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Abstract

Atrial Fibrillation is the most common sustained cardiac arrhythmia. Its prevalence is even expected
to increase in the coming years. Indeed, it is already considered an epidemic disease. However, the
degenerative physiological mechanisms guiding its development are currently not fully understood.
Therefore, still a more research effort in this field is needed. Along this line, the study of surface
cardiac signals has been presented as an easily accessible source of useful information about the
heart’s condition. Particularly, the state of the atria can be characterized through the study of the
P-wave in the electrocardiogram, which represents its electrical activity. For this, in this Master’s
dissertation an automatic P-wave delineation method has been developed. The novel strategy applied
for delineating P-waves regardless their morphology is based on the creation of a Gaussian model of
each waveform and the use of morphological information of preceding P-waves to guide the fiducial
points location. For validation purposes the manual annotations of the standard QT database from
Physionet were used. The results provided a detection sensitivity of a 100%, whereas the mean and
standard deviation of the error committed with respect to the reference set by the database were for
the P-wave onset, P-wave peak and P-wave offset, 4.71£9.59 ms, 2.82+6.69 ms and 0.649.79 ms,
respectively. The results obtained, which outperform others presented in the literature, exhibit that
the proposed method is a reliable, accurate and robust delineator. Therefore, this algorithm might
be presented as a valuable tool for identifying the gradual modification in the electrophysiological
properties of the atria that has been highly associated with the occurrence and maintenance of cardiac

pathologies such as Atrial Fibrillation.
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Chapter 1

Introduction

1.1 Motivation

Atrial fibrillation (AF) is the most common sustained arrhythmia in the clinical practice, affecting
around 2% of the population worldwide [1]. Furthermore, in the following years, the prevalence of
AF is expected to increase due to the improvements achiveved in its diagnosis, in the the treatment of
related cardiac and noncardiac diseases, as well as the ageing demographics [1,2]. AF is described
as a rapid and irregular activation of the atria, leading to a defective function [3]. Despite not being
a direct lethal condition, it may lead to blood clots formation, stroke, myocardial infarction or heart
failure among other cardiac complications, resulting in an increased mortality [4].

Ongoing research on AF supports that several degenerative mechanisms, such as electrical, struc-
tural and autonomic remodeling, are involved in the initiation and maintenance of AF [3]. However,
the physiopathology of AF is currently not fully understood [5]. Therefore, much more research is
still needed in order to improve our understanding about the mechanisms underlying this arrhythmia,
allowing an earlier diagnosis and more effective treatment [6].

Whithin this context, the analysis of cardiac signals has received great interest [7]. In particular, the
study of the surface electrocardiographic (ECG) signal of patients suffering from atrial fibrillation has
been presented as a highly valuable tool for the non-invasive assessment of the heart’s condition [8].
Commonly, the ECG signal has been used for AF diagnosis. However, its usefulnes is spreading to
new applications such as the success evaluation of specific therapies or the assesment of the degree of

atrial remodeling [9].



In the ECG, the P-wave is the waveform associated with the atrial activity. So, abnormalities in
the atrial conduction pattern will be reflected in this waveform morphology [10]. During AF, the ECG
is characterized by the substitution of the normal P-wave for rapid and irregular oscillations called
f-waves [11]. The focus of analysis in this work has been centered in the P-wave morphology during
sinus rythm, prior the onset of an AF episode [8].

Disorders in the electrical properties of the atria are widely associated with the maintenance of
AF, such as intra and interatrial conduction delays and heterogeneous electrical conduction due to the
possibly presence of fibrosis [9]. This phenomena can be reflected in several P-wave morphology in-
dices such as its duration and dispersion, which is the difference between the widest and the narrowest
P-wave [12]. As a result, in recent years, the analysis of the P-wave has become a major focus of
attention for the study of atrial tachycardias, and specially AF [9, 13].

The averaged-signal P-wave has been usually analyzed to minimize the effect of its low SNR lev-
els, caused by its reduced amplitude [14]. Hence, prolonged P-waves duration and P-waves dispersion
have been associated with a higher risk of AF compared with healthy controls [15, 16] or after car-
diac surgery [17, 18], and a greater probability of transition from paroxysmal to permanent AF [19].
Not only long but also short P-waves duration have been associated with higher risk of AF [20]. In
addition, morphological changes as notched or deflected P-waves together with longer duration, have
been proven to be a strong indicator for the development of AF [21]. Finally, the morphology vari-
ability, calculated by correlating the P-waves with a template [22], or using the standard deviation of
the euclidean distance between them [23], has been also revealed as indicator of AF presence.

Plenty of useful information can be extrated from the averaged-signal P-wave analysis. However,
averaging does not allow the analysis of the individual waveforms and their variability over time.
This possibility migth be interesting because of the progressive nature in which the electroanatomical
properties of the atria are modified leading to the initiation of AF [22]. Thereby, the identification
of changing P-wave morphology patterns during sinus rhythm indicating a remodeling process in the
atria may allow the prediction of an AF episode before it actually occurs [24,25]. This phenomenon
is relevant because the success rate achieved by the strategies currently followed to maintain sinus
rhythm such as anthyarrythmic drugs or ablation techniques is significantly lower for more advanced
AF [26]. Furthermore, catheter ablation higher success rate reduces the need for redo procedures and
hospitalization time, which represents the major cost driver in AF care. Consequently, this improve-

ment in the AF management could reduce significantly the cost burden on the healthcare system [27].
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The primary steps to obtain useful infomation from P-waves are their individual detection and
delineation along the ECG signal. However, the lack of consensus among physicians about the precise
location of P-wave fiducial points hinders this delineation process [28]. Furthermore, this task is
highly time-demanding and requires significant levels of concentration, which makes it tedious and
tiring [29]. Having this in mind, the main motivation of this work is the development of an automatic
method capable of accurately detect and delineate P-waves in the ECG regardless of their morphology,

thus reducing the inherent subjectivity of manual annotations.

1.2 Hypothesis and Main Goal

In recent years, considerable research effort has been directed towards the development of methods
capable of delineating P-waves in the ECG. Numerous P-wave delineators have been developed based
on different mathematical principles [30]. In general, the strategy underlying all these methods consist
of enhancing somehow the waveform pattern of the P-waves to facilitate their delineation. However,
this approach might modify the original morphology, thus compromising the resulted fiducial points
allocation. Thereby, the hypothesis of the present work is that the use of a model of each individual
P-wave to guide its delineation process will allow a more accurate delineation, as it preserves the
original P-waves morphology pattern. In addition, the use of morphological information from already

delineated waveforms might improve the robutness of the delineation algorithm.

Therefore, this Master’s Dissertation is aimed at developing a novel robust algorithm capable of
accurately delineating any kind of P-wave using Gaussian models and hitorical morphological data.
A previous delineation of a gaussian function modeling each P-wave would delimit the region of the
waveform in which the fiducial points are searched. Also, historical morphological information is

taking into account for the delineation , thus improving the accuracy and robustness of the method.

The peformance of this algorithm was compared with other other methods presented in the litera-
ture by taking the manual annotations of a standard ECG database as reference. The strategy followed
migth reduce the delineation error, providing a common and reliable framework that will enhance the
development of diagnosis tools to identify diverse atria phenomena. Consequenly, it might enable the
development of more personalized and effective treatments and, ultimately, might contribute to the

health improvement of people affected by adverse cardiac conditions, such as AF.



1.3 Structure of this document

This document is structured in the following chapters:

o Chapter 2: General Background. This chapter reviews some relevant concepts aimed at

establishing the proper theoretical framework of this Master’s Disertation.

e Chapter 3: Gaussian guided P-wave delineation method. The novel P-wave delineation

method proposed in this work is described in detail in this chapter.

e Chapter 4: Validation Database: QTDB. The characteristics of the standard database used

for the proposed method validation are presented.

e Chapter 5: Results and Discussion The evaluation procedure of the method is described and
the consequent results obtained are shown together with other comparable algorithms. Also,
Several aspects are discussed in this section, such as the assessment of the results obtained and

the main strengths and limitations of the method.

e Chapter 6: Contributions and Future Work. The concluding remarks are exposed, as well

as the main scientific contributions derived from this work and future lines of research.

e Chapter 7: Budget. The costs associated with the development of this Master Dissertation.



Chapter 2

General Background

2.1 Anatomy and Physiology of the Heart

The human heart is a muscle about the size of a fist. It is located in the chest, between the lungs
and above the diaphragm. The heart is in charge of pumping blood through the circulatory system
to the lungs, in order to produce the exchange of gases and, to the whole body, to supply oxygen
and nutrients to the tissues and remove wastes, such as carbon dioxide [31]. In this section, the main

structures of the heart are described and it is explained how it performs electrophysiologically.

2.1.1 Anatomy of the Heart

The heart can be seen as two pumps operating in series, with the pulmonary and systemic circulations
in between [32]. The pulmonary circulation corresponds to the flow of blood within the lungs that
allows the exchange of gases between the blood and alveoli. The systemic circulation is formed
by all blood vessels within and outside the rest of organs in the body, to provide them oxygen and
nutrients and remove carbon dioxide and other wastes [33]. The right atrium receives venous blood,
which is deoxygenated and at low pressures, from the systemic circulation through the superior and
inferior vena cava. After that, the blood moves passively to the right ventricle. The right ventricle
then contracts, pumping the blood into the pulmonary system by way of the pulmonary artery. Next,
the oxygenated blood coming from the lungs enters the left atrium through the pulmonary veins and
then flows to the left ventricle. Finally, this chamber ejects the blood into the aorta by means of its

contraction distributing it at high pressure to the rest of the body tissues [32,33].
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Figure 2.1: Scheme representing the cardiovascular system. Arranged in series, the rigth and left side
of the heart with the pulmonary and systemic circulation between them. Blue: deoxygenated blood;
Red: oxygenated blood. Also main vessels and chambers are labelled [34].

In Figure 2.2, a closer look to the heart structures is shown. The walls of the heart are composed
of cardiac muscle or myocardium. The right atrium is a highly distensible chamber, which allows its
expansion to accommodate the low pressure venous return. On the other hand, the left ventricle has
a thick muscular wall, as high pressure is needed to be produced during its contraction to eject blood
into the systemic arterial system, which is in charge of the distribution of blood at high pressures to the
whole body [33]. Between each atrium and its respective ventricle, there is a valve that prevent blood
from flowing backwards. The names of the atrioventricular (AV) valves are tricuspid and mitral, for
the right and left side of the heart, respectively. The papillary muscles are attached to fibrous strands of
these valves and to the ventricular wall. These connections prevent AV valves from bulging back and
leak blood into the atria [33]. In addition, two more valves can be found in the heart: the semilunar
valves. These structures, pulmonary and aortic valves, receive that name for their crescent-shaped
cups. They separate each ventricle with their corresponding great arteries [32]. Finally, the cardiac

wall that separates both ventricular chambers is called the interventricular septum [33].
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Figure 2.2: Structure of the anatomy of the human heart and associated vessels [35].

2.1.2 Physiology of the Heart

The physiology of the heart may refer to several aspects such as the blood flow or pressure. How-
ever, this work will be centered on the electrical activity of the heart that stimulates the cardiac cells
producing the periodic movement of the muscle. The mechanical activity of the heart is rhythmically
produced following an ordered sequence of chambers contractions. This mechanism is driven by the
electrical stimulation of different cardiac cells areas, allowing an efficient pumping of the blood [32].

The heartbeat is initiated and controlled by certain groups of myocardial cells that are able to
spontaneously generate electrical impulses that are propagated through the cardiac tissue. This ca-
pacity is called automaticity. Normally, the activation starts in the sinoatrial (SA) node, which is
located between the superior vena cava and the right atrium. This region, due to its higher firing rate,
acts as the cardiac pacemaker. The depolarization wave initiated in the SA node propagates, first,
to the right atrium, and then, to the left atrium. After that, the conduction velocity is reduced when
passing through the atrioventricular (AV) node, which gives time to the ventricles to be filled. Next,
the depolarizing wave enters the bundle of His, which is a rapidly conducting structure made up of
Purkinje cells that bifurcates into rigth and left branches (RBB and LBB). These structures reach the
ventricular myocardium rapidly, thus producing a synchronized ventricular activation [7,32]. All the

aforementioned structures within the heart are shown in Figure 2.3.
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Figure 2.3: Representation of the main structures involved in the electrical conduction system of the
heart [35].
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2.2 The Electrocardiogram

The electrocardiogram is the non-invasive representation of the heart’s electrical activity. When car-
diac cells depolarize and repolarize, an electrical current spreads through the tissue. These voltage
variations, caused by the action potentials of the cardiac cells that lead to the contraction of the my-
ocardium, can be measured by surface electrodes [7]. The recorded ECG represents the differences in
potential captured by electrodes to observe the morphology and timing of the heart’s electrical activa-
tion, providing information about the initiation of the electrical impulses, the pathway of the cardiac

muscle depolarization as well as the conduction velocity and rythm [7,32,33].

