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Methods for scheduling problems considering
experience, learning and forgetting effects

Xiaoping Li, Senior Member, IEEE,, Yulu Jiang and Rubén Ruiz

Abstract—Workers with different levels of experience and
knowledge have different effects on job processing times. By
taking into account three factors: the sum-of-processing-time, the
job-position, and the experience of workers, a more general learn-
ing model is introduced for scheduling problems. We show that
this model generalizes existing ones and brings the consideration
of learning and forgetting effects closer to reality. We demonstrate
that some single machine scheduling problems are polynomially
solvable under this general model. Considering the forgetting
effect caused by the idle time on the second machine, we construct
a learning-forgetting model for the two-machine permutation flow
shop scheduling problem with makespan minimization. A branch
and bound method and four heuristics are presented to find
optimal and approximate solutions respectively. The proposed
heuristics are evaluated over a large number of randomly
generated instances. Experimental results show that the proposed
heuristics are effective and efficient.

Index Terms—Flowshop, Learning effect, Forgetting effect,
Experience

I. INTRODUCTION

In classical scheduling, the processing time of a job is
assumed to be known in advance and deterministic. However,
in many realistic situations, the production facility (i.e. a
worker) gains knowledge or experience by repeating similar
production operations which improves production efficiency.
Therefore, if a job is processed later in the sequence, its actual
processing time is shorter. This phenomenon is known as the
“learning effect” and was first studied by Badiru [1].

There are two fundamental learning effect models accord-
ing to Biskup [2]: the position-based learning effect and
the sum-of-processing-times-based learning effect. The typ-
ical position-based learning model pjr=pjr

α was proposed
by Biskup [3], where pjr is the actual processing time of
job j scheduled at position r of the sequence, pj is the
normal processing time of job j, and α≤0 is the learning
index. Based on this model, Biskup [3] and Mosheiov [4]
used the pairwise interchange technique and proved that the
shortest processing time (SPT) rule could obtain the optimal
sequence for single machine scheduling problems to minimize
total completion time and makespan respectively. Zhao et
al. [5] showed that the single machine scheduling minimizing
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València, Spain (e-mail: rruiz@eio.upv.es).

the total weighted completion time and maximum lateness
objectives are polynomially solvable problems. This was done
by sorting jobs using the weighted shortest processing time
(WSPT) rule and the earliest due date (EDD) rule under certain
agreeable conditions. Based on the sum of processing times,
Kuo & Yang [6] developed a sum-of-processing-time-based
learning model pjr=pj(1+

∑r−1

k=1
p[k])

α, where p[k] is the normal
processing time of a job scheduled at position k in a sequence.
In addition, some other time-based learning effect models [7],
[8], [9], [10], [11], [12] were constructed in terms of the two
fundamental ones.

Taking into account some factors, different learning effect
models have been proposed for scheduling problems since
Biskup [3] and Cheng & Wang [13] introduced learning effects
into this field. Janiak & Rudel [14] investigated an experience-
based learning effect model in which the learning curve
is S-shaped. Later, they presented the multi-ability learning
model [15] that generalizes the previous ones. This model is
closer to real-life settings than the existing ones. For some
special cases in the makespan minimization problems, they
proposed optimal algorithms with polynomial times. Wang
et al. [16] investigated some single-machine problems with
past-sequence-dependent setup times while Lee et al. [17]
focused on a single-machine problem with the learning effect
and release times to minimize makespan. Yang et al. [18]
introduced a new learning effect model, which is sum-of-
processing-time-based, job-position-based and job complexity
based. Wu et al. [19] and Cheng et al. [20] considered two-
machine flowshop problems with a truncated learning function
where the actual job processing time is related to a learning
truncation parameter. Truncation refers to a limited learning
effect and total completion time and makespan are respectively
minimized in their problems.

Besides the learning effect models with specific func-
tions, some general models have been investigated. Lai &
Lee [21] proposed the general learning effect model pAj[r]=
pjf(

∑r−1

k=1
βkp[k],r). The sum of the normal processing times

of scheduled or processed jobs and the current position are
the two variables of the learning function. Different learning
curves can be constructed easily according to this model. Many
existing models are special cases of this general model. Based
on the model proposed by Yin et al. [11], Wang et al. [22] in-
troduced the general model pAj[r]=pjf(

∑r−1

k=1
βkp[k])g(r), which

is similar to that given in [21]. Recently, Lai & Lee [23] con-
sidered the forgetting effect and developed a general learning-
forgetting effect model pAj[r]=pjf(

∑r−1

k=1
βkp[k],r)g(r) (r>m),

where g(r) is the forgetting effect function. The works on
the forgetting effect are less numerous than those on the
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learning effect. Yang & Chand [24] studied a group scheduling
problem with learning and forgetting effects. They focused
on the learning effect of jobs in the same family and the
forgetting effect among families. In addition, the deteriorating
effect was viewed as a general forgetting effect, i.e., the
processing ability of the production facility deteriorates with
the waiting length for processing which makes the actual
processing time possibly longer than the normal one. When
considered together, learning and forgetting effects can be
used to model a myriad of situations in practice and are
much more general than fixed processing times. For example,
when a production line has been producing a product for a
while, not only workers have learned to be more efficient but
also intermediate storage is full, production cells are prepared
with all needed materials, auxiliary tooling is prepared and in
working order, etc. This all results in more efficient production
and higher efficiency (shorter production times). When a
different product is produced, all these activities have to be
restarted and the learning is lost. Similarly, if a type of product
has not been produced for a number of shifts, all this tooling
and preparation is lost and hence the forgetting effect.

In realistic production systems, experience (or prior
knowledge) exerts a great impact on the learning effect from
the perspective of cognitive psychology [25], [26], [27]. For
instance, workers in factories are usually classified into junior,
intermediate and senior ones according to their experience.
They are assigned to different positions with distinct skill
requirements to increase productivity.

A clear example is a shoe manufacturing production
shop. The main stages are upper shoe manufacturing (which
typically involves cutting leather, skiving, crimping, stitching
and attaching although this varies wildly from product to
product), insole manufacturing (attachment of leather sole,
shank and half sole), lasting and bottoming (with many steps,
including fitting the shoe upper, ankle stiffening, stitching
insole and attaching sole, etc.) and finally finishing and
packaging. It is easy to see that different levels of experience
among the workers would result in different processing
speeds for each manufactured shoe (and also, different quality
results). Similarly, when a worker has been doing the same
repetitive upper shoe leather cutting, the step is faster and
faster each time. This is the learning effect. If after cutting
the same type of leather for a specific type of shoe the worker
makes a short production run and cuts leather for another
shoe type, he/she starts forgetting the previous shoe type.
The longer the time before going back to the initial shoe
type, the stronger the forgetting effect. In a extreme case, if
the worker goes back to the initial shoe type after a week of
production, he/she will have a very slow start again. This is
the forgetting effect. As these effects end up having a sizable
impact on the processing times and these times do depend on
the processing sequence, they also have a big impact on the
makespan objective.

