 3.34 in [14], by replacing ≤ by ≤B.

Renaming preserves B-closedness so that all of the original narrowing sequences
are kept after the post-processing transformation. Also, renaming ensures inde-
pendence modulo B of the specialized procedures so that no spurious narrowing
derivations are introduced by the transformation.

Proposition 34 (B-closedness and B-independence after renaming). Let R =(Σ,B,~E)
be a decomposition of an equational theory (Σ,E ] B), Q be a finite set of Σ-
terms, and u be a B-closed term w.r.t. Q. Let ρ be an independent renaming of Q,
u′ = renρ(u), and Q′ =

⋃
t∈Q{〈t,renρ(t)〉}. Let R ′ = (Σ,B, ~E ′) be an equational

NPE of R w.r.t. Q (under the renaming ρ). Then,

1. A = {t ′ | 〈t, t ′〉 ∈ Q′} is independent modulo B,
2. R ′∪{u′} is B-closed w.r.t. A .

68



Proof. It follows directly from Lemma 33.

Finally, the key result of this section follows.

Theorem 6. (Strong Correctness and Completeness of Post-partial Evaluation).
Let R = (Σ,B,~E) be a decomposition of an equational theory (Σ,E ]B), u be a
Σ-term, and Q be a finite set of Σ-terms. Let ρ be an independent renaming of
Q, u′ = renρ(u) and Q′ = renρ(Q). Let R ′ = (Σ,B, ~E ′) be a partial evaluation
of R w.r.t. Q (under the renaming ρ). If ~E ′ and u′ are closed modulo B w.r.t.
Q′, then (u;∗

σ ,~E,B
v) ∈ VN	R(u) if and only if (u′;∗

σ ′,~E ′,B
v′) ∈ VN	R ′(u), where

v′ =B renρ(v).

Proof. Immediate by Lemma 30 and Proposition 34.

69


