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Abstract Cardiac Resynchronization Therapy (CRT) is an effective treat-
ment for those patients with severe heart failure. Regrettably, there are about
one third of CRT “non-responders”, i.e. patients who have undergone this
form of device therapy but do not respond to it, which adversely affects the
utility and cost-effectiveness of CRT. In this paper we assess the ability of a
novel surface ECG marker to predict CRT response. We performed a retro-
spective exploratory study of the ECG previous to CRT implantation in 43
consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy.
We extracted the QRST complexes and obtained a measure of their energy by
means of spectral analysis. This ECG marker showed statistically significant
lower values for non-responders patients and, joint with the duration of QRS
complexes (the current gold-standard to predict CRT response), the following
performances: 86% accuracy, 88% sensitivity, 80% specificity. In this manner,
the proposed ECG marker may help clinicians to predict positive response to
CRT in a non-invasive way, in order to minimize unsuccessful procedures.
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1 Introduction

Heart failure (HF) is a clinical syndrome generated by a reduced output and
or elevated intracardiac pressures at rest or during stress that results in well-
known signs and symptoms [21]. HF is generally associated with reduced left
ventricular ejection fraction (LVEF) [30,18], although a significant proportion
of HF patients presents a preserved left ventricular systolic function [5]. It
has been estimated that one third of patients with HF and left ventricular
(LV) systolic dysfunction additionally suffer ventricular dyssynchrony, which
deteriorates, even more, the performance of cardiac output. LV dyssynchrony
is related to a QRS prolongation, especially in presence of left bundle branch
block (LBBB), and worsens the prognosis of HF patients [5].

Cardiac resynchronization therapy (CRT) is a well-accepted therapy for
patients with HF, low LVEF and QRS prolongation [8,21,25]. Biventricular
pacing is associated with an improved quality of life [9], increased functional
capacity [25], reduction in hospitalization for heart failure, and increased sur-
vival [21,8]. At present, the indication with a higher level of evidence is for
symptomatic patients with heart failure in sinus rhythm with a QRS duration
≥130 ms, with LBBB, and LVEF ≤35% despite optimal medical therapy [2].
Nevertheless, CRT is also indicated with lesser level of evidence in patients
with a non-LBBB pattern in the ECG [8,31].

Despite the impressive effects of CRT, a significant proportion of patients
(up to 30-35%) do not respond to CRT therapy (“non-responders”) adversely
affecting the utility and cost-effectiveness of this form of device therapy for
HF [32]. There are many suggested reasons for an inadequate response to CRT
such as persistence of LV dyssynchrony after CRT, phrenic nerve stimulation,
lead dislodgement, or suboptimal programming of device [8,10,27,15].

Consequently, there is still a need to improve in the selection of patients to
optimize the response to CRT. Prediction of response to CRT has been anal-
ysed in many references of the state-of-the-art [33]. Although cardiac imaging
is becoming an interesting alternative to ECG analysis to predict CRT re-
sponse, the surface ECG is still the most studied, since it is a routinely record
used in clinical practice.

Recent references have pointed to the area under the QRS complexes of
orthogonal vectorcardiograms as good predictors of CRT implantation [12,29,
22]. Other authors prefer to also include the area of the T-wave when defining
these new prediction features [17,28,13]. Nevertheless, all of them agree in the
fact that CRT responders are prone to have larger areas under the curves than
CRT non-responders.

In this paper we present a new marker based on energy of the QRS complex
and T-wave calculated on the time-frequency spectrum of the surface ECG
in order to improve prediction results of response of heart failure patients
undergoing CRT implantation.

The rest of the paper is organized as follows. The study population and its
clinical characteristics are described in Section 2. The new ECG marker and
the classification process are detailed in Sections 3.1-3.3. Next, experimental
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results and performances are depicted in Section 4. Finally, discussion of results
is presented in Section 5 and conclusions are drawn in Section 6.