Inspired by this, we introduce a general learning effect mod-
el with experience, and analyze its properties for some single
machine problems. For two- or multiple-machine permutation

flow shop problems, there might be some gaps or idle times
between consecutive operations. These gaps cause forgetting
effects by interrupting the learning process and reduce learning
effects. We consider the two-machine permutation flow shop
problem with learning effects involving both experience and
forgetting effects to minimize makespan. Based on the intro-
duced general learning effect model, two specific learning-
forgetting effect models with experience are developed. Four
two-phase heuristic algorithms are proposed to obtain near-
optimal solutions. Six lower bounds are obtained for speeding
up the elimination process of a proposed branch and bound
algorithm. Therefore, the main contributions of this paper are
the following:
• A generalization of the learning effects model with learn-

ing, experience and forgetting effects is proposed.
• Some polynomially solvable solvable cases for single

machines are identified.
• A branch and bound procedure, based on six tight lower

bounds is proposed for the two machine flowshop prob-
lem.

• Four heuristics are further presented for the same two
machine problem.

• Detailed and comprehensive computational experiments,
along with statistical analyses, show the performance of
the proposed methods.

The remainder of this paper is organized as follows: The
general learning effect model with experience is given in
Section II. Section III provides polynomial-time solution
algorithms for some single-machine problems. A learning-
forgetting effect model, four heuristic algorithms, six lower
bounds and a branch and bound method are developed to solve
two-machine permutation flow shop problems in Section IV.
Section V gives the experimental results, followed by conclu-
sions and future research in Section VI.

II. GENERAL LEARNING EFFECT MODEL WITH
EXPERIENCE

A learning effect model considering experience is closer
to real-life applications, in which the following aspects are
usually assumed:

(i) The actual job processing time of a worker with experi-
ence is less than that without experience. For example,
a novice without experience spends 10 units of time
processing a job while he/she needs only 8 units to finish
the same job if he/she has some experience.

(ii) A bigger experience factor implies more learning effects
for the same worker. For example, a worker with the
experience factor 0.1 spends 8 time units processing a
job while the actual job processing time would be 6
time units if the experience factor is 0.2. Obviously, the
learning effect model with the experience factor 0 should
be identical to that without experience.

The learning effects result in the decrease of actual process-
ing times. However, the actual processing time would decrease
little when the learning effect reaches a given threshold. In
terms of the model pjr=pjf(

∑r−1

k=1
βkp[k])g(r) proposed in [28],
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we design a general experience learning effect model as
follows:

pjr=pjmax
{
(1−ω)f(

r−1∑
k=1

βkp[k])g(r),θ
}

(1)

where pjr is the actual processing time of job j scheduled at
position r, pj is the normal processing time of job j, ω (0≤ω<
1) denotes the experience factor, θ (0≤θ<1) is the threshold.
f :[0,+∞)→(0,1] is a differentiable non-increasing function so
that f ′ is non-decreasing in [0,+∞) and f(0)=1. g:[1,+∝)→
(0,1] is a non-increasing function with g(1)=1, and βr is the
weight on position r. We assume that 0≤β1≤β2≤...≤βn.

Kuo & Yang [6] developed a sum-of-processing-time-based
learning model pjr=pj(1+

∑r−1

k=1
p[k])

a. Yin et al. [11] general-
ized it to a position-dependent and time-dependent learning
effect model pjr=pjf(

∑r−1

k=1
p[k])g(r), which was extended to

pjr=pjf(

r−1∑
k=1

βkp[k])g(r) (2)

with weights 0≤β1≤β2≤...≤βn by Wang et al. [28]. Addition-
ally, Cheng et al. [29] observed that the actual processing
time of a job under an uncontrolled learning effect would
drop to zero precipitously as the number of jobs already
processed increases or jobs with long processing times exist.
They developed the learning effect model

pjr=pjmax
{(

1+

r−1∑
k=1

p[k]

)α
,θ
}

(3)

where α<0 is the learning index and 0<θ<1 is the truncation
parameter. Therefore, the designed experience learning effect
model proposed in Equation (1) is more general than those
in [28] and [29].

Equation (2) is a generalization of the models developed in
[6] and [11] but it has to be noted that the actual processing
time of a job was in those previous works not controlled by a
threshold θ (0<θ<1). This means that zero processing might
have resulted which is impossible in practical settings. On the
other hand, even though the actual processing time of a job is
limited by a threshold θ (0<θ<1) in Equation (3), the function
pj
(
1+
∑r−1

k=1
p[k]

)α
is identical to that of [6] which at the same

time it is a special case of Equation (2). In addition, the
experience factor ω (0≤ω<1) exerts an important influence on
the actual processing times which has never been considered
in the scheduling literature yet. Therefore, the newly designed
model in Equation (1) becomes Equation (2) when ω=0 and
θ=0. In other words, the designed model is identical to the
model developed by Wang et al. [28] if neither experience
nor threshold are considered. When ω=0, g(r)=1, β1=β2=

...=βn=1, Equation (1) turns into pjr=pjmax
{
f(
∑r−1

k=1
p[k]),θ

}
.

Furthermore, if we take f(
∑r−1

k=1
p[k])=

(
1+
∑r−1

k=1
p[k]

)α
and

0<θ<1, the model becomes Equation (3). Again, the proposed
model is identical to that introduced by Cheng et al. [29] if we
just consider the specific learning effect model

(
1+
∑r−1

k=1
p[k]

)α
without dealing with experience. The conclusion is that we
are presenting a more general and flexible model that captures
more real-life scenarios than the previous ones.

III. SINGLE-MACHINE PROBLEMS

We prove the following theorems using the pairwise inter-
change technique. Suppose that π and π′ are two job schedules

and the difference between π and π′ is a pairwise interchange
of two adjacent jobs j and k. As shown in Fig.1, π=[S1,j,k,S2]

and π′=[S1,k,j,S2], where S1 and S2 are partial sequences.
Furthermore, we assume that there are r−1 scheduled jobs
in S1, B is the completion time of the last job in S1,
A=
∑r−1

i=1
βip[i] and h is the first job in S2.

S1

S1 S2

S2kj

jk



'

Fig. 1. A pairwise interchange of adjacent jobs

The completion times of jobs j and k in π are

Cj(π)=B+pjmax{(1−ω)f(A)g(r),θ} (4)

and

Ck(π)= B+pjmax{(1−ω)f(A)g(r),θ}
+pkmax{(1−ω)f(A+βrpj)g(r+1),θ}

(5)

Similarly, the completion times of jobs k and j in π′ are

Ck(π
′)=B+pkmax{(1−ω)f(A)g(r),θ} (6)

and

Cj(π
′)= B+pkmax{(1−ω)f(A)g(r),θ}

+pjmax{(1−ω)f(A+βrpk)g(r+1),θ}
(7)

Theorem 1 For the problem 1|pjr=pjmax
{
(1−

ω)f(
∑r−1

i=1
βip[i])g(r),θ

}
|Cmax, an optimal schedule can

be obtained by sequencing the jobs in non-decreasing order
of pj (the SPT rule). �

Proof 1 Suppose that pj≤pk. To show that π dominates π′, it
suffices to show that Ck(π)≤Cj(π′) and Cu(π)≤Cu(π′) for any
job u in S2. We prove them respectively in the following.