Einthoven, in the late 19th century, invented the string galvanometer that measured for the first
time the electrical activity of the heart [36]. He also named the deflections observed as P, Q, R, S
and T [32]. These names are mantained still nowadays. In Figure 2.4 a segment of an ECG trace
is shown and one of the repeated waveforms patterns is expanded and labelled showing all relevant
waves, intervals and segments. The P-wave is the first deflection recorded by the ECG and it is
caused by the atrial depolarization. The period of time between the onsets of the P-wave and QRS
complex is called P-R interval and represents the time between the initiations of atrial and ventricular
depolarizations, associated with the time that it takes the expulsion of the remaining blood for the
atria into the ventricles during the AV nodal delay. The QRS complex represents the rapid ventricular
depolarization and the T-wave its repolarization. The isoelectric ST segment is the period between the

end of the QRS complex and the beginning of the T-wave, corresponding with the plateau phase of the
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Figure 2.4: Typical electrocardiogram recording (top). Bellow it, one of the repeated waveforms
patterns enlarged with all deflections and relevant time periods labelled [33].

ventricular action potential. Finally, the QT interval represents the duration of the ventricular action
potential and it extends from the QRS onset to the T-wave offset [32,33].

The wave of depolarization and repolarization can be represented as an electrical vector. Thus,
the magnitude and direction of this vector with respect to the recording electrode will determine the
polarity and amplitude of the corresponding waveform in the ECG [33]. Using different electrodes we
can obtain information about the cardiac vector from different angles. These views of the electrical
activity of the heart are called leads. When the depolarization spreads towards a lead it causes an
upward deflection while when it spreads away from the lead, a downward one [37]. Therefore, the
number and location of the surface electrodes are significant for the ECG interpretation as they can
give us complete information about the sequence of activation of the different parts of the heart. The
standard configuration is called the 12-lead system. It requires 10 electrodes whose positioning is
summarized in Figure 2.5. In this configuration there are three types of ECG leads: Bipolar standard
limb leads, unipolar augmented limb leads and unipolar chest leads. For the monopolar leads, a virtual
electrode called Wilson Central Terminal or WCT is produced by averaging the measurements from

the RA, LA and LL electrodes [33]. How the 12 leads are obtained is shown in Table 2.1.
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Figure 2.5: Electrodes placement for the 12 leads ECG [38].

Type \ Lead \ Calculation
I LA-RA
Standard limb leads I LL-RA
I LL-LA

aVR -(I+1D/2
Augmented limb leads | aVL I-{d172)
aVF I - (1/2)
Vi V1-WCT
V2 V2-WCT
V3 V3-WCT
V4 V4-WCT
V5 V5-WCT
A V6-WCT

Table 2.1: Name and type of the leads of the standard 12-leads system and how they are calculated.

Precordial leads
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2.3 Atrial Fibrillation

As commented in previous sections, the primary pacemaker of the heart is the SA node. Its dis-
charge rate in resting conditions ranges from 60 to 100 times per minute, which defines a normal heart
rate [32]. However, under certain circumstances, the heart beats taking other rhythm different from
the considered normal, this is called arrhythmia. When the heart rate is slower than usual is named
bradycardia and when it is sustained at rates greater than 100 beats per minute, tachycardia. Also,
arrythmias are classified based on the structure involved, the atria or the ventricles [32].

Atrial Fibrillation is the most common sustained arrhythmia. The American College of cardiology
(ACC), American Heart Association (AHA) and European Society of Cardiology (ESC) defined AF
as a supraventricular tachyarrythmia characterized by uncoordinated atrial activation that provoke the
deterioration of the atrial mechanical function [5]. In 2010 it has been estimated that 20.9 million
women and 12.6 million men will be affected by this arrhythmia [5]. However, the prevalence of AF
is believed to be underestimated. Sometimes, this arrhythmia occurs in the absence of symptoms and,
consequently, it is difficult to be detected [1]. Therefore, several factors such an improved AF de-
tection, aging society and favorable environmental conditions for this arrthythmia, lead the developed
world to a situation in which one in four middle-age adult will suffer from AF [5].

AF can be classified based on the presentation, duration and spontaneous termination of the
episodes. Traditionally, five types of AF can be considered: First diagnosed AF, when it has not
been diagnosed before; Paroxysmal AF, when is self-terminating within seven days; Persistent AF,
when the episode lasts more than a week and requires medical intervention to be terminated; Long-
standing persistent AF, when continous AF under a rhythm control strategy lasts for more than a year
and Permanent AF, when the patient and physician decide not to intervene to control the rhythm [5].

The pathophysiological mechanisms of initiation, maintenance and termination of AF are not
completely understood [39]. For the initiation of AF are needed both a trigger and substrate [40].
The triggers are foci that prematurely activates. These groups of cells with abnormal automaticity
are commonly located in some specific atrial structures. The most frequent source of triggers are
the pulmonary veins [41]. The substrate for AF initiation and maintenance is mainly cardiac tissue
with electrical heterogeneity in terms of different refractory periods. This condition is favored by the

phenomena of the atrial electrical and structural remodeling [40].
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Atrial remodeling stands for any persistent alteration of the atrial structure or function [42]. This
concept, introduced by Wijffels and coworkers in the mid nineties, has remarkably broaden our un-
derstanding of AF pathophysiology [43]. They discovered that continuous rapid atrial pacing in the
goat heart model resulted into progressive shortening of the atrial effective refractory period (AERP)
and increased duration of AF. This direct relationship identified between pacing duration and AF
maintenance, led them to enunciate the statament “AF begets AF”, which perfectly defines the pro-
gressiveness of this process [43].

Atrial remodeling during AF and its progressive nature is explained by two major mechanisms,
electrical and structural remodeling [44]. Electrical remodeling of the atria happens in terms of AERP
shortening or rate adaptation loss. Also, this process has been proven to be reversible within a few
days [43]. On the other hand, structural remodeling is more permanent. It is characterized by the
anatomical alteration of cardiomyocites, originating dilated and fibrotic tissues that migth serve as
potential substrate for AF maintenance [45,46].

Several disorders such as heart failure, hypertension, cardiovascular diseases, diabetes, valvular
and ischemic heart disease, among others, may promote these changes in the atria. In addition, as
it was stated before, AF itself can contribute to provoke this atrial remodeling that facilitates the
maintenance of this arrhythmia, worsening its prospect of termination [40].

In general, it is accepted that the mechanism mantaining AF can be a rapid focal ectopic firing
or a reentrant wavelet that can be single and localized or multiple varying in time and space [47,48].
However, several other hypothesis have been proposed, such as the doubled layer hypothesis, multiple
wavelet mechanism, rotors, transmural reentry circuits, etc [40]. In conclusion, there is a controversy
about the main mechanisms responsible of AF and, therefore, still much more research is needed to

fully understand the physiopathology of this arrhythmia.
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2.4 P-wave delineation methods

In previous sections of this work it has been already highlighed the great applicability of P-wave
morphological information in a clinical context. However, the absence of standardized measurement
techniques and quality control assessments represents a major limitation for their adoption as a source
of daily clinical information for decision making [28]. Also, it has been exposed the inconveniences
of manual determination of P-wave morphological characteristics and the resulting need for the devel-
opment of authomatic P-wave delineation methods. However, this is not a simple task, due mainly to
the lack of consensus for the precise location of the initial and final points of this waveform. Conse-
quently, considerable research effort has been directed towards the development of methods capable of
delineating P-waves, either individually or together with other waves within the ECG. Thus, in recent

years many different P-wave delineators have been introduced based on various principles.

Many delineation methods have explored the use of diverse kind of mathematical transforms. This
approach consists in changing the P-waves pattern to ease its delineation. For instance, the discrete
Fourier transform has been applied [49], as well as the discrete cosine transform [50] or the phasor
transform [51]. However, the wavelet transform is currently the most extended strategy for P-wave
delineation. This option operates in a similar way to a filterbank, thus reducing the frequency content
of the signal, which simplifies the waveform pattern and helps its delineation. The use of the wavelet
transform for this purpose was initially proposed in 1995 by Li et al. [52], study that years later
inspired the method presented by Martinez et al. [53]. Other researchers have adopted this approach
for their delineation methods due to the significant noise effect reduction that can be achieved and the

low signal-to-noise ratio that characterize the P-wave [29, 54-56].

Other strategies have been also employed, such as the use of matching templates which correlates
each P-wave signal with known patterns [57], dynamic time warping [58, 59] or probabilistic and
statistical methods, such as hidden Markov models [60, 61] or Bayesian techniques [62]. Additionaly,
the very first relevant method presented for P-wave delineation was based on the differentiation of
the ECG signal. The peaks were identified as zero crossing points and the P-wave onset and offset
were calculated based on a search of points exceeding certain thresholds calculated empirically in
function of the maximum slope of the waveform [63]. The derivative searching approach has been
also explored in [64]. In this case an adaptive threshold was adopted, taking into account the slope

and high frequency noise of the signal. In [65] a methodology based on an adaptive threshold, as well

13



as an adaptive size of search windows for P and T-wave detection, has been proposed.
It should be noted that the novel method presented in this work takes inspiration from this last

strategy, adding new features that will be described in depth in the next chapter.
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Chapter 3

Gaussian guided P-wave delineation

method

The delineation process of the method presented in this Master’s dissertation is in this chapter de-
scribed. First, it will be shown the signal conditioning used and, later, a detailed explanation of the

delineation algorithm itself.

3.1 Preprocessing of the ECG recording

The ECG signal is affected by many external agents that may alter its authentic morphology: muscle
noise, power line interference, electrode contact noise, baseline drift, motion artifacts, etc [8]. There-
fore, it is needed the application of a preliminary step of preprocessing to reduce the influence of this
noise in the signal.

In this initial step the cardiac signal is first resampled up to 1 kHz, if it was not already. This
sampling frequency is considered a “de facto” standard and has been widely recommended for ECG
analysis [8]. Then, the baseline wander is removed from the raw ECG signal through subtracting the
signal envelope [7], and the 60 Hz frequency component corresponding to the powerline interference
is canceled through an adaptive filtering which preserves the spectral content of the ECG signal [66].
After that, high frequency muscle noise content is reduced by using a method based on the wavelet
transform. This kind of filtering have been reported as more respectful with the pattern morphology of

cardiac signals, decreasing the level of noise in the signal [67, 68]. Finally, remaining high frequency
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noise is additionally reduced by applying an 8th order bidirectional Chebyshev low-pass filter with a
70 Hz cut-off frequency [69].

Other published methods [29, 59, 63] present a much more aggressive filtering of the ECG signal.
Probably, this choice is motivated by the usual consideration that the normal P-wave spectral range is
strictly limited to low frequencies (10-15 Hz) [7]. However, it has been demonstrated the existence of
much higher frequency components in the P-wave [7]. This evidence, along with the corresponding
reduction of the transient effects aggravated by the proximity of the QRS complex, motivated the
decision of using a less aggressive filtering.

As a last step of the signal preprocessing, every QRS complex along the ECG recording is located
to have a temporal reference point for the detection of each P-wave on it. For this purpose, R-peaks
are initially detected using two different methods, one of them based on the wavelet transform and
another based on signal derivatives [70]. Results were supervised in order to have a trustworthy R-
peaks detection. It should be noticed that the purpose of this work is the development of a reliable
method for P-wave delineation. Therefore, all this effort oriented to the R-peaks proper location, even

if probably excessive, was dedicated to avoid a final result biased by an error in these peaks detection.

3.2 The proposed algorithm for P-wave delineation

In a normal sinus rhythm ECG recording, it has been assumed certain degree of repetitiveness in the
temporal location and morphology of the P-waves along the signal. Accordingly, in the proposed
method, a record of certain parameters calculated from previously delineated waveforms, is kept. This
information will be used to guide the detection and delineation of following waves. Two of these pa-
rameters are the temporal location of the search window (SW) in which the P-waves are sought, with
respect to the R-peak position, and its length. Also, some morphological parameters are taken into ac-
count, such as the differences in time and amplitude between the P-wave maximum peak and its bound-
aries, and the morphology. To this last respect, four types have been considered: Monophasic Positive
(+), Monophasic Negative (—), Biphasic (positive — negative) and Biphasic (negative — positive).
These adaptive parameters are employed both to make potential decisions during the delineation pro-
cess and to detect possible anomalies in a particular wave morphology. Naturally, these adaptive
parameters have to be initialized. This process will be accomplished in a preliminary phase of initial-

ization in which a reference P-wave is constructed such as described in the next subsection.
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3.2.1 Obtaining the reference P-wave

At this early stage of the delineation process, the signal segments prior to each of the first five R-peaks
detected in the preprocessing step are averaged to create a representative excerpt, such as shown in
Figure 3.1. Thus, the initial values of the aforementioned parameters are obtained from this reference

signal excerpt (RSE).
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Figure 3.1: Representation of five ECG excerpts prior their respective R peaks overlapped (a) and
their average: RSE (b).