2 Materials

An open-label, single-center, retrospective exploratory study was designed.
The study population consisted of 43 consecutive patients (mean age 67 years,
27 men) with heart failure, treated with CRT, as per current guidelines. All
patients were symptomatic with most of them in NYHA (New York Heart
Association) functional class II or III (93%). Underlying etiology was ischemic
and non-ischemic cardiomyopathy in 40% and 60% of patients, respectively.

The prevalence of hypertension was 67%, diabetes 28%, dyslipidaemia 58%.
24% of patients were current smokers and 43% obese. The prevalence of atrial
fibrillation was 23% and oral anticoagulants use 19%.

Medication included diuretics in 67%, angiotensin converting enzyme in-
hibitors in 83%, beta-blockers in 74%, and spironolactone in 48% of patients.

We defined response to CRT as an increase in LVEF (left ventricular ejec-
tion fraction) ≥5% or one who presented an improvement in New York Heart
Association (NYHA) functional class ≥1 in absence of death by any cardio-
vascular cause, heart transplantation or hospital admission for heart failure
during a follow-up period of one year. We consider as super-responders those
patients with an increase in LVEF ≥15% without cardiovascular death, heart
transplantation or hospital admission for heart failure.

According to these criteria 33 out of 43 patients were clinically judged as
responders to CRT. 2 patients died and 4 were hospitalized for heart failure.
The detailed baseline characteristics of the patients are detailed in table 1.

Surface ECG was acquired in a tertiary center (Hospital Universitari i
Politècnic La Fe, Valencia) and bipolar lead II was delineated and analysed.
Duration of ECG segments was 5 seconds, which is a common duration for 6
× 2 printout displays [20].
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Table 1 Distribution of patients included in the retrospective exploratory study, showing
mean values or median and interquartile range. LBBB, left bundle branch block; RBBB,
right bundle branch block; NIVCD, non-specific intraventricular conduction delay; ACEI,
angiotensin-converting enzyme-inhibitor; MRA, mineralocorticoid receptor antagonists. *
indicates statistical significance.

Responder Total (43) p-value
No (10) Yes (33)

Age (years) 70 (61-77) 66 (34-81) 67 (34-81) 0.404
Sex Male 7 (70.0%) 20 (60.6%) 27 (62.8%)

0.719
Female 3 (30.0%) 13 (39.4%) 16 (37.2%)

Cardiomyopathy
Ischemic 7 (70.0%) 10 (30.3%) 17 (39.5%)

0.034*
Non ischemic 3 (30.0%) 23 (69.7%) 26 (60.5%)

NYHA class

I 0 (0.0%) 1 (3.0%) 1 (2.3%)

0.349
II 4 (40.0%) 14 (42.4%) 18 (41.9%)
III 4 (40.0%) 18 (54.5%) 22 (51.2%)
IV 2 (20.0%) 0 (0.0%) 2 (4.7%)

ECG pattern

LBBB 6 (60.0%) 26 (78.8%) 32 (74.4%)

0.005*
RBBB 3 (30.0%) 0 (0.0%) 3 (7.0%)
NICVD 1 (10.0%) 1 (3.0%) 2 (4.7%)
Stimulated 0 (0.0%) 6 (18.2%) 6 (14.0%)

LBBB 6 (60.0%) 26 (78.8%) 33 (76.7%) 0.248
LVEF (average values in %) 24 (10-35) 22 (10-37) 23 (10-37) 0.536
Hypertension 9 (90.0%) 20 (60.6%) 29 (67.4%) 0.128
Diabetes 6 (60.0%) 6 (18.2%) 12 (27.9%) 0.017*
Dyslipidaemia 8 (80.0%) 17 (51.5%) 25 (58.1%) 0.153

Tobacco use
Yes (current) 2 (20.0%) 8 (24.2%) 10 (23.3%)

0.657No 6 (60.0%) 17 (51.5%) 23 (53.5%)
Ex-smoker 2 (20.0%) 8 (24.2%) 10 (23.3%)