First, we prove that Ck(π)≤Cj(π′). Regarding the difference
between Equations (5) and (7), we have

Cj(π
′)−Ck(π)= (pk−pj)max{(1−ω)f(A)g(r),θ}+

pjmax{(1−ω)f(A+βrpk)g(r+1),θ}
−pkmax{(1−ω)f(A+βrpj)g(r+1),θ}

(8)

f and g are non-increasing functions which demon-
strate that (1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+
1)≤(1−ω)f(A)g(r). There are four cases for the parameter
θ of Equation (8):

(i) If (1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤
(1−ω)f(A)g(r)≤θ,

Cj(π
′)−Ck(π)=(pk−pj)θ+pjθ−pkθ=0

(ii) If (1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤
θ≤(1−ω)f(A)g(r),
Cj(π

′)−Ck(π)= (pk−pj)(1−ω)f(A)g(r)+pjθ−pkθ
= (pk−pj)[(1−ω)f(A)g(r)−θ]≥0

(iii) If θ≤(1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+
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1)≤(1−ω)f(A)g(r),
Cj(π

′)−Ck(π)= (pk−pj)(1−ω)f(A)g(r)+pj(1−ω)×
f(A+βrpk)g(r+1)−pk(1−ω)f(A+βrpj)g(r+1)

= (1−ω)[(pk−pj)f(A)g(r)+pjf(A+βrpk)g(r+1)

−pkf(A+βrpj)g(r+1)]

According to the proof of Theorem 1 in [28],
(pk−pj)f(A)g(r)+pjf(A+βrpk)g(r+1)−pkf(A+
βrpj)g(r+1)≥0. Based on the assumption 0≤ω<1,
we have Cj(π′)−Ck(π)≥0.

(iv) If (1−ω)f(A+βrpk)g(r+1)≤θ≤(1−ω)f(A+βrpj)g(r+
1)≤(1−ω)f(A)g(r),

Cj(π
′)−Ck(π)= (pk−pj)(1−ω)f(A)g(r)+pjθ

−pk(1−ω)f(A+βrpj)g(r+1)

Since θ≥(1−ω)f(A+βrpk)g(r+1),

Cj(π
′)−Ck(π)≥ (pk−pj)(1−ω)f(A)g(r)

+pj(1−ω)f(A+βrpk)g(r+1)

−pk(1−ω)f(A+βrpj)g(r+1)

Similarly to case (iii), we have Cj(π′)−Ck(π)≥0.

The above four cases imply that Cj(π′)−Ck(π)≥0 for any
θ.

Secondly, Ch(π)=Ck(π)+phmax{(1−ω)f(A+βrpj+
βr+1pk)g(r+2),θ} and Ch(π

′)=Cj(π
′)+phmax{(1−ω)f(A+

βrpk+βr+1pj)g(r+2), θ}. Since pj≤pk and βr≤βr+1, we
have βrpj+βr+1pk−βrpk−βr+1pj=(pk−pj)(βr+1−βr)≥0. The
fact that f and g are non-increasing functions implies
that (1−ω)f(A+βrpj+βr+1pk)g(r+2)≤(1−ω)f(A+βrpk+
βr+1pj)g(r+2). Similar to the above proof process, we can
obtain Ch(π

′)≥Ch(π) and Cu(π
′)≥Cu(π) for any job u in S2.

All in all, π dominates π′. An optimal schedule can be
obtained by sequencing jobs in non-decreasing order of pj .�

Theorem 2 For the problem 1|pjr=pjmax
{
(1−

ω)f(
∑r−1

i=1
βip[i])g(r),θ

}
|
∑
wjCj , if the jobs have agreeable

weights, i.e., pj≤pk implies wj≥wk for all the jobs j and k,
then an optimal schedule can be obtained by sequencing the
jobs in non-decreasing order of pj

wj
(i.e., the WSPT rule). �

Proof 2 Suppose that pj≤pk. According to Theorem 1,
Ck(π)≤Cj(π′). To show that π dominates π′, it suffices to show
that

∑n

j=1
wjCj(π)≤

∑n

j=1
wjCj(π

′).
Obviously, the completion times of the same job i in

S1 of sequences π and π′ are equal and
∑r−1

i=1
w[i]C[i](π)=∑r−1

i=1
w[i]C[i](π

′). According to Equations (5) and (7),
wkCk(π

′)+wjCj(π
′)−wjCj(π)−wkCk(π)

=(wj+wk)(pk−pj)max{(1−ω)f(A)g(r),θ}+wjpjmax{(1−ω)
f(A+βrpk)g(r+1),θ}−wkpkmax{(1−ω)f(A+βrpj)g(r+1),θ}

Now we prove that wkCk(π′)+wjCj(π′)≥wjCj(π)+wkCk(π)
for any θ.

Since f and g are non-increasing functions, (1−ω)f(A+
βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤(1−ω)f(A)g(r). Simi-
lar to the proof process for Theorem 1, there are four cases
for the parameter θ:

(i) (1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤
(1−ω)f(A)g(r)≤θ

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
=(wj+wk)(pk−pj)θ+wjpjθ−wkpkθ
=(wjpk−wkpj)θ

pj≤pk and wj≥wk imply that (wjpk−wkpj)θ≥0. Then
wkCk(π

′)+wjCj(π
′)≥wjCj(π)+wkCk(π).

(ii) (1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤θ≤
(1−ω)f(A)g(r)

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
=(wj+wk)(pk−pj)(1−ω)f(A)g(r)+wjpjθ−wkpkθ

(1−ω)f(A)g(r)≥θ illustrates that wkCk(π′)+wjCj(π′)−
wjCj(π)−wkCk(π)≥(wj+wk)(pk−pj)θ+wjpjθ−wkpkθ=
(wjpk−wkpj)θ.
Similar to the case (i), we have (wjpk−wkpj)θ≥0, i.e.,
wkCk(π

′)+wjCj(π
′)≥wjCj(π)+wkCk(π).

(iii) θ≤(1−ω)f(A+βrpk)g(r+1)≤(1−ω)f(A+βrpj)g(r+1)≤
(1−ω)f(A)g(r)

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
=(wj+wk)(pk−pj)(1−ω)f(A)g(r)+wjpj(1−ω)×
f(A+βrpk)g(r+1)−wkpk(1−ω)f(A+βrpj)g(r+1)

=(1−ω)(wj+wk)pjg(r)
[(pk
pj
−1
)
f(A)+

wj
wj+wk

f(A+βrpk)
g(r+1)

g(r)
− wk
wj+wk

pk
pj
f(A+βrpj)

g(r+1)

g(r)

]
Assuming δ1=

wk
wj+wk

×g(r+1)

g(r)
, δ2=

wj
wj+wk

×
g(r+1)

g(r)
, χ=βrpj , λ=

pk
pj

. Since wj≥wk, δ2≥δ1. Therefore

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
(1−ω)(wj+wk)pjg(r)

=(λ−1)f(A)+δ2f(A+λχ)−δ1f(A+χ)
≥(λ−1)f(A)+δ1f(A+λχ)−δ1f(A+χ)

From the proof of Lemma 1 in [28], we have
(λ−1)f(A)+δ1f(A+λχ)−δ1f(A+χ)≥0. So wkCk(π

′)+

wjCj(π
′)≥wjCj(π)+wkCk(π).