The position of the QRS onset in RSE is first estimated. This location has been defined as the
point preceding the R-peak for which the signal slope exceeds a 15% of the maximum slope value for
more than 20 milliseconds. This condition is established as the existence of a resting time between
the P-wave ending point and the QRS onset, in which the signal slope should be significantly smaller,
is known. This outcome is not intended to be the precise location of the QRS onset, but an estimation
of its situation as a safeguard against a potential misclassification of the Q-peak.

Then, the peak of the representative P-wave that is taken as reference is searched. A possible linear
trend in RSE is initially subtracted and then, this peak is sought in a search window extended from
the previously approximated QRS onset position. The searched window length was defined here as
one third of the RR distances median value [65]. The search process is carried out by simply locating
the peak of greater amplitude. This naive approach of detecting P-waves has been recently compared
with other strategies, such as line fitting or wavelet transform, resulting to be more successful [71].
After that, a piece of signal is isolated around the detected peak, corresponding to the reference P-
wave (RPW). Its length was determined as 200 ms, a 33% more of which is considered the width of a
normal P wave (120 ms) on each side. Even though, if the median RR interval value is too long (>900

ms) or too short (<600 ms), the length of RPW is increased or reduced by 20 ms, respectively. In
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addition, this interval is restricted to the right by the estimated position of the QRS onset previously
calculated plus a resting time of 15 ms. In Figure 3.2 it can be observed two examples of RSE, the
detection of the maximum amplitude peak position (a) and around it, the P-wave isolated (b). This
overdone value was chosen to assure a width larger than any possible P-wave morphology [29]. In
addition, the P-wave maximum peak is not always centered, and particularly not in the case of biphasic

waveforms.

a) Peak detection
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Figure 3.2: Sequential description of the classification process of a P-wave, illustrated with by
examples: a) RPW peak and boundaries detection among the RSE, b) isolation of the RPW and c)
decision tree for the P-wave classification itself, with a graphic example of each possible situation.

Once RPW is isolated, the morphological classification process is performed through a decision

tree as illustrated in Figure 3.2. Initially, a first order Gaussian function is generated so that it fits the
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RPW in the best way possible, maximazing the R-squared value. Later, it is evaluated if the fitting is
sufficiently good for P-wave delineation. For this method, the correlation value used to decide if the
fit is good enough or not was heuristically determined to be 0.7. In case the Gaussian function fits the
RPW properly, it is classified as Monophasic Positive. Otherwise, this procedure is repeated from the
beginning with the RPW inverted. The new fit is again assessed and, depending on the success or not,
is classified, respectively, as Monophasic Negative or Biphasic. For the latter case, in which RPW is
labeled as biphasic, it is searched a second peak with reverse polarity than the one previously found.
After that, the RPW is recalculated by centering the middle position between both peaks. After that
a Gaussian model of the waveform is created, increasing the order of the Gaussian function. Initially,
a second order Gaussian function is created. However, it was observed that for some cases this was
not enough to get a proper model. Therefore, in these cases, the use of up to a fourth order Gaussian

function was considered.

3.2.2 Delineation of the reference P-Wave

After the RPW morphology classification, its boundaries are sought. For the delineation process,
the Gaussian function that resulted well fitted to the signal in the preceding step, is first delineated.
However, one characteristic of the Gaussian functions that may differ from a P-wave is its symmetry.
Thus, for an asymmetric P-wave, it will not be possible to obtain a suitable Gaussian model in any
case. Hence, before the delineation is started, a final evaluation of the goodness of fit again through
R-squared value is made in both halves of the waveform. This procedure is shown in Figure 3.3 by
means of an example. Thus, if one of the halves is poorly adapted to the model (or both, as in the case
presented in Figure 3.3) an artificial wave is created by meeting this particular half of wave with itself
mirrored. Later, another Gaussian model of the artificial wave is created and half of it is used for the
delineation. In the case presented in Figure 3.3, it can be observed an improvement in the goodness
of fit after this procedure has been performed. To evaluate the fitting goodness it was used the same
approach explained before.

Then, to carry out the P-wave delineation, the Gaussian model is first differentiated. For each half
of the differentiated waveform, the maximum value is next identified. These are the points in which
the Gaussian function presents their maximum slopes. Later, based on these values, a slope threshold

is calculated. From maximum slope point location to the left or right, depending if the onset or offset
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Figure 3.3: Representation of a P-wave (solid line) and its Gaussian model (dotted Line) bad fitted
because of its asymmetry and the creation of two artificial waveforms by meeting each half of it, a)

and b), with their respective mirrored versions, a’) and b’), to obtain better Gaussian fits in both cases.
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of the wave is being searched, respectively, the first slope value to exceed the slope threshold is labeled

as the fiducial point sought [63].

To determine the function that defines the threshold in each case, it is necessary to know the
relationship between the maximum slope of a waveform and the slope value in the position where
the corresponding fiducial point is located. To find this relation the boundaries from 60 P-waves were
manually annotated by two expert physicians. The slope values of each waveform in these points were
obtained and plotted against their corresponding maximum slopes, thus resulting in the graph shown
in Figure 3.4. Then, the best fit, minimizing the least squares sum, was sought by testing different
kind of functions such as linear, logarithmic, exponential, etc. Finally, the rational function presented
in equation (3.1) and shown in Figure 3.4, resulted to be the best fit, with an R-square score of 0.815.

The function obtained mathematically defines the slope threshold.
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Figure 3.4: Relationship between the slope values in the annotated points (onset and offset) and their
respective maximum slopes in 60 different P-waves. The black solid line shows the best possible fit
determined by equation (3.1).
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After the Gaussian model has been delineated, the same delineation process is repeated with the
real P-wave. However, in this case the area in which fiducial points are searched is restricted to the
vicinity of its counterparts in the Gaussian model. These restricted intervals centered on the onset and
offset positions of the Gaussian function are indicated as shaded areas in Figure 3.5. The width of these
regions around each fiducial point depends on the goodness of the Gaussian fit. Thus, Figure 3.5 shows
how this interval is greater in the left half of the waveform as its Gaussian fits worsens. Specificaly,

the width was determined depending on the Pearson correlation coefficient as shows Table 3.1.

Finally, when the boundaries of the RPW have been determined, they will be used to define the

length of the search window for the coming delineation.

From representative P-wave already delineated, information is also obtained as reference to ease

the delineation of every individual P-wave. More preciesly, differences in time and amplitude between
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Pearson correlation coefficient (PCC) ‘ Search window width

PCC > 0.995 10 ms
0.995 > PCC > 0.993 16 ms
0.993 > PCC > 0.99 20 ms

0.99 > PCC > 0.95 40 ms

PCC < 0.95 50 ms

Table 3.1: Searching window width with respect to the Pearson correlation coefficient.

the maximum peak of the waveform and its boundaries, the approximated position of the wave with
respect to the R peak, the width of the search window, the waveform morphology and some starting

coefficients for the Gaussian fit.

3.2.3 Individualized P-wave delineation

With all the information obtained from the previously exposed initialization step, all P-waves are
individually detected in the already defined search window (SW) prior to their corresponding R-peaks.
Initially, the P-wave peak is detected and checked if it is centered on the SW. So, if the waveform peak
is not located in the central 30% of the SW, its position is readjusted by sliding it to center the peak
location within the SW.

The delineation method is mostly the same as the applied before to the RPW, but with just slight
differences that are detailed below. The main drawback in this case is the possible existence of more
than one candidate for fiducial point. This may occur because the morphology of the P-waves found
could be more complex than the one created during the initialization stage. Thus, there could be found
multiple points meeting the requirements to be considered onset or offset of the waveform. This is
shown in Figure 3.6, where a P-wave with three offset candidates is presented. The final decision is
based on the aforementioned morphology parameters. Thus, in Figure 3.6 option c) would be first
discarded as it is not within the restricted interval for fiducial points searching. Finally, between the
two remaining options, a) would be selected as it is closer to the point determined by the morphology
parameters calculated based on previously delineated waveforms.

Moreover, after each P-wave is delineated, previously mentioned parameters are recalculated tak-
ing into account the new information obtained from this new waveform. Specifically, new parameters
have an influence ratio of a 20% over the existing ones. This weight was chosen to be consequent with

the five waveforms taken for the initialization stage. Before updating each parameter, the difference
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Figure 3.5: The onset and offset positions of the Gaussian wave are marked with asterisks and also,
around them, a gray area representing the time interval in which the fiducial points can be sought in
the real signal. In the bottom, the same P-wave is represented with their fiducial points positions

highlighted the gray region.

with respect to the current value is checked. In case the variation is greater than 25%, the wave is

labeled as abnormal and the parameter is not updated.
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Figure 3.6: An example of a P-wave (solid line) and its model Gaussian function (dotted line) in
which, on the right side, there are shown with gray asterisks three candidates to be the offset of the
waveform represented by different figures. Also the boundaries of the Gaussian waveform (black
asterisks) and a representation of the parameters used for the candidates selection (distance in time
and amplitude between the peak and the offset calculated by taking into account previous waveform
morphologies) are shown.
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Chapter 4

Validation Database: QTDB

To evaluate the performance of an algorithm, an enviroment for testing as realistic as possible is
required. More specifically, a wide variety of signals from the real world, before being implemented
in a clinical context, are needed [7].

The availability of public and freely accesible databases for this process might enable the devel-
opment of reliable algorithms, as well as fair comparisons among all developed methods. Since there
are several databases to validate the fiducial points delineation in the ECG, first, the characteristics of

all of them are reviewed. After that, the one selected for this study is described in detail.

4.1 Available databases for validation of P-wave delineators
For this work we have reviewed the characteristics of the most relevant ECG databases:

e MIT-BIH arrhythmia database [72]: It was the first compilation of standard ECG recordings
available for the public domain. It was created by the Arrhythmia Laboratory of Beth Israel
Hospital in Boston in the 1970’s to allow the evaluation of arrhythmia detectors and the com-
parison between the different algorithms. The database contains 48 two-channel holter ECG
excerpts of 30 minutes each selected specifically to include anomalous but clinically relevant
arrhythmias. Initially, only the QRS complexes were automatically annotated with the later
supervision and correction of expert cardiologists who also labelled abnormal beats and catego-
rized the rhythm and signals quality. However, in 2015 Elgendi et al. provided P and T wave

peak manual annotation for one of the channels of the MIT-BIH Arrhythmia Database [73].
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e AHA database: This long-term ECG database was created at the Washington University in
St. Louis by a group headed by G. Charles Oliver for the evaluation of Ventricular Arrthythmia
detectors during the late 1970’s and early 1980’s. It contains 80 two-channel holter recordings
of 35 minutes each. The recordings are annotated beat-by-beat. However, this database is not

freely available.

e European ST-T database [74]: This database was born in response to the growing interest
in the analysis of ST-T meassurements as indicative of myocardial ischemia. It was designed
at the CNR Institute for Clinical Physiology in Pisa and contains 90 two-hour excerpts of two-
channel long-term ECG recordings. The leads recorded were placed on non necessarily standard
locations in the chest, where it was considered most likely ST-T changes to be revealed. Car-
diologists added annotations of the QRS complexes and beat types, episodes of change in ST
segment or T wave morphology and their onset, peak and offset. Also changes in the rhythm

and signal quality were labelled.

o CSE multilead measurement database (CSEDB) [75]: This database includes 250 recordings
of 10 seconds each with the 12 standard leads and the Frank’s leads X, Y and Z data. It also
provides annotations for the onset and offset of the P, QRS and T wave. The annotations were
obtained by five referee cardiologists and 11 different programs. However, the experts just
analyzed some of the samples of the multilead library and those in which the results of different
programs were far from the median value, resulting that just a few number of beats (32) were

manually annotated. In addition this database is not public.

e Chinese Cardiovascular Disease Database (CCDD) [76]: This standard 12 leads ECG database
contains up to 1250 annotated recordings. The annotations, including onset and offset of P-
QRS-T vawes, morphology features and beat diagnosis, were made by two expert physicians.

This database is freely available.