Obesity 2 (20%) 15 (45.5%) 17 (39.5%) 0.145
Kidney failure 3 (30%) 5 (15.2%) 8 (18.6%) 0.362
Creatinine level (mg/dL) 1.27 (0.77-2.11) 1.26 (0.59-5.26) 1.25 (0.59-5.26) 0.391
Haemoglobin (mg/dL) 11.75 (8.8-15.0) 13.67 (10-16.5) 13.08 (8.8-16.5) 0.009*
Atrial fibrillation 5 (50.0%) 5 (15.2%) 10 (23.3%) 0.036*
ACEI’s use 7 (70.0%) 28 (84.8%) 35 (81.4%) 0.094
Beta blockers use 5 (50.0%) 26 (78.8%) 31 (72.1%) 0.328
MRA’s use 3 (30.0%) 17 (51.5%) 20 (46.5%) 0.284
Diuretics use 5 (50.0%) 23 (69.7%) 28 (65.1%) 0.259
Oral anticoagulation 2 (20.0%) 6 (18.2%) 8 (18.6%) 1.0
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3 Methods

3.1 ECG pre-processing

Baseline and powerline interference were first removed from the surface ECG
signals. In particular, baseline wander was reduced by means of cubic splines
[19]. Then, we proceed to delineate the ECG in order to detect onset and
endset of QRS complexes and T-waves.

3.2 QRST measure of energy

Once the delineation is completed, we proceed to calculate the frequency in-
formation along the duration of the QRST segments, in order to estimate a
measure of their energy. This is done by using a dyadic sampling scheme [3]
of the Stockwell Transform (ST) [26], whose analytic expression is:

S(τ, ν) = |ν|

∫
∞

−∞

g0(ν(t− τ))e−2πiνth(t) dt, (1)

where g0 denotes a Gaussian window, and τ and ν are the indexes for time
and frequency, respectively. Stockwell transform is a frequency-adaptive ver-
sion of the Short-Time Fourier transform, where the window’s width varies
with frequency. The window is narrower for high frequencies (allowing good
time resolution) and its width is enlarged for low frequencies (allowing good
frequency resolution). This feature, known as progressive resolution, aims to
deal with the uncertainty principle.

The dyadic sampling scheme proposed in [3] allows to have a fast, non-
redundant implementation of the ST, called General Fourier-family Transform
(GFT). This transform was chosen instead of another approaches with pro-
gressive resolution (such as the Discrete Wavelet Transform -DWT-) because
ST (and its discrete implementations) not only also have progressive resolu-
tion, but are able to provide real frequency information. DWT does not use
sinusoidal basis functions, so it measures a kind of scale information, but not
frequency information directly. The combination of progressive resolution and
globally referenced frequency and phase measurements inherent to ST and its
discrete implementations (as GFT) are two desirable properties particularly
interesting for some biomedical signal analysis applications, such as the one
proposed in this paper.

The ECG marker proposed calculates an energy measure based in the GFT
coefficients (z) normalized by the square of the central frequency of each fre-
quency band under analysis f2

c , according to Proposition 3.4 in [1]. Thus, the
proposed marker E is obtained as:

E =

f=B∑
f=4

∑t=N−1

t=0
|z(t, f)|2

f2
c

(2)
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where N is the total number of time windows for each frequency band, and
B denotes the number of frequency bands of the time-frequency spectrum.
Due to the characteristics of the power spectral density of the ECG, bands
under analysis are proposed to start in band number 4 (since this means to
study frequencies beyond 2Hz, where the QRST complexes present their larger
power spectral density).

Finally, the proposed feature to predict CRT response is obtained as the
median of all markers for the number n of the QRST complexes in the ECG
recordings of each patient: Energy measure = Median{Ek}

Figure 1 depicts an example of QRST segment from V1 lead and its corre-
sponding time-frequency spectrum, where the different values of the spectral
coefficients can be analysed according to a colour map.
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Fig. 1 (a) Example of QRST extracted from one of the subjects included in the study.
(b) Time-frequency spectrum obtained by means of the Stockwell Transform of the QRST
segment shown in (a) with cold and warm colours corresponding to small and large ST
coefficients, respectively.