(iv) (1−ω)f(A+βrpk)g(r+1)≤θ≤(1−ω)f(A+βrpj)g(r+1)≤
(1−ω)f(A)g(r)

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
=(wj+wk)(pk−pj)(1−ω)f(A)g(r)+wjpjθ
−wkpk(1−ω)f(A+βrpj)g(r+1)

Since θ≥(1−ω)f(A+βrpk)g(r+1), then

wkCk(π
′)+wjCj(π

′)−wjCj(π)−wkCk(π)
>(wj+wk)(pk−pj)(1−ω)f(A)g(r)

+wjpj(1−ω)f(A+βrpk)g(r+1)

−wkpk(1−ω)f(A+βrpj)g(r+1)
Similar to the case (iii), we have wkCk(π

′)+wjCj(π
′)≥

wjCj(π)+wkCk(π).
Therefore, wkCk(π

′)+wjCj(π
′)≥wjCj(π)+wkCk(π). From

the proof of Theorem 1, we have Cu(π
′)≥Cu(π) for any job

u in S2. So
∑n

j=1
wjCj(π

′)≥
∑n

j=1
wjCj(π). In other words, π

dominates π′. An optimal schedule can be obtained by se-
quencing the jobs in non-decreasing order of pj

wj
or repeating

this interchange procedure to all unsequenced jobs using the
WSPT rule. �
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A special case of Theorem 2 is the following:

Corollary 1 For the problem 1|pjr=pjmax
{
(1−

ω)f(
∑r−1

i=1
βip[i])g(r),θ

}
|
∑
Cj , an optimal schedule can

be obtained by sequencing the jobs in non-decreasing order
of pj (the SPT rule). �

Similarly to the Theorem 7 in [28] and the Theorem 2.3
in [12], we have

Theorem 3 For the problem 1|pjr=pjmax
{
(1−

ω)f(
∑r−1

i=1
βip[i])g(r),θ

}
|Lmax, if the job’s processing times

and due dates are agreeable, i.e., dj≤dk implies pj≤pk for all
the jobs j and k, then an optimal schedule can be obtained
by sequencing the jobs in non-decreasing order of the due
date dj (the EDD rule). �

Theorem 4 For the problem 1|pjr=pjmax
{
(1−

ω)f(
∑r−1

i=1
βip[i])g(r),θ

}
|
∑
Tj , if the job’s processing times

and due dates are agreeable, i.e., dj≤dk implies pj≤pk for all
the jobs j and k, then an optimal schedule can be obtained
by sequencing the jobs in non-decreasing order of the due
date dj (the EDD rule). �

For an example, we assume that 5 pairs of shoes to be
leather cut by a worker (especially when he/she shifts to
this operation). Their normal processing times are 30, 46,
28, 50 and 35 respectively. We assume that f(

∑r−1

k=1
p[k])=

(1+
∑r−1

k=1
p[k])

α, g(r)=1, ω=0, α=−0.1, β1=β2=β3=β4=β5=1,
θ=0.6. Using the SPT rule on normal processing times,
the schedule (3, 1, 5, 2, 4) is obtained for the problem
1|pjr=pjmax

{
(1−ω)f(

∑r−1

i=1
βip[i])g(r),θ

}
|Cmax. According to

equation (1), actual processing times of the five operations are
21.42, 29.91, 28.00, 31.43 and 23.65 respectively. Makespan of
the schedule is 134.41 and that would be 189 without learning
and forgetting effects.

IV. THE TWO-MACHINE PERMUTATION FLOW SHOP
PROBLEM

A permutation flow shop (PFSP) is a classic scheduling
problem. Given a set of jobs J={1,2,...,n} and a set of m

machines, each job has to be processed on all m machines
in the same order. The processing times of each job on each
machine are given. At any time, each machine can process at
most one job and each job can be processed at most on one
machine. Interrupting the processing of any job on a machine
is not permitted. All jobs are processed in the same order
at every machine. In this paper, we consider the two-machine
permutation flow shop problem minimizing the makespan with
learning effects. For each job j, aj and bj denote the normal
processing times on machine 1 and machine 2 respectively.

A. Specific learning-forgetting models with experience

In the PFSP, operations on the first machine usually start as
soon as possible, i.e., there is no gap between operations so no
forgetting effect is considered. Similarly to [28], we specify the
proposed general learning effect model for operations on ma-

chine 1 with f(
∑r−1

i=1
βip[i])=

(
1−
∑r−1

i=1
p[i]∑n

i=1
pi

)α1

, g(r)=rα2 , α1≥

1, α2<0. Taking into account all the parameters (learning, po-
sition, threshold and experience), we define S[x,k]=(1−ω)

(
1−

∑k
l=1x[l]∑n
l=1

x[l]

)α1

(k+1)α2 where x∈{a,b}. L(x,k,θ)=max
{
S[x,k],θ

}
.

Because there is no idle time on machine 1, no forgetting
is involved on the this machine. The specific learning model
with experience on machine 1 is

ajr=ajmax
{
(1−ω)

(
1−
∑r−1

k=1
a[k]∑n

k=1
ak

)α1

rα2 ,θ
}
=ajL(a,r−1,θ)

(9)
The actual processing time of job j at the rth position on

machine 2 would be bjr=bjL(b,r−1,θ) if there were no idle
time. However, idle times might appear on machine 2 leading
to forgetting effects, which always decrease what has been
learned in the learning effects. Forgetting effects are closely
related to the total amount of what has been learned and
the sum duration of the breaks before the current position
r. Inspired by [30] and [31], we design the specific learning-
forgetting model with experience on machine 2, in which the
more learning there is the less forgetting. In addition, the
longer the sum duration of the breaks is, the more forgetting
there is. The model is formulated as follows:

bjr=bjL(b,r−1,θ)+bj(1−L(b,r−1,θ))(1−e−σ
∑r
k=1I[k]) (10)

where I[k] is the idle time of a job scheduled at position k,
σ(σ<0) is the forgetting index, bj(1−L(b,r−1,θ)) is the amount
learned.

B. Heuristic algorithms

Though the Johnson Rule obtains the optimum solution for
the classical two-machine permutation flow shop scheduling
problem with makespan minimization [32], it fails to optimal-
ly solve the considered two-machine problem with learning
effects because the processing times are not determined in ad-
vance. Cheng et al. [20] considered the two-machine flowshop
problem with a truncated learning function ajr=ajmax{rα,β}
and bjr=bjmax{rα,β}, of which the complexity is unknown.
Obviously, the learning-forgetting models with experience
developed in this paper are much more general than those
in [20], i.e., the considered problem is more complex than that
in [20]. Cheng et al. proposed a branch-and-bound and three
crossover-based genetic algorithms (GAs) for a two-machine
flowshop scheduling with a truncated learning function to
minimize the makespan, which drives us to propose heuristics
for the considered problem.