4.2 The QT database

Despite all the options described above, in this work, the standard database selected for validation
purposes was the QT Database (QTDB), which is freely available at Physionet [77]. The QT Database

[77] has been adopted by the scientific community as the reference database for the validation of
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numerous delineation algorithms due to the wide variety of QRS, T and P wave morphologies that
it contains and, because there is hardly any freely available alternative that presents a great number
of boundary annotations made manually by experts physicians. More specifically, the vast majority
of P-wave delineation methods published has taken this database as reference for validation purposes.
This is due to the wide variety of P-wave morphologies that it presents, with manual annotations of the
onset, offset and peak of more than 3000 different waveforms from recordings specifically selected
to reflect the real world variability [77]. The QTDB contains 105 fifteen-minutes two leads ECG
recordings sampled at 250 Hz. It was designed to help to evaluate the performance of automatic ECG
waveforms duration measurement methods, and especially the QT interval [77]. The origin of these
recordings are other existing databases such as the MIT-BIH Arrhythmia Database, the European
ST-T Database and other ECG databases collected at Bostons’s Beth Israel Hospital [77]. It also
contains manual annotations made by expert physicians in at least 30 beats per recording, determining
the timing of different fiducial points of the P, QRS, T and U waves. The beats annotated were
specifically selected to represent the dominant morphology of the signal and the annotation procedure
was performed at full scope. For this strategy, a common location for each fiducial point in all leads
presented, is determined.

In the QTDB two sets of annotations can be found. Each one of these was provided by a different
cardiologist. However, only one of them has been used in this work as it contains a considerably
greater number of annotated waveforms. In Figure 4.1 two consecutive manually annotated P-waves
from the QTDB are shown. Specifically, both channels of the 19" and 20" annotated beats from the

recording called sell 17 are displayed.

4.2.1 Analysis of the quality of the QTDB manual annotations

To decide the precise location of P-wave boundaries there is no clear and unique criterion in the
scientific community. Therefore, since there is no gold standard, it is difficult to determine whether
an annotation is sufficiently accurate or not. However, the error in the location of the onset and offset
of a waveform is perfectly obvious in some cases. In Figure 4.1 it can be easily appreciated how the
P-wave offset of the second beat is far from the intuitive area in which the end of the waveform should
be located. Note that the defective annotation is apreciated in both channels. This is relevant as no

information was provided about which one was used for the manual annotation process.
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Figure 4.1: Two consecutive P-waves manually annotated from the QTDB.

Apart from the annotation criteria, signal noise can also affect the quality of the annotation. In

Figure 4.2 two annotated P-waves from different recordings are shown prior and after reducing the

noise level on them. Specificaly, the 30" annotated beat form sel230 recording and the 5" annotated

beat from sele0211 recording. It can be observed how the P-waves boundaries accuracy is reduced

when the noise level in the signal is reduced. Note that the QTDB recordings manual delineation was

performed whithout applying any denoising algorithm.
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Chapter 5

Results and Discussion

5.1 Results

5.1.1 Assessment of P-wave delineation

The detection performance of the proposed method has been evaluated by means of the Sensitivity
(Se). This parameter indicates the percentage of events properly detected. The mathematical definition

of this statistical measurement is described as:

TP

where TP refers to true positives detections and FN to false negative detections.

To determine a missed detection a temporal window centered within the reference point should be
defined. Some studies such as [78] or [61] have used a window length of 150 ms, value in accordance
with the ANSI/AAMI-EC57:1998 standard [79]. Others have adopted a less demanding value such as
170 ms [80] or 320 ms [81] and many others do not specify this information [53,63]. For this work a

more strict value of 80 ms has been selected.

The error committed for each automatic annotation is calculated as the time difference with re-
spect to the Cardiologists’ one. Thus, to asses the proposed delineation algorithm, a global score is
determined in terms of the average value of the error (1) and its standard deviation (o) measured in

milliseconds (ms), such as in previous works.
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5.1.2 Results for P-wave delineation

In Table 5.1 are shown the proposed method results. For comparison, the results reported from other
relevant studies that have presented their delineation results for all fiducial points considered in this
work, using more than 3000 beats from the QTDB, are shown. In addition, in the last row it has been
included the acceptable ¢ error for each fiducial point with respect to manual annotations defined
by the CSE Working Party [82]. This group stablished a set of recomendations with the objective of
standarizing electrocardiographic measurements. Among them, a set of values of acceptable tolerance
limits for the standard deviation of the annotation diferences from the reference for several ECG
fiducial points, were listed.

Specifically, for P-wave onset and offset, standard acceptable o error tolerances of 10.2 and 12.7
ms, were provided respectively. Actually, different tolerances values depending on the specific lead
used for the delineation process were defined. However, in this case the average value was selected as

no information was provided about the specific lead used for each QTDB recording.

Methods ‘ Validation Parameters ‘ Pon ‘ PpeEak Pogr
. Se(%) 100 100 100
Th h
is method L+ o(ms) 47496 | 2.8+6.7 0.649.8
Martinez Se(%) 98.65 98.65 98.65
etal. [51] L=+ 6 (ms) 264145 | 324257 | 07+147
Martinez Se(%) 98.87 98.87 98.87
etal. [53] 1+ G(ms) 204148 | 364132 | 19+128
Laguna Se(%) 97.7 97.7 97.7
et al. [63] 1=+ 6 (ms) 144133 | 484106 | —0.14+12.3
. Se((%) 99.87 99.87 99.91
R 1.
incon et al. [83] 1+ G(ms) 8.60+11.20 | 10.1048.90 | 0.90+10.10
. Se((%) 89.93 98.93 98.93
Lin et al. [62
in et al. [62] 1= G (ms) 3.704+17.30 | 4.1048.60 | -3.10+15.10
CSE Working group [82] 20(ms) 10.2 - 12.7

Table 5.1: Comparison of the delineation performance of some of the most relevant P-wave delineation
methods in the literature by means of three Validation Parameters making use of the QTDB.

The results of this method exposed above were obtained using a total of 3176 beats from 96 of
the 2-leads ECG recordings from the QTDB. From the original set of 105 recordings, 7 of them
(sell02, sel221, sel232, sel310, sel36, sel37, sel50) were excluded as no P-wave manual annotation
was provided. Also recordings sell04 and se/36 were not delineated as they did not present a minimum

of three consecutive annotated P-waves.
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Additionally, the method was applied to the original set of recordings, without reducing the noise
on them, to quantify the effect of noise in the manual annotations. The overall result was worse.
However, for some recordings, results showed a better performance with the noisy ECG recordings.
Specifically, the improvemt in terms of average absolute error with respect to the manual annotations
with noise was achieved for P-wave onset, P-wave peak and P-wave offset in the 45.83%, 57.29% and

56.25% of the recordings, respectively.

5.2 Discussion

5.2.1 Results assessment

The delineation result on the QTDB recordings has demonstrated that the proposed method provides
a good solution for the accurate delineation of a wide variety of different P-waves morphologies.
Specifically, for this work, more than 3000 waveforms from 96 different manually annotated record-
ings specifically selected to reflect the real world variability has been used. In Table 5.1 apart from the
delineation results achieved by the proposed method, other results from relevant delineation methods
are shown. In the comparison with them it can be observed how this method outperforms the others
in terms of standard deviation and sensitivity. Moreover, the results of standard deviation obtained are
also below the acceptable tolerance limits established by the CSE working group for both P-wave on-
set and offset, also shown in Table 5.1. On the other hand, the average error obtained is in some cases
slightly worse in comparison with other methods. However, this worsening can not be considered
particularly significant, since results can benefit from the compensation between earlier and later de-
tections with respect to the manual reference. This limitation could be easily overcome if the absolute
difference between the automatic and manual annotation were considered as the standard validation
parameter instead. However, to allow a fair comparison with other P-wave delineation methods it has

been used a validation procedure in the same standard terms.

5.2.2 Selection of other P-wave delineation methods for comparison

For the result comparison, there have been selected among all delineation methods presented in the
literature, some of the most relevant. They have been selected to represent the wide variety of strategies

employed for P-wave delineation. For instance, from the whole collection of methods making use of
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the wavelet transform, Martinez et al. [53] has been selected as it is the most recognized one. However,
the wavelet transform has an intrinsic loss of time resolution in the growing scales [84] that might be a
decisive drawback for its use in ECG waveform delineation, as well as the high requirements of time
and cost that has to be satisfied due to the great amount of calculations needed [85]. The time demand
and computational cost is also one of the main disadvantage for the use of statistical and probabilistic
methods such as [58,62], which in some cases even need a previous training step. Some other methods
have not been included in the comparison because the lack of information about some of the fiducial
points considered for this work [29, 61] or due to the reduced number of beats processed [59]. Also,
some other methods have not provided any validation result [49, 60].

In a recent paper [30], a comparison between some of the aforementioned algorithms for ECG de-
lineation has been published, assessing their performance by comparing the self-obtained delineation
results of each one with the manual annotations of the QTDB. However, the results that are shown for
each method are, at least, debatable, as in some cases the exact reproducibility of the algorithms might

be impractical due to the lack of some explicit details.

5.2.3 Method improvements

The first meaningful difference between the delineation algorithm presented in this work and others
is the high frequency denoising technique applied. Most methods in the literature [29, 59, 63] present
a much more aggressive filtering of the ECG signal due to the usual consideration that the normal
P-wave spectral characteristic to be limited to low frequencies (10-15 Hz) [7]. Howeyver, it has been
demonstrated the existence of much higher frequency components in the P-wave [7]. Also, some
studies have emphasized the major role that P-wave higher frequency components play when an AF
episode approaches [86], which seems to be particularly relevant for this work purpose. This evidence,
together with the consequent reduction of the transient effects aggravated by the proximity of the QRS
complex, guided the decision of applying a smoother filtering approach.

Some novel strategies had to be implemented in order to perform an accurate delineation of wave-
forms with a more authentic, and consequently complex, morphology, due to the aforementioned
less aggressive filtering. The Gaussian modeling of each P-wave and its subsequent delineation has
demostrated to be fairly helpful for guiding the process of locating the boundaries in the original wave-

form. Also, the morphological information tracking makes the method more robust and consistent.
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Another virtue of this method is its simplicity. It does not require a complex mathematical trans-
formation of the signal pattern to locate the fiducial points, like others do [51,53]. This characteristic
makes the method more intuitive and closer to the way of thinking of physicians when delineating
ECGs. Therefore, this allows them to take part in decisions about the development of the method

itself, as well as possible future improvements.

Also, the novel features introduced as the use of information about previously processed wave-
forms to guide the delineation of the new ones, allows the monitoring of the morphology trend of the
P-waves along the recording. This control over the evolution of the morphological characteristics of
these waveforms responds appropriately to the need of detecting changes produced in the signal, as a
reflection of possible alteration of the conduction properties of the atria. In addition, the strategy of
controlled update of parameters adopted, supports the detection of both progressive changes in P-wave

morphology and individual abnormal waveforms.

5.2.4 Criticism of the validation database

One limitation of the presented study is the use of only one annotated database to assess the perfor-
mance of the proposed method. There are other standard databases containing manual annotation on
the P-waves limits, as it was already exposed. Among all those enunced, some were freely available
databases, such as the CSEDB [75], which comparatively has a reduced number of P-wave boundaries
manual annotations, and the CCDD [76]. These followed the same full-scope annotation than the
QTDB. This manual annotation stategy consists in selecting a common point for all leads in sigth. For
mono-channel delineation algorithms, such as the presented in this work, this is a major drawback, as
no information is provided about which particular wave was taken into account for each annotation
and the waveform limits may differ depending on the lead taken into account. So, for the CSEDB and
CCDD this handicap gets worse as more leads are provided. In addition, the QTDB has been taken as
reference by most P-wave delineation methods, so its use allows a fair performance comparison with
them [30].

However, the accuracy of part of the manual annotations in this database have been questioned,
specially in those recordings with a lower signal-to-noise ratio (SNR) [29]. The improvement that
have been achieved in some recordings when the delineation method was applied without the signal

conditioning phase reflects the importance that had noise in the annotation procedure. In addition,
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also unclear annotation criteria and significant inaccuracy in the location of boundaries of part of the
QTDB P-waves reduce the reliability of the delineation results presented by any algorithm. Even,
they could have been developed ad hoc and benefit from theses inaccurate annotations [87]. As this
fact resulted to be critical for the annotations quality, an alternative accurately annotated database as

standard reference for the evaluation of P-wave delineation methods is needed [87].

36



Chapter 6

Conclusion, Contribution and Future

Work

6.1 Conclusion

In this Master’s dissertation a novel P-wave delineation method for single-lead ECG signal has been
developed and presented. It is based on the differentiation of the signal and novel features have been
introduced such as the use of Gaussian models of the P-wave to assist the delineation process and
the use of information about the morphology and location of previously delineated waveforms as
an aid for the delineation of every coming P-wave. All these added innovations have been decisive
to obtain delineation results with respect to a standard annotated reference database that outperform
other published methods. In addition, it is a robust method able to quickly adapt to P-waves with
changing morphologies as well to detect anomalous events. Therefore, this method is presented as a
valuable tool for the identification of abnormal conduction phenomena in the atria, whether produced

progressively or in isolated cases.