3.3 Classification

Once the energy measurements of QRST and the duration of QRS complexes
have been calculated, they are normalized in order to proceed to classify them
using a support vector machine (SVM). We have used the LIBSVM library
implemented in C++ and offered by Chang and Lin [6] with a non-linear kernel
(radial basis function), since its use minimizes numerical difficulties.

Due to the unbalanced number of patients of each group under analysis
(33 responders and 10 non-responders), the direct application of the leaving-
one-out technique to provide classification results was not suitable. Therefore,
we used an adaptive synthetic sampling approach for learning from this type
of data sets called AdaSyn [16]. The main difference of AdaSyn and other syn-
thetic oversampling techniques, such as SMOTE [7], is that AdaSyn provides
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not only a balanced representation of the data distribution, but also forces the
learning algorithm to focus on the minority data class.

In our case, AdaSyn provides 24 additional synthetic samples for the non-
responders subgroup. Thus, we will apply the leaving-one-out classification
over a total data set of 67 samples (33 original responders and 34 non-responders
-10 original and 24 synthetic-). In this manner, each sample is classified with
the support vector machine resulting from training with the remaining 66 sam-
ples. Detailed results over the whole group of samples and only for the original
dataset are detailed in Section 4.

4 Results

4.1 Performance measures

Once the SVM classifier has been trained to maximize global accuracy, several
quantitative tests were obtained to assess its performance: sensitivity (rate
of responders correctly classified), specificity (rate of non-responders properly
classified), false positive rate (FPR), false negative rate (FNR), and F-score
(harmonic mean of precision and sensitivity):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

FPR =
FP

FP + TN
(6)

FNR =
FN

FN + TP
(7)

F − score =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

where TP and TN are the responders and non-responders correctly classified,
whereas FP and FN denote the non-responders and the responders misclas-
sified.

Classification performance is also depicted by means of the receiver oper-
ating characteristic (ROC) curve of the classifier, which illustrates Sensitivity
against (1-Specificity) for different thresholds, and the area under the ROC
curve.
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4.2 Experimental results

The dataset of this retrospective exploratory study consisted of 43 subjects
who suffered from heart failure and who were clinically considered as candi-
dates to be responders to CRT according to the current guidelines [21].

After the delineation of QRST complexes and average the energy mea-
sure for each subject, we proceeded to obtain synthetic samples by means of
AdaSyn and then perform the classification of the data using a SVM with the
leaving-one-out technique. Figure 2 depicts the samples of the real patients
and compares them with the synthetic samples obtained using AdaSyn.
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Fig. 2 (a) Features extracted from the surface ECGs of 43 patients previously to CRT
implantation. (b) Features extracted from the surface ECGs of 43 patients previously to
CRT implantation and synthetic points generated by AdaSyn [16] in order to balance the
number of subjects from each group (CRT responders and CRT non-responders).
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Fig. 3 Boxplot comparing CRT responders and CRT non-responders energy of QRST com-
plexes. (a) 43 subjects included in the study population. (b) 43 subjects included in the
study population and 24 synthetic samples corresponding to CRT non-responders obtained
by AdaSyn. (c) Subjects with ischemic cardiomyopathy. (d) Subjects with non-ischemic car-
diomyopathy. (e) Subjects with left bundle branch block. (f) Subjects without left bundle
branch block. (g) Subjects without pacemaker prior to CRT implantation. (h) Subjects with
pacemarker prior to CRT implantarion or with left bundle branch block.
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Fig. 4 Boxplot comparing CRT responders and CRT non-responders duration of QRS
complexes. (a) 43 subjects included in the study population. (b) 43 subjects included in the
study population and 24 synthetic samples corresponding to CRT non-responders obtained
by AdaSyn. (c) Subjects with ischemic cardiomyopathy. (d) Subjects with non-ischemic
cardiomyopathy. (e) Subjects with left bundle branch block. (f) Subjects without left bundle
branch block. (g) Subjects without pacemaker prior to CRT implantation. (h) Subjects with
pacemarker prior to CRT implantarion or with left bundle branch block.
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Table 2 shows the values of the features under analysis for CRT respon-
ders and CRT non-responders before CRT implantation, including detailed
information for the different subgroups too. These figures indicate that CRT
responders are characterized by larger values of the proposed measure of en-
ergy of QRST. CRT responders’ energy of QRST is about the double of CRT
non-responders’. Indeed, it is specially larger for those patients who have is-
chemic cardiomyopathy.