In this paper, a two-stage algorithm framework is proposed.
There are two phases in the framework: the Initial Solution
Construction and the Solution Improvement. The construction
phase has two variants: the Johnson rule and the Greedy rule.
The improvement phase contains two variants: the insertion
policy or swap policy. Based on the variants, four heuristic
algorithms are developed: JIH (Johnson And Insert), JSH
(Johnson And Swap), GIH (Greedy And Insert) and GSH
(Greedy And Swap). The components of the heuristics are
described in Algorithms 1∼4.

In Step 10 of the Greedy Rule, the job with the minimum
aj−b[k] is selected to reduce the idle time of the second
machine. For a fixed b[k], the job with the minimum of aj is
selected from the remaining jobs in the set. This situation is



6

Algorithm 1: Johnson Rule

1 begin
2 Construct a set of jobs J1={j|j∈J with aj≤bj};
3 Schedule jobs of J1 with the non-decreasing order of

aj , breaking ties arbitrarily;
4 Schedule jobs of J\J1 with the non-increasing order

of bj , breaking ties arbitrarily;
5 Construct π0 by joining J1 followed by J\J1;
6 return π0

Algorithm 2: Greedy Rule

1 begin
2 Construct an empty job sequence S;
3 Construct a set of jobs J1={j∈J|aj≤bj}, k←1;
4 Schedule jobs of J\J1 with the non-increasing order

of bj;
5 if J1 6=∅ then
6 Choose job j with the minimum bj from J1 as the

first element of S;
7 else
8 Choose job j with the minimum aj from J\J1 as

the first element of S;

9 Delete job j from J;
10 Choose job j with the minimum aj−b[k] from J as

the (k+1)th element of S;
11 Delete job j from J, k←k+1;
12 if J6=∅ then
13 Go to Step 10;

14 π0←S;
15 return π0

similar to the SPT rule, i.e., the job with the longest processing
time is scheduled at the latest position, which is in accordance
with the learning effects.

It is easy to derive the time complexity of each variant of the
first phase which is O(nlogn) while that of the second phase
is O(n2). Therefore, time complexity of the four heuristics is
O(n2).

C. Branch and bound algorithm

Besides the above heuristics, we propose a branch and
bound algorithm for small-scale two-machine permutation
flow shop problems. Six lower bounds are developed to trim
the searching tree and to accelerate the searching process.

1) Lower bounds: Let πP be a partial schedule with k

jobs determined during the Branch and Bound process. π is a
complete schedule in which the first part is πP . A and B are
the completion times of the last job on machine 1 and machine
2 respectively. M[k]=1−e−σ

∑k
l=1I[l] represents a function of the

idle time resulting from the partial schedule πP . Obviously,
0≤M[1]...≤M[k]≤M[n]<1. Therefore, the completion times of
the (k+1)th job on machines 1 and 2 are

Algorithm 3: Insertion Policy
Input: An initial solution π0

1 begin
2 for k=1 to n−1 do
3 for i=k+1 to n do
4 Construct sequence π by removing the ith job

from π0 and inserting it to the kth slot;
5 if Cmax(π)<Cmax(π0) then
6 Replace π0 with π;

7 return π0

Algorithm 4: Swap Policy
Input: An initial solution π0

1 begin
2 for k=1 to n−1 do
3 for i=k+1 to n do
4 Construct sequence π by swapping the ith

and the kth jobs of π0;
5 if Cmax(π)<Cmax(π0) then
6 Replace π0 with π;

7 return π0

C1[k+1]=A+a[k+1]max
{
(1−ω)

(
1−
∑k

l=1
a[l]∑n

l=1
a[l]

)α1

(k+1)α2 ,θ
}

≥A+a[k+1]S[a,k]

C2[k+1]=max{C1[k+1],B}+b[k+1]max
{
(1−ω)×(

1−
∑k

l=1
b[l]∑n

l=1
b[l]

)α1

(k+1)α2 ,θ
}
+
[
b[k+1]−b[k+1]×

max
{
(1−ω)

(
1−
∑k

l=1
b[l]∑n

l=1
b[l]

)α1

(k+1)α2 ,θ
}]
M[k+1]

=max{C1[k+1],B}+b[k+1]max
{
S[b,k],θ

}
+
[
b[k+1]−

b[k+1]max
{
S[b,k],θ

}]
M[k+1]

=max{C1[k+1],B}+(1−M[k+1])b[k+1]max
{
S[b,k],θ

}
+

b[k+1]M[k+1]

≥ C1[k+1]+(1−M[k+1])b[k+1]S[b,k]+b[k+1]M[k+1]

≥ A+a[k+1]S[a,k]+b[k+1]

[
S[b,k]+M[k+1]−M[k+1]S[b,k]

]
Similarly, we define

Z[x,i,j]=(1−ω)
(
1−
∑i

l=1
x[l]+

∑j

l=1
x[k+l]∑n

l=1
x[l]

)α1

(i+j+1)α2

where x∈{a,b}. For the last job on machines 1 and 2

C1[n]≥A+
n−k∑
i=1

a[k+i](1−ω)
(
1−
∑k

l=1
a[l]+

∑i−1

l=1
a[k+l]∑n

l=1
a[l]

)α1

(k+i)α2

=A+

n−k∑
i=1

a[k+i]Z[a,k,i−1] (11)

C2[n]≥A+
n−k∑
i=1

a[k+i]Z[a,k,i−1]
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+b[n](1−ω)
(
1−
∑k

l=1
b[l]+

∑n−k−1

l=1
b[k+l]∑n

l=1
b[l]

)α1

nα2

+
[
b[n]−b[n](1−ω)

(
1−
∑k

l=1
b[l]+

∑n−k−1

l=1
b[k+l]∑n

l=1
b[l]

)α1

nα2

]
M[n]

=A+

n−k∑
i=1

a[k+i]Z[a,k,i−1]+b[n]

[
Z[b,k,n−k−1](1−M[n])+M[n]

]
≥A+

n−k∑
i=1

a[k+i]Z[a,k,i−1]+b[n]

[
Z[b,k,n−k−1](1−M

′
)+M[k]

]
(12)

where M
′
=1−e−σ(

∑n
l=1I[l]+

∑n−k
l=1

a[k+l]). M ′ and M[k] are func-
tions so that M[n]≤M

′ and M[n]≥M[k]. M
′ contains not only

the maximum idle time of the unscheduled sequence but also
the sum of the idle times of πP . M[k] is only the sum of the
idle time of the current partial sequence πP .