6.2 Contributions

The strong interest this algorithm may arouse has led to its presentation to the scientific community.
To this respect, several contributions related to this delineation method have been submitted, accepted

and presented in national and international conferences. Not only the introduction of the delineation
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method itself but also other related works such as an extensive criticism to the manual annotations of

the standard QT database have been presented. All these conference papers are listed:

International Conference Papers

e Gonzilez F., Alcaraz R., Rieta JJ. “Electrocardiographic P-wave Delineation Based on Adap-
tive Slope Gaussian Detection”. In Computing in Cardiology Conference (CinC 2017, Rennes

24-27th Sep., France), IEEE, 2017; [88]

e Gonzilez F., Alcaraz R., Rieta JI. “The physionet QT database: Study on the reliability of P-
wave manual annotations under noisy recordings”. In Computing in Cardiology Conference

(CinC 2017, Rennes 24-27th Sep., France), IEEE, 2017; [87]

National Conference Papers

e Gonzilez F., Alcaraz R., Rieta JJ. “Método para la Delineacion de Ondas P en el ECG Basado
en Modelado Gaussiano”. In Congreso de la Sociedad Espaiiola de Ingenieia Biomédica (CA-

SEIB 2017, Bilbao 29th Nov-1st Dec., Spain), 2017;

e Gonzalez F., Alcaraz R., Rieta JJ. “Estudio Sobre la Fiabilidad de las Anotaciones en la Base
de Datos QT de Physionet”. In Congreso de la Sociedad Espafiola de Ingenieia Biomédica

(CASEIB 2017, Bilbao 29th Nov-1st Dec., Spain), 2017;

These scientific publications can be found at the end of this document in the Apendix section.

6.3 Future work

As commented in the discussion section, due to severals characteristics such as its mathematical sim-
plicity or its adaptive feature, the method presented has a lot of potential for new applications and
improvements. First, the aim of this method is to identify a correlation between the progressive ad-
vance of cardiac remodeling prior AF with an evoluction of the P-wave morphology. To this respect,
the proposed method already keep track of certain morphological parameters used during the delin-
eation process. However, still more morphological information could be extracted from the P-waves

and infere the atrial transformation, either to prevent the occurence of an AF episode or evaluate the
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need for a clinical action. Nowadays, taking into account the revolution that represents for research
the complex statistical analysis, an increase of the parameters studied might be potentially decisive.

This method was intended for single-lead ECG signal processing. Therefore, one possible im-
provement is to include more leads in the delineation process. This multi-lead algorithm could be
addressed so that all leads were treated individually and the resulting information is combined. In
addition, this approach would improve the method robustness since for some leads the P-waves are
poorly defined, wich is a limitation for their delineation [89].

In conclusion, the presumed next step, apart from the always possible improvements in the per-
formance of the method, is its application in a real clinical context, with signals collected from real

patients suffering from atrial remodeling.
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Chapter 7

Budget

In Table 7.1, costs associated with this Master Dissertation development are summarized and pre-

sented, with taxes included. In Tables 7.2, 7.3 and 7.4, the project budjet is presented in detail, broken

down into categories of expediture: personal, hardware and software costs, respectively.

Budget summary (taxes included)

Personal costs 41235 €

Software costs 363 €

Hardware costs 864 €
Total costs 42462 €

Table 7.1: Budget summary

Note that other costs indirectly associated to this Master Dissertation, such as subcriptions to

scientific journals and work facilities amortization, have not been included in this budget analysis due

to the difficulty of stimating these costs. Also, conferences attendace costs have not been included

since it has been considered more associated with the diffusion of the presented work rather than its

development.

41



$1S00 91eM1JOS L 9[qRL

3198 [woqng
3 19.60¢ SoX®) JNOYIIM [810IQNS
< ] OId OT SAOPUTA}
3 6SC 3 6¢.PS 3 19.70¢C TeaA Jopul = 19.%0¢C 1JOSOIIN SO
€09 oI 00¢ ARV | Jopuy 000¢C (Sosua21 )
> > > > BO10C dVIILVIA
s0)) 9[qeadiey) 1110, | (9%17) soxelL (S9xe) Jn00yIM) pouad osy | porrad uonezniowry (saxe1 Jnogim) weisoig
1500219 180D 9[qeasdieyD : : A 1S00 9SUAI]
$100 aIeMpIRH
S1S00 QIempIeH €'/ 9[qeL
3 €9¢ [eroiqng
3 00¢ SOX®1 INOYIIM [810IQNS
3 €9¢ 3¢€9 3 00¢ Teok | s1eak ¢ 30081 Toindwo)) [euosiog
S0 9[qeasie ©10 %17) Soxe (S9xe) JnooyIm) orrad as ourad uonezniour (S9xe) JnogIIM) uondriosa
180D 9[1q YD 1810l | (%1T L 1507 9[qeasIey ) pot 1 | pol neznowy 1500 Juowrdinbg ndr d
$100 aIeMpICH
$1S00 [BUOSIO :7'L 9[qBL
3 CeCly [eroiqng
= 0000€ 997 s, 10Ao1dure 1noym [er101qnS
35 CeCly 5 GeCll 3 0000¢€ 4/ 0y JOSL IoouIguy [eorpaworg
180D 12101, | (%St .LE) 99] S Iokojdurg | (997 s 10ko1dwo Jnoyim) 1500y | U 194 1S0)) | SuIL], Inoqe J[yoig
$100 [RUOSIO]

42



Glossary of Terms

AF: Atrial Fibrillation

ECG: Electrocardiogram

SNR: Signal to Noise Ratio

AV: Atrioventricular

SA: Sinoatrial

RBB: Rigth Bundle Branch

LBB: Left Bundle Branch

WCT: Wilson Central Terminal

ACC: American College of Cardiology
AHA: American Heart Association

ESC: European Society of Cardiology
AERP: Atrial Effective Refractory Period
SW: Search Window

RSE: Reference Signal Excerpt

RPW: Reference P-Wave

CSEDB: CSE multilead measurement Database
CCDD: Chinese Cardiovascular Disease Database
QTDB: QT Database

Se: Sensitivity

TP: True Positive

FN: False Negative

CincC: Computing in Cardiology Conference

CASEIB: Congreso Anual de la Sociedad Espaiiola de Ingenieria Bimomédica
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Abstract

The study of the P-wave on the electrocardiogram is es-
sential in the characterization of atrial conduction defects
that may anticipate cardiac pathologies, such as atrial fib-
rillation. This evidence exhibits the need to develop re-
liable methods for accurate automatic delineation of P-
waves. Many different strategies for delineating P-waves
have been introduced. Nonetheless, they all share the same
principle of smoothing aggressively the P-wave pattern to
facilitate its delineation. However, that strategy may pro-
voke morphological alterations in the P-wave under study
that could lead to inaccurate delineation. Alternatively,
the present work introduces a new delineation strategy
grounded on the generation of a Gaussian model of the P-
wave under study to assist its delineation and an adaptive
slope threshold that takes into account the morphology of
the preceding P-waves. The method was validated using
the annotated QT database from Physionet. Delineation
results provided a detection sensitivity of 100%, whereas
the mean and standard deviation of the delineation error
for the P-wave onset, peak and offset were 4.71 £ 9.59 ms,
2.82 £ 6.69 ms and 0.6 £ 9.79 ms, respectively. These re-
sults demonstrate that the proposed strategy provides ac-
curate delineation of P-waves that outperforms others pre-
sented in the literature, in particular in terms of stability.

1. Introduction

The P-wave on the electrocardiogram (ECG) represents
the electrical activity of the atria and is considered the most
reliable non-invasive source of information about atrial
conduction [1]. Some morphology characteristics of the P-
wave such as its maximum duration or dispersion, among
others, have been associated to a higher recurrence and in-
cidence of Atrial Fibrillation (AF), the most common ar-
rhythmia [2]. However, the extraction of information as
the boundaries of these waveforms is a complex task due
to the absence of standard measurement techniques [2] and

Page 1

the lack of a consensus about the precise definition of the
location of these points in the ECG signal. Moreover, man-
ual delineation is a time consuming task with inaccurate
results that may vary significantly as a function of the ex-
perience and/or fatigue of the physician as well as the pres-
ence of noise within the signal [3]. Consequently, this fact
has motivated the development of a wide variety of auto-
matic P-wave delineation methods based on different prin-
ciples. The strategies followed by them range from the
use of mathematical tranforms as the phasor transform [4]
or the wavelet transform [3, 5] to the differentiation of the
ECG signal [6], among others.

The method proposed in this study is based on the dif-
ferentiation of the signal as proposed by Laguna et al. [6],
but with decisive differences as the calculation of an adap-
tive slope threshold that takes into account the morpholog-
ical characteristics of the preceding P-waves and the cre-
ation of a Gaussian model of every P-wave to assists its
delineation. In this way, it has been designed an algorithm
capable of detecting and delineating accurately a wide va-
riety of P-wave shapes which, in addition, is more respect-
ful with the morphology of the waveforms and more stable
than other methods presented in the literature.

2. Methods

2.1. Dataset and preprocessing

For validation purpose in this study it has been used the
standard QT Database (QTDB) [7]. This database contains
105 fifteen-minutes two leads ECG recordings collected
from other existing databases with at least 30 manually an-
notated beats per recording. This database has been cho-
sen as the reference for other P-wave delineator develop-
ers for presenting a wide variety of P-wave morphologies
and being almost the only free available standard database
that contains manual P-wave boundaries annotations. Even
though, the lack of accuracy of these annotations, declared
as performed at full scope of the two available leads, has
been questioned in several previous studies. One recent
example can be found in [3].
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Before the proposed delineation method is applied, the
input ECG must be properly conditioned. Initially, the sig-
nal is resampled up to 1 kHz, the base line is eliminated by
subtracting the signal envelope and the power line inter-
ference frequency component is removed through adaptive
filtering. Later, the high frequency muscle noise is reduced
first by applying a wavelet-based method and a bidirec-
tional low-pass filter. The cut-off frequency selected was
70 Hz, a less aggressive filtering than other comparable
methods [3, 6]. This option responds to the demonstrated
existence of much higher frequency components in the P-
wave than the usually considered [8] and a reduction in
the transient effect produced by the proximity of the QRS
complex. The last step of the preprocessing is a supervised
location of the R-peaks within the signal [9].

2.2.  Delineation algorithm

In the proposed method, each P-wave is not delineated
independently. Instead of that, certain parameters calcu-
lated from previously delineated waveforms are used as
previous information to guide the location of the fiducial
points within a P-wave. Consequently, an initialization
step is needed at the beginning of the delineation process
in which these parameters are obtained from a reference
P-wave, which construction is described next.

2.3. Reference P-wave construction

Initially, signal segments prior to the first five R-peaks
previously detected are averaged to create a reference seg-
ment of the signal. From this, the QRS onset is estimated
first and then, prior that point, in a search window of length
equal to one third of the median RR distances, the peak
with greater amplitude is sought. This point is labelled as
the reference P-wave peak. Around that position, a seg-
ment of 180 ms in length is isolated, and will serve as the
reference P-wave. Extraordinarily, if the median RR in-
terval is too long (>900 ms) or too short (<600 ms) this
length is increased or reduced by 20 ms, respectively.

This constructed P-wave might be first categorized as
monophasic positive, monophasic negative or biphasic
(positive—negative or negative—positive). To do so, a de-
cision algorithm is performed as follows. First, a Gaussian
function is generated so that it fits the P-wave in the best
way possible. If the fit is good enough, statement that for
this method is translated as a Pearson correlation coeffi-
cient greater than 0.7, the waveform is determined to be
monophasic positive. Otherwise, the procedure is repeated
with the P-wave inverted. In case a proper fit is obtained
now, the waveform is classified as monophasic negative.
Finally, in case of a new mismatch the waveform is clas-
sified as biphasic. For this latter case, the two peaks of
the biphasic P-wave are sought forward and backward and

the P-wave window is recentered to fit the biphasic mor-
phology. Furthermore, a new Gaussian model to better fit
the biphasic wave is created by increasing the order of the
Gaussian function. This order is augmented until a Pearson
correlation between the P-wave and the Gaussian function
higher than 0.7 is reached.

It might be noticed that some P-waves can be asymmet-
rical. In those cases the Gaussian model will not fit ac-
ceptably in any case, which may compromise the delin-
eation performance. When this occur, each half of the P-
wave is delineated independently by constructing two arti-
ficial waveforms. This is done by meeting both halves with
themselves mirrored. Then the delineation of just one half
of those artificial waveforms is carried out, as they were
distinct P-waves.