Wilcoxon statistical test has been calculated revealing that, for the pro-
posed ECG marker based on QRST complexes, p-values are statistically sig-
nificant (smaller than 0.05) for the general classification (responders vs non-
responders) and for the different subgroups according clinical characteristics,
except for patients with dilated cardiomyopathy (Table 2). This larger p-value
may be due to the small number of CRT non-responders patients with dilated
cardiomyopathy (only 3 subjects), and it will be discussed in Section 5.

Figures 3 and 4 display the boxplots of the energy measure of QRST com-
plexes and duration of QRS, respectively. Boxplots from Figure 3 show that
the proposed energy measure is able to discriminate patients responders to
CRT from those non-responders (a-b), specially for subjects with ischemic
cardiomyopathy (c), with independence of the presence of LBBB (e-f) or pre-
vious implantation of pacemaker (g-h). These results are in concordance with
figures and statistical analysis from Table 2.

Regarding Figure 4, which shows boxplots for the current gold-standard for
CRT, it is more difficult to identify the clinical features for which the duration
of QRS is able to early distinguish CRT responders from non-responders. Only
for the general classification (a), for non-ischemic cardiomyopathy (d), and
patients without LBBB (f), boxplots show significant differences in mean.
This is also reflected on p-values obtained from statistical analysis shown in
Table 2.

The SVM classification results obtained after applying the leaving-one-out
technique over the cohort of 43 patients and the AdaSyn synthetic samples
are shown in Table 3. Several performances are also included, and results are
also detailed for several groups depending on clinical characteristics. Good
performances are obtained, presenting an accuracy of 86%, and specificity and
sensitivity also above 80% (88% and 80%, respectively), whereas the rates for
false positives and false negatives remain small (about the 15% in average).
Finally, the receiver operating characteristic curve (ROC) and the area under
it (0.8515) are shown in Figure 5. The discussion about the obtained results
will be enlarged in the subsequent Section.
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Table 2 Features analysed (median measure of energy of QRST complexes and average
QRS duration) before CRT implantation for the 43 patients included in the retrospective
exploratory study. Statistical significant differences are denoted by *, and p-values are ob-
tained for Wilcoxon statistical test. LBBB is left bundle branck block

Responders Non-responders p-value

ECG marker for QRST

All patients 747.32 174.69 0.0134*
Only non previously stimulated 613.44 174.69 0.0141*
Only previously stimulated 1349.80 - -
Ischemic cardiomyopathy 1397.30 142.73 0.0068*
Non-ischemic cardiomyopathy 464.71 249.25 0.5408
Patients with LBBB 576.16 178.05 0.0500*
Patients without LBBB 1203.80 169.65 0.1986

QRS duration (ms)

All patients 162.36 153.20 0.2742
Only non previously stimulated 147.85 159.30 0.5376
Only previously stimulated 193.93 - -
Ischemic cardiomyopathy 155 155.14 0.8835
Non-ischemic cardiomyopathy 165.57 148.67 0.1719
Patients with LBBB 157.46 157.33 1
Patients without LBBB 175.44 147 0.0892

Table 3 Classification results for the proposed measure of energy of QRST complexes and
duration of QRS using the leaving-one-out technique to train the SVM with 67 samples
(43 corresponding to the patients and 24 to synthetic samples obtained by AdaSyn [16]).
Results are detailed for the 43 patients included in the retrospective exploratoty study, and
also including the synthetic samples.