Because A is known in Equation (12), the lower bound
of the makespan of πP only depends on the remaining
part. Since the function Z[a,k,i−1] decreases as i increases,∑n−k

i=1
a[k+i]Z[a,k,i−1] can be minimized by sequencing the

unscheduled jobs on machine 1 using the SPT rule, and
b[n]

[
Z[b,k,n−k−1](1−M

′
)+M[k]

]
can be minimized by sequenc-

ing the unscheduled jobs on machine 2 using the longest
processing time (LPT) rule. Therefore, we obtain the first
lower bound LB1:

LB1=A+

n−k∑
i=1

a[k+i]Z[a,k,i−1]+b[n]

[
Z[b,k,n−k−1](1−M

′
)+M[k]

]
where a(k+1)≤a(k+2)≤...≤a(n) means that the unscheduled job-
s on machine 1 are arranged in non-decreasing order of
processing times, and b(k+1)≥b(k+2)≥...≥b(n) implies that the
unscheduled jobs on machine 2 are arranged in the non-
increasing order of processing times.

However, LB1 is not tight.
(i) When the learning effect factor becomes smaller than θ,

i.e., S[a,r−1]<θ, we can obtain another lower bound by
replacing S[a,r−1] of the above process with θ:

LB2=A+θ

n−k∑
i=1

a(k+i)+b(n)[θ(1−M
′
)+M[k]] (13)

(ii) When the forgetting effect factor is negligible, we can
obtain the following lower bound:

LB3=A+

n−k∑
i=1

a[k+i]Z[a,k,i−1]+b[n]Z[b,k,n−k−1]

(iii) When there is no forgetting effect and the learning effect
factor becomes smaller than θ, we can get the lower
bound below:

LB4=A+θ

n−k∑
i=1

a(k+i)+b(n)θ (14)

(iv) If no idle time is considered on machine 2 for the
unscheduled sequence, we develop the following lower
bound:

LB5= B+

n−k∑
i=1

b[k+i]
[
Z[b,k,i−1](1−M[k])+M[k]

]
(15)

(v) When no idle time is considered on machine 2 for
the unscheduled sequence and the learning effect factor
becomes smaller than θ, we construct another lower
bound below:

LB6=B+

n−k∑
i=1

b(k+i)[(1−M[k])θ+M[k]] (16)

In equation (15), b(k+1)≤b(k+2)≤...≤b(n) illustrates that un-
scheduled jobs on machine 2 are arranged in non-decreasing
order of the processing times. The maximum value from the
equations (IV-C1)-(16) is set as the lower bound of πP , i.e.,

LB=max{LB1,LB2,LB3,LB4,LB5,LB6} (17)

2) Branch and Bound algorithm: The branch and bound
algorithm starts from the best solution obtained after applying
the four previous heuristics. A sequence is constructed by the
depth-first strategy from the first position. During the search
process, a node of the tree is eliminated or expanded based
on the lower bound. A complete solution is constructed when
the current node is a leaf node, which substitutes the current
best solution found so far. The branch and bound algorithm is
described in Algorithm 5.

Algorithm 5: Branch and Bound Algorithm

1 begin
2 Perform JIH, JSH, GIH and GSH to obtain the initial

solution;
3 Start the assignment of jobs at the beginning of a

schedule and move forward one step at a time;
4 In the kth level node, the first k positions are

occupied by k specific jobs. Select one of the
remaining n−k jobs for the node at level k+1;

5 Calculate the lower bound for the node. If the lower
bound for an unfathomed partial schedule is larger
than the initial solution, eliminate the node. Calculate
the objective function value of the completed
schedule, and if it is less than the initial solution,
replace it as the new solution, otherwise, eliminate it;

6 Continue until all nodes have been explored, and the
solution that ultimately remains is optimal

D. An Example

We assume 5 pairs of shoes are sequentially processed on
two machines with normal processing times shown in Table I:

TABLE I
PROCESSING TIMES OF SHOES ON TWO MACHINES

Number 1 2 3 4 5

Machine 1 44 35 30 53 51
Machine 2 31 40 38 44 26

Actual processing times of a sequence can be obtained
according to the learning effect models represented by Equa-
tions (9) and (10) with parameters θ=0.75, ω=0.15, α1=1.001,
α2=−0.515, σ=0.02. Jobs’ processing times depend on their
positions in the sequence. For different schedules constructed
by the Johnson rule, Greedy, JIH, JSH, GIH and GSH and
Branch & Bound, actual processing times of the jobs are listed
in Table II.
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TABLE II
ACTUAL PROCESSING TIMES FOR DIFFERENT SCHEDULES

Johnson Rule
Schedule 3 2 4 1 5

Machine 1 25.50 26.25 39.75 33.00 38.25
Machine 2 32.30 30.00 33.78 23.80 21.40

Greedy
Schedule 3 2 1 5 4

Machine 1 25.50 26.25 33.00 38.25 39.75
Machine 2 32.30 30.00 23.25 20.88 38.06

JIH
Schedule 3 4 1 2 5

Machine 1 25.50 39.75 33.00 38.25 26.25
Machine 2 32.30 34.52 24.32 21.63 33.87

JSH
Schedule 3 4 1 2 5

Machine 1 25.50 39.75 33.00 38.25 26.25
Machine 2 32.30 34.52 24.32 21.63 33.87

GIH
Schedule 4 3 2 1 5

Machine 1 45.05 22.50 26.25 38.25 33.00
Machine 2 37.40 28.50 30.00 19.50 23.93

GSH
Schedule 4 2 1 3 5

Machine 1 45.05 26.25 33.00 38.25 22.50
Machine 2 37.40 30.00 23.25 20.33 30.07

Branch&Bound
Schedule 3 2 1 4 5

Machine 1 25.50 26.25 33.00 39.59 38.25
Machine 2 32.30 30.00 23.25 35.59 21.29

Makespan of the schedule (3,2,4,1,5) obtained by the John-
son rule is 244 and that of the sequence (3,2,1,4,5) generated
by the Branch & Bound is 183.88.

V. COMPUTATIONAL EXPERIMENTS

In this section, the proposed methods are evaluated with ran-
domly generated instances. We compare the branch and bound
algorithm (BB) with the four heuristics on small instances
because it would be far too time-consuming as n increases,
e.g., the maximum computation time of BB could be more than
1700s for n=12. Furthermore, the four heuristics are compared
over large size problems. All the involved algorithms are
coded in Java and run on Intel(R) Core(TM) i5-3470 CPU @
3.20GHz with 1GB RAM on Windows 7. The job processing
times on the machines are randomly generated from a uniform
distribution over [1,100] as it is common in the scheduling
literature.

A. Performance comparison on small-scale problems

The proposed BB method obtains the optimum solution for
each instance. BB is compared with the four presented heuris-
tics (JIH, JSH, GIH and GSH), the Johnson rule and Greedy
on small instances with the number of jobs n taking values
from {8,9,10,11,12}. However, because the developed model is
non-linear, the proposed BB is not compared with CPLEX or
with any other black-box mathematical programming solver.
Twenty replications are randomly generated for each n. The
parameters of the learning-forgetting model with experience
are set as follows: the experience factor ω∈{0.1,0.15,0.2}, the
learning threshold θ∈{0.25,0.5,0.75} [19], the first learning
index α1∈{1.001,1.01,1.1} [19], the second learning index

α2∈{−0.152,−0.322,−0.515} [33] and the forgetting index
σ∈{0.01,0.15,0.2}, i.e., there are 35=243 parameter combina-
tions. Therefore, there are 20×5=100 instances tested with the
35=243 index combinations and for all 7 tested algorithms
resulting in a set of data with 170100 results.