To determine the boundaries of the waveform, the Gaus-
sian function is differentiated first and then, the maximum
values in each half of the wave are identified, which are
the points in which the Gaussian function presents its max-
imum slopes. Later, based on those values, a slope thresh-
old is calculated and the boundaries of the waveform are
determined as the points in which the threshold is ex-
ceeded. To determine the mathematical relationship be-
tween the maximum slope of a waveform and the slope
in its boundaries in each case, a total of 60 P-waves were
manually delineated by two expert physicians. Thus, this
relationship was plotted and the function that resulted to be
the best fit, with an R-square score of 0.815, was simplified
to obtain the following equation defining the threshold:

0.0058 - z
Thiz) = —22 %
(@) = ooz

where x stands for the waveform maximum slope.

After the Gaussian function has been delineated, the
process is repeated with the real P-wave, but restricting
the search area for each fiducial point to the vicinity of
their position in the model wave. Figure 1 plots an exam-
ple of this situation in which these intervals are colored in
gray. The width of the regions around each fiducial point
depends on the goodness of the Gaussian fit. Thus, Fig-
ure 1 shows how the area around the offset of the Gaussian
model is wider (see offset of this P-wave) as the fit is worse
in that half of the wave.

In summary, from the representative P-wave already de-
lineated, the following information is obtained: differences
in time and amplitude between the maximum peak of the
waveform and its boundaries, the approximated position of
the wave with respect to the R-peak, the width of the search
window (defined as the width of the waveform, widened a
quarter of it on each side), the type of the waveform mor-
phology and some starting coefficients for the Gaussian fit.
All this knowledge about the morphology of the P-wave
taken as reference will be used to ease the delineation of
the P-waves individually.

ey
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Figure 1. Real P-wave (solid line) and its Gaussian model
(dotted line). (a) The detected boundaries on the Gaussian
waveform are indicated as black asterisks. The fiducial
points search interval is shaded in grey around them. Ref-
erence distances in time and amplitude between the peak
and the offset computed by taking into account previous
waveform morphologies are also displayed. (b) Enlarged
beginning with a grey asterisk detected in the real wave as
candidate for P-wave onset. (c) Enlarged wave end with
different grey shapes are the candidates for P-wave offset.

2.4. Individualized P-wave delineation

With all the information obtained from the initialization
step, every P-wave is detected in its corresponding search
window prior to the R-peak. The delineation method is
basically in the same as described before for the reference
P-wave. The only difference is the possible existence of
more than one fiducial point candidate. In that case, the
final decision is based on the morphology parameters that
were calculated during the initialization phase. This cir-
cumstance is also illustrated in Figure 1.c, where three off-
set candidates are represented as different grey geometric
figures. First, the triangle option would be discarded as it is
outside the restricted interval. And then, between the two
remaining options, the square option would be selected as
it is closer to the point determined by the morphology pa-
rameters: distances from peak to offset in time and ampli-
tude obtained from previously delineated P-waves.

Table 1. Comparison of the delineation performance of
some of the most relevant P-wave delineation methods in
the literature by means of two Validation Parameters (V.P.)
making use of the QTDB.

Methods V. P Pon Pprak Porr
This method Se(%) 100 100 100
Wt oms) 47496  2.8467 0.6+9.8
A. Martinez ~ Se(%) 98.65 98.65 98.65
etal. [4] pXxo@ms) 26+145 324257  0.7+147
J.P. Martinez Se(%) 98.87 98.87 98.87
etal. [5] puEo@ms) 20+£148 3.6+132  1.9+12.8
P. Laguna Se(%) 97.7 97.7 97.7
etal.[6] pxo@ms) 14+£133 484106 —0.1+12.3

Ultimately, once the new P-wave has been delineated,
all the parameters obtained which are associated to the ref-
erence P-wave are also recomputed with the aim to update
some possible variations. An influence ratio of 20% over
the total has been considered. However, before the com-
putations are made, every pair of values are compared. In
case the difference is sufficiently large (> 25%), the wave
is labeled as abnormal and the refreshing procedure for the
reference P-wave is aborted.

3. Results

To asses the performance of the proposed algorithm, the
delineation error was computed as the difference in time
between automatic delineation and manual annotations in
the QTDB. For each recording, the larger set of manual an-
notations in the database was considered. Thus, the global
score is presented in terms of the average value of the error
() and its standard deviation (o) as proposed by Martinez
et al. [5]. Also the detection performance is evaluated by
its Sensitivity (Se%). This parameter indicates the percent-
age of well detected events. Table 1 shows the results of the
proposed method in comparison with other relevant meth-
ods presented in the literature.

Results of the proposed method in Table 1 were obtained
by using a total of 3176 annotated beats from 96 of the
2-leads ECG recordings from the QTDB. From the origi-
nal set of 105 recordings, seven of them (sell02, sel221,
sel232, sel310, sel36, sel37, sel50) were excluded for the
delineation as no P-wave manual annotation were provided
and also recordings sell04 and sel36 were not delineated
as they did not present a minimum of three consecutive
annotated P-waves, a self-imposed condition.
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4. Discussion

The delineation results on the QTDB shown in Table 1
have demonstrated that the proposed method is capable
of accurately delineate a wide variety of different P-wave
morphologies. This has been shown by the more than
3000 waveforms delineated from a large amount of dif-
ferent manually annotated recordings specifically selected
to reflect the real world variability. Moreover, it is im-
portant to note the excellent results achieved in terms of
the standard deviation of the error and sensitivity. It can
be observed how the proposed delineation method outper-
forms the other methods in terms of these two variables.
In addition, both for P-wave onset and offset, the obtained
standard deviation values are below the acceptable toler-
ance limits stablished by the CSE working group [10], that
are, respectively, 10.2 and 12.7 ms. This exhibits the great
stability that brings the use of Gaussian models of the P-
waves as delineation assistants.

On the other hand, with respect to the average value of
the error the score obtained, even if still satisfactory, is im-
proved in some cases for those presented by other methods.
However, this standard validation parameter might be mis-
leading, since it is likely to benefit from the compensation
between earlier and later detections. This risk could be
avoided if the mean absolute error was considered instead.
Unlike other methods that are based in the use of complex
transforms [3-5], the proposed strategy is completely de-
veloped in the time domain. This option could be consid-
ered more intuitive as it is closer to the way of thinking of
physicians when delineating ECGs and, therefore, it could
allow the developers to receive feedback more easily for
the future improvements of the algorithm.

5. Conclusions

In this study, an adaptive P-wave delineation method
based on the differentiation of the signal has been pre-
sented. The use of information about the historical mor-
phology of the P-waves already delineated and the cre-
ation of Gaussian models of every single P-wave to assist
its delineation have been revealed as key factors provid-
ing higher delineation accuracy and better stability to ab-
normal P-waves, thus outperforming other methods pre-
sented in the literature. Moreover, this algorithm allows
a monitoring of the P-wave morphology trend along the
ECG and detect anomalous events. Therefore, this method
could represent a potencial solution for the identification
of progressive changes in the electrical properties of the
atria which may help to foresee the occurrence of episodes
of arrhythmias, such as atrial fibrillation, or in the clinical
decision-making with respect to the diagnosis of cardio-
vascular diseases related with atrial conduction defects.
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Abstract

Thanks to its manual annotations, the PhysioNet QT
database (QTDB) has been widely used as the reference
of ECG delineators. However, a significant percentage of
its annotations have been reported as inaccurate. Thus,
any precise ECG delineator will never be able to meet,
without error, all its annotations. The present work an-
alyzes these inaccuracies and also how noise altered the
final timing of annotations. As this effect is higher for
low amplitude waveforms, P-waves were studied through
a robust P-wave delineator. lIts delineation results were
compared with manual annotations under two scenarios.
Firstly, a direct comparison without ECG denoising was
performed. Secondly, the P-waves were delineated after
efficient Wavelet-based denoising. Results showed that au-
tomatic annotations were closer to manual annotations for
noisy ECGs and farther in the case of denoised ECGs, thus
proving that noise altered the timing of manual annota-
tions. An unreal improvement in delineation performance
for noisy ECGs was obtained for P-wave onset, peak and
offset in 45.83%, 57.29% and 56.25% of the recordings,
respectively. Thus, to improve delineators reliability, ei-
ther the need to review the QTDB annotations or its re-
placement by a better annotated database are suggested.

1. Introduction

Any new ECG signal processing algorithm designed to
be used in a clinical setting requires the evaluation of its
performance [1]. To do so, as well as for its proper devel-
opment, the availability of databases, whose size is large
enough to cover the wide diversity of waveform patterns
that ECG recordings may present, is required [1]. More-
over, for the validation of some specific methods such as
detectors or delineators of particular waves, annotations
defining the time instants when these events occur are
needed. In order to consider these annotations trustwor-
thy, they might be determined manually and carefully by
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expert physicians. However, there exist many factors that
can influence the result of these manual annotations and,
therefore, compromise their reliability.

There exist a considerable number of standard databases
available to researchers with their proper distinctive fea-
tures that depend on the initial aim for which they were
created. Two of these databases are the MIT-BIH arrhyth-
mia database [2] and the AHA Database, which were de-
veloped to evaluate arrhythmia detectors. On the other
hand, the European ST-T Database was born in response
to the growing interest in the analysis of ST-T segment as
indicative of myocardial ischemia [3]. However, none of
the aforementioned databases contains manual annotations
of the locations of boundaries and peaks of all the wave-
forms that can be found in a normal ECG recording, some-
thing necessary for the validation of delineation methods
of these waves. Therefore, standard databases providing
manual annotations of ECG waves boundaries and peaks
are needed. Some examples of this are the CSE multilead
measurement database (CSEDB) [4] and the QT-database
(QTDB) [5]. However, due to its free access and mirrored
availability, this latter database has been the most widely
used as a reference for the validation of P-wave delineation
algorithms during last years.

Furthermore, the additional characteristics that have
caused the QTDB to reach that position are, mainly, the
wide diversity of waveform morphologies that contains,
as recordings were specifically selected to reflect the real
world variability and the considerable amount of wave-
forms annotations made manually by expert physicians,
much more than in the CSEDB. In addition, another sig-
nificant difference between these two databases is that the
QTDB is public, thus allowing any researcher to use it
without the need of financial support. However, man-
ual annotations may not always be perfectly accurate. In
this study the quality of manual waveform timings in the
QTDB has been evaluated, specifically for the case of the
P-waves, and the origin of the possible errors in the precise
location of these points has been analyzed.
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2. The QT database

The QTDB consists of 105 fifteen-minutes excerpts of
two channels ECG recordings. These signals were col-
lected from other existing databases as the MIT-BIH Ar-
rhythmia Database and the European ST-T Database, as
well as other databases collected at Bostons’s Beth Israel
Hospital. It contains manual annotations of the beginning,
peak and end of P-waves; beginning and end of QRS-
complexes; peak and end of T-waves and, if present, the
peak and end of U-waves. These annotations are present
in, at least, 30 beats per record. The annotated beats were
selected among the signal to represent its more character-
istic or dominant morphological pattern [5].

The QTDB contains two sets of manual annotations
made by each expert physician. However, one of them
include annotations for just 11 records and, consequently,
has rarely been used for validation purposes. Hence, in this
study only the larger set of annotation will be discussed.

The process of manually annotating a signal is a com-
plex, time consuming task. In addition, variables as the
experience of the annotator, the degree of concentration
and tiredness during the accomplishment of the task or the
annotation tool accuracy and reliability, among others, can
influence in the outcome of the procedure. Moreover, the
presence of noise in the signal may further complicate this
task, especially for low amplitude waves such as the P-
wave. Due to this evidence, and the increasing attention
that has gained the delineation of P-waves within the ECG
because of the demonstrated relationship between different
morphological characteristics of this waveform and clin-
ical conditions, such as the recurrence of atrial fibrilla-
tion [6], the P-wave in particular has been selected in this
study to evaluate the accuracy or the QTDB manual anno-
tations.

3. Reliability analysis of the QTDB

3.1.  The full scope concern

During the manual annotation process of the QTDB both
leads were displayed simultaneously and the location of
the annotations was established common to both chan-
nels [5]. This adopted procedure presents a serious draw-
back when it comes to knowing which wave was taken
into account for each particular annotation, which is ba-
sic for the validation of single-lead delineation algorithms.
In fact, due to the projection of the cardiac vector under
each lead, it is well known that the ECG waves timing will
be different as a function of the considered lead [7].