Accuracy Sensitivity Specificity FPR FNR F-score

All 43 patients 0.8605 0.8788 0.8000 0.2000 0.1212 0.9063
Non-previously stimulated 0.8649 0.8889 0.8000 0.2000 0.1111 0.9057
Previously stimulated 0.8333 0.8333 - - 0.1667 0.9091
Ischemic cardiomyopathy 0.7647 0.7000 0.8571 0.1429 0.3000 0.7778
Non-ischemic cardiomyopathy 0.9231 0.9565 0.6667 0.3333 0.0435 0.9565
With LBBB 0.8667 0.8750 0.8333 0.1667 0.1250 0.9130
Without LBBB 0.8462 0.8889 0.7500 0.2500 0.1111 0.8889
With LBBB and/or stimulated 0.8611 0.8667 0.8333 0.1667 0.1333 0.9123
43patients + AdaSyn samples 0.8060 0.8788 0.7353 0.2647 0.1212 0.8169
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Fig. 5 Receiver operating characteristic curve for the proposed prediction method. Classi-
fication has been performed using the leaving-one-out technique. Area under ROC curve is
0.8515.

5 Discussion

In this paper we have presented a new surface ECG marker to predict CRT re-
sponse in order to improve results of the most accepted prediction marker (the
QRS duration). Good performances have been obtained, with an improvement
of about 20% on accuracy and sensitivity with respect to only applying the
QRS duration marker, which is the current gold-standard used nowadays in
clinical practice.

Clinical guidelines [2] remark the importance of identifying the correct ev-
idences that indicate those patients who are suitable for CRT. Apart from
the duration of QRS interval, intracardiac measurements (electrograms) made
during the placement of the left ventricle lead [24] and cardiac imaging [4]
are able to predict long-term clinical outcome to CRT. Unfortunately, mul-
timodality imaging is still far from daily clinical practice, and electrograms
require an invasive proceeding. Thus, in this paper we have proposed a new
marker to predict CRT response prior the pacer implantation using the surface
ECG, which is a cheap and routinary used record in clinical practice.

Previous references, including [29,12,22] have recently pointed to comple-
ment or even replace the ECG markers (such as QRS duration and morphol-
ogy) by potentially better ECG-based markers to select the optimal candidates
to undergo for CRT treatment. These markers are mainly based on the area
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under the QRS curve calculated on the orthogonal vectorcardiogram. Other
references point to the area under the QRST, showing prediction odds of re-
sponse larger for patients with larger area [28,17].

Results presented in this paper are in line with these recent references,
since the area under the QRST curve is related with the energy measurement
proposed. In this manner, we have shown that responders to CRT also present
larger values of energy than non-responders previously to CRT implantation.

In addition, results also confirm their improvement when including the
T-wave in the analysis besides QRS complex. Table 4 shows classification
results when only studying QRS complexes, showing poorer performances than
when T-wave is also considered (Table 3). This can be due to information of
repolarization of the ventricles, and further studies will be done regarding it.

Moreover, Table 2 shows significant differences for the subgroup of pa-
tients with ischemic cardiomyopathy meanwhile Table 3 presents better re-
sults for patients who have non-ischemic cardiomyopathy than for ischemic.
This may be due to the small number of patients non-responders to CRT with
non-ischemic cardiomyopathy who were included in the cohort under study.
Patients with ischemic cardiomyopathy are a common population in trials eval-
uating CRT and current guidelines also recommend CRT in ischemic patients.
On the other side, it has been published that ischemic cardiomyopathy is as-
sociated to a lower probability to respond to CRT [23], so the results that we
have observed are in accordance to previous findings.