Since BB gets the optimum solution V ∗i for instance i, we
just show the number of extended nodes in the search tree
and the computation times (in seconds) needed, i.e., Mean
Time, Max Time, Mean Nodes and Max times. The solution
of instance i obtained by heuristic H is denoted as Vi(H).
The relative percentage deviation (RPD), commonly used for
effectiveness evaluation for scheduling algorithms, is adopted.

RPD=
Vi(H)−V ∗i

V ∗i
×100% (18)

The results of the seven algorithms are illustrated in Ta-
ble III, in which ARPD is the average RPD of the instances
for each size n. The average computation times of the heuristic
algorithms are very short for the small instances. They are so
small that they cannot be reliably measured so they are not
given in Table III.

It can be observed from Table III that the proposed branch
and bound algorithm solves a problem with up to 12 jobs in
an acceptable amount of time. However, the execution time
(both the mean and the maximum) and the number of nodes
(both the mean and the maximum) increase dramatically as
the number of jobs increases. Similarly, the mean execution
time and the mean number of nodes increase dramatically as θ
increases. The other four parameters (α1, α2, ω, σ) exert little
influence on the four indices of the BB.

Among the six heuristics, JIH and JSH have similar ARPDs
for each parameter case and they outperform the other four
(the best result is given in bold). The ARPDs are almost all
lower than 1% except for the θ=0.25 case. Though the ARPD
of Johnson is 0.16% when θ=0.75, those of JIH and JSH
are only 0.01% and 0.02% in that case. The Greedy is the
worst among the compared methods. Though GSH is slightly
better than GIH and Johnson, they show similar performance
in ARPD. Johnson, JIH and JSH outperform Greedy, GIH
and GSH respectively, on small-sized problems. The ARPD of
each heuristic decreases with the increase in learning threshold
θ. Johnson and Greedy Rules decrease the most. The results
also indicate that the learning threshold θ has a great influence
on the efficiency of the heuristics. The ARPDs of the six
heuristics show no significant difference in the experience
factor ω, the learning index α1, the learning index α2 and
the forgetting index σ. In other words, these parameters have
little effect on the performance of heuristics.

We compare the algorithms further by the Analysis of Vari-
ance (ANOVA) technique, which is a very robust parametric
procedure. There are a number of hypotheses that should
ideally be met by the experimental data. Among these, the
main three are (in order of importance): independence of
the residuals, homoscesdasticity or homogenity of the factor’s
levels variance and normality in the residuals of the model.
Apart from a slight non-normality in the residuals, we can
accept all hypotheses easily. The response variable in the
experiment is the RPD for each algorithm in each instance.
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TABLE III
PERFORMANCE COMPARISONS ON SMALL INSTANCES.

Param Values Branch & Bound ARPD

Mean Time Max time Mean Nodes Max Nodes Greedy GIH GSH Johnson JIH JSH

n 8 0.02 0.17 1826 13714 10.47 3.08 2.37 2.76 0.33 0.53
9 0.13 1.75 10807 107003 11.89 3.80 2.58 3.38 0.37 0.40

10 0.74 10.49 57920 758082 8.37 4.20 3.12 2.33 0.66 0.64
11 14.43 143.95 1019567 9757849 6.69 1.93 1.32 2.77 0.38 0.30
12 129.55 1780.59 7961833 108070665 6.55 2.32 1.73 2.53 0.47 0.29

θ 0.25 0.25 17.59 17496 1246404 11.47 2.91 2.21 6.61 1.13 1.02
0.5 4.01 1743.67 260095 108070665 8.34 3.43 2.38 1.50 0.19 0.26
0.75 82.67 1780.59 5153581 104476074 6.57 2.86 2.07 0.16 0.01 0.02

ω 0.1 27.90 1780.59 1731177 104476074 8.81 3.03 2.13 2.99 0.48 0.46
0.15 29.46 1722.22 1844283 101153008 8.79 3.07 2.23 2.75 0.45 0.44
0.2 29.56 1743.67 1855711 108070665 8.78 3.10 2.30 2.52 0.40 0.40

α1 1.001 29.45 1779.13 1803031 104476074 8.79 3.06 2.22 2.77 0.45 0.43
1.01 28.64 1699.35 1797965 104476074 8.79 3.06 2.22 2.77 0.45 0.43
1.1 28.83 1780.59 1830175 108070665 8.79 3.07 2.23 2.73 0.43 0.43

α2 -0.515 32.47 1780.59 1572148 102478930 8.91 3.22 2.27 3.15 0.49 0.51
-0.322 29.64 1778.95 1839400 104476074 8.85 3.14 2.27 2.91 0.50 0.45
-0.152 24.80 1710.69 2019623 108070665 8.62 2.83 2.12 2.20 0.33 0.34

σ 0.01 29.07 1780.19 1817436 108070665 8.15 2.88 1.99 2.58 0.42 0.40
0.015 29.07 1780.59 1815791 108070665 8.83 3.11 2.25 2.75 0.44 0.44
0.02 28.78 1778.95 1797944 108070665 9.40 3.21 2.43 2.94 0.46 0.46

BB JSH JIH GSH GIH Johnson Greedy

Algorithm
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Fig. 2. Means plot of the ARPD and 95% confidence level Tukey’s HSD
intervals for the compared algorithms on small-scale problems.

All studied factors except α1 in the ANOVA resulted as
statistically significant with p-values very close to zero.

The means plot with 95% confidence level Tukey’s Honest
Significance Differences (HSD) intervals for the ARPD of
the compared algorithms is shown in Figure 2. Recall that
overlapping intervals indicate that the observed differences in
the overlapped means are not statistically significant. Figure 2
summarizes the conclusions indicated in Table III and confirms
that the observed differences are statistically significant at the
indicated confidence level. The only similarities are between
algorithms JSH and JIH which are statistically equivalent.
There are no noteworthy interactions between all the studied
factors (n, θ, ω, α1, α2 and σ) and the algorithm.

B. Performance comparisons of the heuristics on large-scale
problems

To further evaluate the proposed four heuristics, they are
compared with the Johnson rule and the Greedy on large-

scale problems. Similar to the small-scale case, five differ-
ent job sizes, n=20,50,100,150,200,300 and 400, are tested
and 20 replications are randomly generated for each size.
The parameter values of the learning-forgetting model with
experience are identical to the small-scale case so there are
243×7×20×6=204120 results in total for all the six compared
heuristics. The RPD is adopted for effectiveness evaluation
except that now V ∗i is the best solution among the six heuristics
for instance i instead of the optimum solution. The results are
shown in Table IV.