Other recently available database, the Chinese Cardio-
vascular Diseases Database (CCDD) [8], has followed the
same full-lead scope annotation procedure, in which the
annotation of boundaries and peaks positions are common

a) b)
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Figure 1. Examples of arguable annotated P-waves from
the QTDB. a) and a’) show the P-wave in both channels
corresponding to the 17¢" annotated beat from recording
sele303. b) and b’) show both channels of the 17" anno-
tated beat in recording sel33. The full scope fiducial points
locations are indicated with a dotted line. Remark that,
specially the offset annotations, are more than debatable.

for all leads. This specific case is even more challeng-
ing to deal with, as all 12 leads are provided. To over-
come this difficulty, researchers has adopted two different
strategies [9]. On the one hand, take as reference for each
recording the lead in which their automatic delineation re-
sult is closer to manual annotations, thus assuming that
only one lead was effectively taken into account to per-
form manual annotations. On the other hand, take as ef-
fective reference the closest automatically delineated point
to each manual annotation, regardless of the lead where
this takes place. Both strategies are oriented to get an un-
fair advantage of the database under test because of its full
sope annotations.

3.2. Variable annotation criteria

Because of the criteria followed by physicians to locate
the fiducial points is unclear, as there exists a lack of con-
sensus in the scientific community about the precise lo-
cation of the boundaries of a P-wave, generally it is not
possible to categorically label an annotation as erroneous
or imprecise. However, in some specific cases it is hardly
debatable that the annotations are severely defective.

This occur when the annotated point is significantly far
from the intuitive area in which an annotation could be
considered as well located, as shown in Fig. 1, where com-
mon annotations to both channels for two P-waves can be
observed. The waves were taken, among many other sim-
ilar examples found, to exhibit that this is not a particu-
lar recording issue. Both leads are displayed because of
the aforementioned lack of information about the channel
taken into account during the annotation procedure.
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Figure 2. Examples of variable annotation criteria (trian-
gle and square) in two P-waves from recording se/803 of
the QTDB. a) and a’) show both channels of the third anno-
tated P-wave, whereas b) and b’) show the seventh P-wave.
The full scope fiducial points locations are indicated with
a dotted line. Remark the dissimilar criteria in a) and b).

Another circumstance in which an annotation can be un-
equivocally recognized as erroneous, despite the annota-
tion criterion, takes place when the criterion itself varies
between two waves of similar morphology. Figure 2 dis-
plays an example of two waves collected from the same
recording. Observe how how the offset annotation in both
waves has been carried out according to different criteria.
The two approximate positions according to each annota-
tion criterion are indicated with two different symbols.

3.3. The relevance of noise

Finally, it must be taken into consideration that the sig-
nals, and specifically the P-waves because of their gener-
ally low amplitude, are deeply affected by noise. Thus, an-
notating under noisy conditions may render to undesired
mistaken fiducial points. Although expert physicians are
trained to overcome these adverse conditions and, in many
times, they success in ignoring the presence of noise, in
other occasions, they may fail despite making similar de-
cisions. This can be easily revealed by a simple denoise
process, as the applied in Figure 3, in which a wavelet-
based denoising approach has been applied [10]. Two dif-
ferent P-waves are shown, a) and b), with their respective
manual annotations that seems to be approximately well
located. However, after noise reduction, a different reality
is shown for a’), where a late onset has been mistakenly
annotated. By contrast, the fiducial points in b’) seem to
preserve a reasonable location.

Figure 3. Example of noise effect in annotation reliability
for two consecutive P-waves in the first channel of record-
ing sel230 from the QTDB. a) and b) P-waves of beats 30
and 31. a’) and b’) Resulting waves and annotations after
ECG denoising.

4. Methodology and results

All recordings of the QTDB, to a greater or lesser extent,
are affected by noise and consequently also their annota-
tions. To approximately quantify this fact and other issues
in the QTDB, an automatic delineator has been applied to
P-waves before and after Wavelet-based denoising [10].
Next, the average absolute difference between automatic
and manual annotations was computed. Both channels
were delineated and the error in each case was computed
as the time difference from automatic to the nearest manual
annotation.

An adaptive P-wave delineation method, based on fit-
ting P-waves by Gaussian functions, has been applied due
to its robustness under noisy recordings [11]. A total of 96
recordings from the QTDB were analyzed, as those with
less than three consecutive annotated P-waves were dis-
carded. Results showed that automatic annotations were
closer to manual annotations for noisy ECGs and farther
in the case of denoised ECGs. An unreal improvement
in delineation performance for noisy ECGs was obtained
for P-wave onset, peak and offset in 45.83%, 57.29% and
56.25% of the recordings, respectively. Therefore, the in-
fluence of noise and (maybe) other aspects leading to mis-
taken annotations in the QTDB are highly relevant and
should be considered seriously.

5. Discussion

As shown in Figures 1 to 3, the existence of inaccurate
annotations of P-waves within the QTDB is undeniable,
as previous studies have also reported [12]. In fact, other
studies have manually reannotated the QTDB before the
application of ECG delineation algorithms [13]. Further-
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more, defective annotations are not the only source of er-
ror for developing automatic delineation methods. Thus,
for cases where different criteria are adopted indistinctly,
as shown in Figure 2, even if the correctness of both loca-
tions could be considered, no automatic delineator could
ever meet the two criteria. This situation would involve an
error for the algorithm in any case when comparing with
the reference of manual annotation. It is, therefore, neces-
sary to define a clear annotation criterion.

Finally, the presence of noise affected considerably the
annotations. Thus, any delineator applied to noisy or de-
noised ECGs will render different fiducial point locations.
In fact, delineation under noisy conditions provided better
results with respect to manual annotations, but they will be,
actually, far from being accurate, thus affecting adversely
to outstanding P-wave delineators.

It is difficult to know to what extend these inaccurate
annotations have influenced previous results in the litera-
ture [9], or even if any of them have could taken advantage
of these misplacements. However, what seems to be fairly
evident is that this validation method is deficient and its
improvement may be presented as the first obstacle to over-
come for the development of reliable and clinically useful
tools for the delineation of ECG waveforms.

6. Conclusions

In this study, several defects related to the annotations
of the QTDB, the generally recognized reference for the
validation of ECG delineation algorithms, have been high-
lighted. There have been identified, among others, the lack
of information about the specific lead annotated in each
case, the diversity of criteria during the annotation process
or the effect of noise in the result of manual annotation.
This latter source of error has been demonstrated to have
a decisive effect on the outcome of automatic P-wave de-
lineation methods. Thus, to improve the development of
reliable and precise delineation methods, as well as to be
able to trust on their validation process, one out of two
conditions have to be satisfied: either the review of manual
annotations on the QTDB, by minimizing all deficiencies
highlighted in this study, or the adoption of another alter-
native more accurately annotated database as a reference.
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Resumen

El estudio de la onda P en el electrocardiograma es fundamental
para caracterizar posibles defectos de conduccion que anticipen
patologias cardiacas como la fibrilacion auricular. Por ello, es
necesario el desarrollo de métodos fiables que, de forma auto-
mdtica, detecten y delineen este tipo de ondas. Siguiendo este
propdsito, en los tiltimos afios se han propuesto muchas estrate-
gias de delineacion diferentes. Sin embargo, todas ellas compar-
ten el mismo principio de suavizado agresivo de las ondas pa-
ra facilitar su delineacion, lo cual puede provocar alteraciones
morfologicas sustanciales que impliquen una delineacion impre-
cisa. Como alternativa, el método que se presenta en este traba-
Jjo opta por un acondicionamiento menos agresivo de la sefial y
la generacion de modelos Gaussianos para cada onda. Asi, es-
tos modelos ejercen como asistentes para la delineacion de las
ondas P, que se realiza mediante la diferenciacion de éstas y el
establecimiento de un umbral de pendiente adaptativo que tiene
en cuenta informacion sobre el historico de las ondas previamen-
te delineadas. Este método se validé haciendo uso de los regis-
tros de la base datos anotada QT de Physionet. Los resultados
de la delineacion automdtica, comparados con las anotaciones,
reportaron una sensibilidad del 100 % y un error medio y des-
viacion tipica para inicio, pico mdximo y final de las ondas P de
4.71+9.59 ms, 2.824+6.69 ms y 0.601+9.79 ms, respectivamente.
Estos resultados muestran que la estrategia seguida proporcio-
na una delineacion precisa y estable, mejorando otros métodos
presentes en la literatura.

1. Introduccion

La onda P en el electrocardiograma (ECG), siendo la re-
presentacién de la actividad eléctrica auricular, se consi-
dera la fuente de informacién no invasiva mds fiable so-
bre la conduccidn eléctrica en esta region del corazén [1].
Algunas caracteristicas morfolégicas de esta onda, como
su duracion o dispersion, entre otras, se han asociado con
una mayor incidencia y recurrencia de la fibrilacién auri-
cular, la arritmia sostenida mas frecuente [2]. Sin embargo,
la falta de una técnica estandar de medicion, asi como de
un consenso claro acerca de la localizacién exacta de los
limites de estas formas de onda, hacen que delimitar las
ondas P sea una tarea compleja. Ademads, la delineacién
manual requiere de mucho tiempo y los resultados de la
misma pueden variar considerablemente en funcién de fac-
tores diversos como la experiencia del cardi6logo, su grado
de cansancio y concentracion o la presencia de ruido en la
sefial [3]. Como respuesta a ello, se han desarrollado una
gran variedad de métodos automaticos de delineaciéon de
ondas P basados en diferentes estrategias, que van desde el
uso de transformadas matematicas, como la transformada
fasorial [4] o la transformada Wavelet [3, 5], hasta la dife-
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renciacion de la sefial del ECG [6], entre otras. El método
que en este estudio se presenta estd basado en la diferen-
ciacién de la sefial, tomando como referencia el propuesto
por Laguna et al. [6], pero con diferencias significativas,
como son el cdlculo de un umbral de pendiente adaptativo
teniendo en cuenta las caracteristicas morfoldgicas de las
anteriores ondas P delineadas o la creacién de un modelo
Gaussiano para cada onda P que ayude a su delineacién. De
esta manera, se ha disefiado un algoritmo capaz de detec-
tar y delinear con precisién una amplia variedad de ondas
P, siendo mas respetuoso con las diferentes morfologias de
las ondas y mds estable que otros métodos previos.

2. Meétodo
2.1. Preprocesado

Antes de aplicar a la sefial de ECG el algoritmo de deli-
neacion en si, ésta debe pasar por un proceso previo de
acondicionamiento. En esta etapa, inicialmente, la sefial es
remuestreada, si no lo estaba ya, a 1 kHz. Seguidamente,
la linea base se elimina mediante la substraccion de su en-
volvente y la componente de frecuencia correspondiente al
ruido provocado por la red eléctrica se anula mediante fil-
trado adaptativo. A continuacidn, el ruido de alta frecuen-
cia procedente de la actividad eléctrica muscular se reduce,
aplicando un método basado en la transformada Wavelet y
un filtrado bidireccional paso bajo cuya frecuencia de cor-
te se ha establecido en 70 Hz, un valor bastante superior a
los tomados por otros métodos comparables [3, 6]. La se-
leccién de este filtrado, menos agresivo de lo habitual en
otros delineadores, esta justificada por la deseable reduc-
cién de los transitorios que se produce en la cercania del
complejo QRS y la demostrada existencia, en la onda P, de
componentes de frecuencia mayor de los que normalmente
se contemplan [7]. Para finalizar el preprocesado de la se-
fial, se realiza una localizacién supervisada de los picos R
a lo largo de ella [8].

2.2. Algoritmo de delineacién adaptativo

En el método propuesto, las ondas P a delinear no son tra-
tadas de forma independiente, sino que ciertos pardmetros
calculados a partir de aquellas anteriormente delineadas
son usados para guiar la localizacién de los puntos fiducia-
les de cada nueva onda. Entre estos pardmetros se incluyen
la distancia aproximada entre el pico R correspondiente y
la onda P (dPR); la duracién aproximada de ésta (durP),
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Figura 1. (a) Sefial de referencia sobre la que se muestran, con
un circulo, la posicion estimada del inicio del complejo QRS
(QRS1ni) y, con asteriscos, los puntos fiduciales de la onda P.
Ademds, se exhiben la distancia entre onda Py pico R (dPR) y
la duracion de la onda P (durP) junto con el de la ventana de
busqueda (vbP), calculada a partir de ella. (b) La misma onda P
de (a) expandida (linea continua) y los pardmetros morfologicos
de la misma. También se muestran, sombreados, los intervalos de
busqueda de las posiciones de inicio y final de onda centrados en
los homologos del modelo Gaussiano (linea discontinua).

que define una ventana de bisqueda expandiendo su an-
chura por cada lado un 25 % (vbP); el tipo de morfologia;
la diferencia en tiempo y amplitud entre pico maximo y
cada uno de los limites de onda (ampllni, amplFin, tIni,
tFin) y algunos coeficientes iniciales de la funcién Gaus-
siana para facilitar la bisqueda del mejor nuevo ajuste. Al-
gunos de estos pardmetros se muestran en la Figura 1. Asi,
estos pardmetros se van actualizando con cada nueva on-
da procesada, con un ratio de impacto de un 20 % sobre el
valor existente. Ademds, antes de ello, se comprueba si la
diferencia entre ambos valores es mayor a un 25 %. En tal
caso, la onda es catalogada como anormal y no se actuali-
zaran los valores, obteniendo, asi, un registro a tiempo real
sobre las ondas P cuya morfologia se aleja de la norma.