Regarding other clinical characteristics, patients with RBBB represent
about 20 to 30% of patients involved in trials evaluating CRT, and current
guidelines also recommend CRT with a recommendation IIa in RBBB pa-
tients when QRS is wide enough. On the other hand, it has been published
that RBBB patients are associated to a lower probability to respond to CRT
[11], so the results that we can observe in Table 1 (30% of non-responders
having RBBB) are in accordance to previous findings.

Present guidelines also recommend CRT with a recommendation IIa in
atrial fibrillation patients when the rest of patient characteristics are present.
Nevertheless, recent references have published that AF patients are associated
to a lower probability of response to CRT. So, the prevalence of AF in the
study population (50% in non-responders while it was 15.2% in the responders
group, detailed in Table 1) is in accordance with previous findings.

As above-mentioned, the most interesting result that we have observed is
that in a population with a clear indication for CRT, the new ECG marker has
the ability to provide an early identification of patients responders and non-
responders to CRT. On the other hand, the selection of the proposed single
parameter may also integrate the information contained in the classic duration
of QRS, which could represent an advantage, either in well-studied indications
of CRT (wide QRS with LBBB) or even especially in cases where the clas-
sic gold-standard does not correspond to an indication with more evidence
(for example, patients with non-specific intraventricular conduction delay, or
less prolonged durations of QRS). Future work will include thorough studies
on this, since non-specific intraventricular conduction delay pathophysiology
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(which ischemic cardiomyopathy is most often associated with) is less studied
than LBBB, and for which results of CRT implantation are contradictory [14].

Table 4 Classification results for the proposed energy of measure of QRS complexes and
their duration using the leaving-one-out technique to train the SVM with 67 samples (43
corresponding to the patients and 24 to synthetic samples obtained by AdaSyn [16]). Results
are detailed for the 43 patients included in the retrospective exploratory study, and also
including the synthetic samples.

Accuracy Sensitivity Specificity FPR FNR F-score

All 43 patients 0.7674 0.7576 0.8000 0.2000 0.2424 0.8333
Non-previously stimulated 0.7297 0.7037 0.8000 0.2000 0.2963 0.7917
Previously stimulated 1 1 - - 0 1
Ischemic cardiomyopathy 0.7059 0.7000 0.7143 0.2857 0.3000 0.7368
Non-ischemic cardiomyopathy 0.8077 0.7826 1 0 0.2174 0.8780
With LBBB 0.7333 0.7500 0.6667 0.3333 0.2500 0.8182
Without LBBB 0.8462 0.7778 1 0 0.2222 0.8750
With LBBB and/or stimulated 0.7778 0.8000 0.6667 0.3333 0.2000 0.8571
43patients + AdaSyn samples 0.7015 0.7576 0.6471 0.3529 0.2424 0.7143

6 Conclusions

In this paper we have presented a retrospective exploratory study of patients
with severe heart failure who have undergone cardiac resynchronization ther-
apy. Nowadays, the ECG is still the main complementary exploration used to
select the patients who can benefit from CRT. Indeed, it is not less impor-
tant the identification of patients with higher probability of non-response to
CRT, since more advanced therapies (such as ventricular assist devices) can
be used as alternatives when conventional medical treatment and CRT are not
sufficient.

Therefore, the correct selection of the patients is key not only to allow
an early identification of non-responders (which would avoid unnecessary de-
lays in the use of more advanced therapies), but also to maximize the cost-
effectiveness of CRT.

We have analysed the ability of a new marker based on energy of QRS
complexes and T waves to predict the positive response to CRT before biven-
tricular pacemaker implantation. It has been shown that this marker is signif-
icantly larger for CRT responders than for non-responders to CRT, obtaining
early classification accuracy of 86%. Thus, our exploratory study presents an
additional parameter to the classic morphology and duration of QRS, which
allows the evaluation of the potential response that a certain patient may have
to CRT in an objective and reproducible way.



16 Nuria Ortigosa et al.

Further studies with larger populations are needed, but presented results
may open a door to reduce the percentage of non-successful CRT implantations
(nowadays about 30%) with using a non-invasive technique as the surface ECG.
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