Table IV illustrates that JSH outperforms the other heuristics
in ARPD for all instances and parameter combinations. The
ARPD of JSH is no more than 0.06% which basically
indicates that in almost all cases it returns the best solution.
Similar to the small-scale problems, the performance of
the Greedy based heuristics is not better than that of the
corresponding Johnson’s Rule based ones when n<300.
ARPDs of JSH and GSH are always lower than those of JIH
and GIH respectively, which demonstrates that the swap policy
is more effective than the insertion policy for the considered
problem. This is a considerable departure from most flow shop
problems where, in particular, the insertion neighborhood has
been proven to be more effective than the swap or interchange.

As regards the CPU times employed by the algorithms the
most important factor is the number of jobs n. As we can see,
all four presented heuristics use a bit less than 64 seconds on
average for the largest instances of 400 jobs. This is expected
as all of them have the same computational complexity. The
Johnson and Greedy algorithms are very fast, needing a CPU
time that is below the measurement threshold. Overall, the
presented heuristics can be deemed as very fast.

The six heuristics are also compared using ANOVA. The
means plot of the ARPD and 95% confidence level Tukey’s
HSD intervals for the compared algorithms are shown in
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TABLE IV
PERFORMANCE COMPARISONS ON LARGE-SCALE INSTANCES.

Parameter Values Greedy Johnson GIH GSH JIH JSH

Time ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time ARPD

n 20 0.00 5.17 0.00 2.30 0.00 2.04 0.00 1.40 0.00 0.41 0.00 0.06
50 0.00 3.00 0.00 1.83 0.08 1.07 0.07 0.61 0.07 0.45 0.07 0.05
100 0.00 1.90 0.00 1.55 0.76 0.68 0.75 0.36 0.75 0.31 0.75 0.03
150 0.00 1.95 0.00 1.63 3.04 0.55 3.02 0.25 3.03 0.30 3.03 0.01
200 0.00 1.61 0.00 1.46 7.95 0.54 7.95 0.25 7.93 0.26 7.96 0.01
300 0.00 0.02 0.00 0.03 22.35 0.01 22.11 0.00 22.09 0.01 22.20 0.00
400 0.00 0.02 0.00 0.03 63.28 0.00 62.96 0.00 62.69 0.01 62.50 0.00

θ 0.25 0.00 3.44 0.00 3.19 18.38 0.97 18.41 0.47 18.30 0.66 18.25 0.06
0.5 0.00 1.52 0.00 0.54 18.17 0.70 18.24 0.47 18.11 0.08 18.06 0.01
0.75 0.00 0.88 0.00 0.04 17.84 0.42 17.81 0.29 17.72 0.00 17.61 0.00

ω 0.1 0.00 2.03 0.00 1.42 10.93 0.72 10.98 0.41 10.86 0.28 10.84 0.03
0.15 0.00 1.95 0.00 1.25 21.48 0.69 21.41 0.42 21.34 0.25 21.24 0.02
0.2 0.00 1.87 0.00 1.10 21.98 0.68 22.08 0.41 21.94 0.22 21.83 0.02

α1 1.001 0.00 1.95 0.00 1.27 17.69 0.70 17.74 0.41 17.57 0.25 17.53 0.02
1.01 0.00 1.95 0.00 1.27 18.49 0.70 18.49 0.41 18.43 0.25 18.31 0.02
1.1 0.00 1.94 0.00 1.24 18.21 0.69 18.23 0.41 18.15 0.24 18.07 0.02

α2 -0.515 0.00 1.75 0.00 0.97 18.07 0.67 18.09 0.43 17.97 0.16 17.92 0.01
-0.322 0.00 2.03 0.00 1.40 18.29 0.72 18.31 0.42 18.20 0.27 18.14 0.02
-0.152 0.00 2.07 0.00 1.40 18.03 0.71 18.07 0.39 17.97 0.32 17.85 0.03

σ 0.01 0.00 1.83 0.00 1.25 18.22 0.67 18.25 0.35 18.17 0.25 18.11 0.02
0.015 0.00 1.96 0.00 1.26 18.36 0.70 18.41 0.43 18.24 0.25 18.24 0.02
0.02 0.00 2.06 0.00 1.26 17.81 0.72 17.80 0.45 17.73 0.25 17.56 0.02

JSH JIH GSH GIH Johnson Greedy

Algorithm
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Fig. 3. Means plot of the ARPD and 95% confidence level Tukey’s HSD
intervals for the compared algorithms on large-scale problems.

Figure 3.
Figure 3 implies that the observed differences in ARPDs of

the compared algorithms of Table IV are indeed significantly
different. JSH is clearly the best performer and given that
its running time is very similar to the next three other best
methods it is the preferred heuristic. Johnson is an alternative
to Greedy given its better performance and and it can also be
considered as an option over JSH when extremely fast CPU
times are required.

Lastly, we analyze the effect of the studied instance char-
acteristics and parameters of the learning-forgetting model
with experience in the ANOVA. Most interactions between
the algorithms and these factors are statistically significant.
They are depicted in Figure 4.

The results show that n and the learning threshold θ have

a significant influence on the efficiency of the heuristic algo-
rithms. However, the interactions are rather weak for the other
factors, i.e., the performance of the algorithms is not affected
by the values of experience ω, learning index α1, learning
index α2 and forgetting index σ. Therefore, the proposed
heuristics are robust as regards these parameters.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented a general learning effect model where the
actual job processing time is not only sum-of-processing-time-
based and job-position-based, but also depends on a workers’
experience. We have shown that the SPT rule provides the
optimal sequences for the single-machine makespan and total
completion time objectives. We have also proved that the
WSPT rule provides the optimal sequence for the total weight-
ed completion time and the EDD rule provides the optimal
sequences for the maximum lateness and total tardiness prob-
lems under certain agreeable conditions. We have also studied
two-machine permutation flow shop scheduling problems with
a learning-forgetting effects model where the forgetting effect
is caused by the idle time of the second machine. Six lower
bounds have been derived and used in a branch-and-bound
algorithm to find optimal solutions for small-scale problems
of up to 12 jobs. Four heuristics, JIH, JSH, GIH and GSH
are proposed to find approximate solutions. Computational
results show that JSH outperforms Johnson, Greedy, JIH, GIH
and GSH on both small-scale and large-scale problems. The
performance of the heuristics is not significantly affected by
the parameters of the learning-forgetting model in most cases.
The swap policy is better than the insertion policy for the
considered problem.

For future research, flow shops of more than two machines
(m>2) with the learning-forgetting effect and experience is
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Fig. 4. Interactions between the parameters of the learning-forgetting model with experience on ARPDs with 95% confidence level Tukey’s HSD intervals.

the next logical step. Similarly, more general and practical
scheduling models are desirable areas of study for future work.
Other ideas to consider is even more generalized learning-
forgetting effects models where apart from experience one
could consider job complexity in the sense that some jobs are
very complex and learning takes a longer time and similarly
forgetting takes shorter.
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