Naturalmente, para dar un valor inicial a estos pardmetros,
se hace necesaria la inclusion de una etapa de inicializa-
cion en la que se crea una onda P de referencia, de la que
obtener estos datos. Para ello, se toman los tramos de senal
previos a los cinco primeros picos R detectados y, mediante

un promediado, se crea un segmento de sefial que se llama-
rd, también, de referencia. Sobre este segmento, del que se
muestra un ejemplo en la Figura 1.a, se realizardn de forma
secuencial los procesos de deteccién de la onda P, clasifi-
cacion de su morfologia y delineacién. Tras ello, tanto la
primera como la dltima etapa se aplican a cada nueva onda
P de forma individualizada.

2.3. Deteccion

Para la deteccion de la onda P, se ha optado por una bis-
queda simple del pico de mayor amplitud en una ventana
de busqueda determinada. Inicialmente, para el caso de la
onda P de referencia, la ventana de bisqueda se extien-
de desde el inicio del complejo QRS previamente estima-
do, hacia atras en la sefial de referencia, con una duracién
igual a un tercio de la mediana de las distancias RR. Asi,
se obtiene un valor inicial para el pardmetro dPR, que pos-
teriormente se usard para el cdlculo de la posicién donde
centrar las nuevas ventanas de biisqueda para cada onda P
con respecto a su correspondiente onda R.

En torno al pico mdximo detectado, se aisla un tramo de
sefial resultando en la onda P a delinear. La longitud de es-
ta sefial, para el caso inicial de referencia, se ha estableci-
do en 180 ms, amplidndose o reduciéndose en 20 ms para
casos de intervalo RR promedio demasiado largo (>900
ms) o demasiado corto (<600 ms), respectivamente. Pos-
teriormente, esta longitud se adaptard segun la longitud es-
pecifica de la onda P de referencia, dando valor inicial al
pardmetro vbP. En la Figura 1.a se muestra de forma vi-
sual la prolongacién simétrica de durP para la obtencién
del ancho de la ventana de bisqueda, o vbP.

2.4. Clasificacion

Tras detectar la onda P de referencia, ésta debe ser clasi-
ficada como monofésica positiva, monofasica negativa o
bifésica, ya sea con polaridad positiva-negativa o negativa-
positiva. Para este fin se usa un arbol de decisién basado
en ajustes Gaussianos que se describe a continuacion.

Primero, se genera una funcién Gaussiana de manera que
se ajuste de la mejor forma posible a la onda P de referen-
cia. En caso de que el coeficiente de correlacién de Pear-
son entre la onda y su modelo supere el valor establecido
de 0.7, lo que de aqui en adelante se considera un buen
ajuste, se clasifica como monofdasica positiva y se termina
el proceso de clasificacién. En caso contrario, se repite la
operacién con la onda invertida. Si en este nuevo caso si
se obtine un buen ajuste, entonces la onda se clasifica co-
mo monofdasica negativa y si no, como bifasica. Para este
ultimo caso, ademds, se busca el segundo pico de la onda
con polaridad contraria al inicialmente detectado. Por tan-
to, la onda P de referencia se vuelve a centrar en el punto
medio entre ambos picos y se perseguird un buen ajuste
aumentando el orden de la funcién Gaussiana.

Este proceso inicial de clasificaciéon morfolégica de la on-
da P no se vuelve a repetir en el posterior procesado indi-
vidualizado de ondas, pues se asume que las ondas P del
ECG bajo estudio mantienen un tipo de morfologia similar
a lo largo del tiempo de registro.
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2.5. Delineacion

Esta ultima etapa de delineacion es practicamente igual pa-
ra el caso de la onda P de referencia que para las ondas in-
dividuales. La tnica diferencia es que, para el caso inicial,
unicamente se considera un candidato para cada punto fi-
ducial, mientras que para el resto si pueden existir varios
aspirantes a limite de onda. En este dltimo caso, se elige
aquel candidato mas cercano a la posicidn que, con respec-
to al pico méaximo, definan las distancias histéricamente
calculadas, ampllni y tIni para el inicio de onda y amplFin
y tFin para el final.

La delineacién comienza con la generaciéon del modelo
Gaussiano que mejor se ajuste a la sefial correspondiente
a la onda P aislada, que en el caso de la de referencia ya se
obtuvo en la etapa anterior de clasificacion. De esta forma,
en primer lugar se produce la diferenciacién del modelo
Gaussiano, identificando para cada mitad de onda los valo-
res maximos donde la sefial presenta los puntos de mayor
pendiente. Después, a partir de cada uno de ellos, se cal-
cula un umbral de pendiente que se usa para localizar, en
cada caso, los limites de la onda como los primeros puntos
en excederlo. Seguidamente, una vez los puntos fiduciales
del modelo Gaussiano se han identificado, en torno a sus
respectivas posiciones se define un intervalo de busqueda
como los que se muestran en la Figura 1.b en forma de drea
sombreada. Asi, se repite el mismo proceso de diferencia-
cién y bisqueda de puntos donde la pendiente exceda el
umbral calculado con la seiial real, pero restringiendo la
busqueda al intervalo establecido, cuya anchura depende
de lo bien que se ajuste el modelo a la sefial real, esto es,
siendo mds estrecho mientras mds parecido sea el ajuste
Gaussiano a la onda P real. En la Figura 1.b se puede ob-
servar como para la posicidn de inicio de onda este inter-
valo es mds estrecho que para la del final. Ello es debido a
que, en este caso, la primera mitad de la onda P se ajusta
mejor al modelo Gaussiano.

Para determinar la relacion matemadtica entre los valores
de pendiente mdxima y la correspondiente pendiente en el
limite de onda que definiese el umbral, dos cardiélogos ex-
pertos delinearon manualmente un total de 60 ondas P. De
esta forma, se llegé a la conclusion de que la funcién mate-
matica que mejor reflejaba la relacion entre pendiente ma-
xima y umbral es la siguiente:

~0.0058 -

Umb(w) = 5 012"

M
donde x es la pendiente méaxima de la onda y Umb el um-
bral resultante.

Evidentemente, el éxito o no de la delineacion depende en
gran medida de lo bueno que sea el ajuste Gaussiano. Por
ello, a la hora de lidiar con ondas P asimétricas, situaciéon
en la que en ninglin caso serd posible generar un ajuste
Gaussiano satisfactorio, se opta por un tratamiento espe-
cial. Asi, en los casos en los que alguna de las mitades de
la onda P no se ajuste bien a su mitad correspondiente del
modelo, lo cual se evalia mediante el ya citado coeficiente
de correlacién de Pearson, se tomard dicha mitad y se uni-

Método P.V. Pini PMax Prin

Se( %) 100 100 100
pw+o(ms) 4749.6 2.8+6.7 0.649.8
A. Martinez Se( %) 98.65 98.65 98.65

et al. [4] u+o(ms) 2.6£14.5 324257 0.7+£14.7
J.P. Martinez Se( %) 98.87 98.87 98.87

etal. [5] pwEo(ms) 2.0£14.8 3.6£13.2 1.9+£12.8
P. Laguna Se( %) 97.7 97.7 97.7

et al. [6] =+ o(ms) 14+£133 4.8+10.6 —0.1£12.3

Este método

Tabla 1. Comparacion del desempeiio de algunos de los métodos
de delineacion de onda P mds relevantes presentes en la litera-
tura mediante los resultados obtenidos por medio de dos Pard-
metros de Validacion (P. V.) haciendo uso de la base de las datos
anotada QT.

rd con su propia imagen especular, creando de esta forma
una onda P artificial completamente simétrica, de la cual
Unicamente una mitad tendra que ser delineada.

3. Evaluacion del Método

El desempeiio del método de delineacion propuesto se eva-
lué aplicando éste a los registros de la base de datos estdn-
dar de referencia QT de Physionet [9]. Esta base de datos
contiene 105 registros de 15 minutos de duracién de ECGs
de dos derivaciones, en cada uno de los cuales, al menos,
hay 30 latidos manualmente anotados. Contiene dos gru-
pos de anotaciones realizadas por sendos cardiélogos. Sin
embargo, para este estudio, Ginicamente se tomé como re-
ferencia el que contiene un nimero de anotaciones signi-
ficativamente mayor. Asi, se compararon las distancias en
tiempo entre las citadas anotaciones manuales y las propias
resultantes del método automadtico. A partir de la discre-
pancia en tiempo o error, se ha obtenido un resultado glo-
bal en términos del valor medio del error (1) y desviacién
tipica (o) segtn propusieron Martinez et al. [5]. También
se ha calculado el porcentaje de puntos fiduciales anotados
correctamente detectados mediante la sensibilidad (Se %),
definida como:

TP
Se(%) = TP FN 2

donde TP, verdaderos positivos, corresponde al nimero de
anotaciones correctamente detectadas y FN, falsos negati-
vos, a las no detectadas.

4. Resultados

Los resultados del método, expuestos en la Tabla 1, se ob-
tuvieron tras evaluar la delineacién de un total de 3176 on-
das P anotadas de 96 de los registros de la base de da-
tos QT. Los registros sell102, sel221, sel232, sel310, sel36,
sel37, sel50 se descartaron al no contar con anotaciones de
ondas P con las que comparar las detecciones del método
y los registros sell04 y sel36, por no presentar un mini-
mo de tres ondas P anotadas consecutivas y, por tanto, no
poder explotar la naturaleza adaptativa del algoritmo. Ade-
mas, en la tabla de resultados se presentan los aportados
por otros métodos de delineacién de onda P relevantes que
han hecho uso de la base de datos QT.
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5. Discusion

Los buenos resultados obtenidos, mostrados en la Tabla 1,
tras haber delineado mas de 3000 ondas P procedentes de
una gran diversidad de registros especificamente seleccio-
nados para reflejar la variabilidad presente en el mundo
real [9], demuestran que el método propuesto es una bue-
na opcién para detectar y delinear de manera precisa ondas
P, sin importar su morfologia. Ademas, los extraordinarios
resultados de desviacion tipica que se han obtenido, me-
jorando a los otros delineadores, reflejan que las estrate-
gias seguidas confieren al método una gran estabilidad que
refuerza su fiabilidad. Por dltimo, estos valores, tanto pa-
ra el inicio como para el final de la onda P, se encuentran
por debajo de los limites de tolerancia aceptables estableci-
dos por el grupo de trabajo CSE, que son, respectivamente,
10.2y 12.7 ms [10].

Por otro lado, en la Tabla 1 se observa que los resultados
de error medio, aunque bastante buenos, son mejorados en
algunos casos por otros métodos. Sin embargo, este para-
metro de validacién puede ser engafioso, pues podria bene-
ficiarse de la compensacioén producida entre delineaciones
prematuras y tardias. Esta fuente de desconfianza se podria
evitar si se tomase el error absoluto como alternativa a este
pardmetro estandar de validacién.

Una de las principales ventajas que presenta el algorit-
mo presentado con respecto a otros, basados en comple-
jas transformadas matemadticas [3-5], es que se desarrolla
integramente en el dominio del tiempo. Esta caracteristi-
ca permite detectar faicilmente ondas con morfologias ané-
malas y tener un registro de las mismas, aumentando la
informacién proporcionada y haciendo de éste un método
muy versatil. Ademds, al ser una estrategia mds intuitiva
y cercana al modo de proceder de los cardiélogos durante
la anotacién manual de registros, permite que estos puedan
guiar o asistir mds facilmente en el desarrollo de posibles
futuras mejoras del método.

6. Conclusiones

En este estudio se ha presentado un método novedoso ca-
paz de detectar y delinear automdticamente y de forma pre-
cisa cualquier tipo de onda P. Estd basado en la diferencia-
cién de la onda y el uso de modelos Gaussianos y de infor-
macidn sobre el histdrico de ondas procesadas para asistir
la delineacion de cada onda P. Todas estas particularidades
han permitido alcanzar unos resultados, con respecto a las
anotaciones manuales de la base de datos QT, que mejoran
a otros métodos presentados en la literatura. Ademds, el al-
goritmo disefiado admite nuevas funcionalidades, como la

deteccion de ondas con morfologia andmala o la posibili-
dad de guardar registros sobre la evolucién de ciertos para-
metros morfolégicos de estas ondas a lo largo de la sefial.
Por tanto, este método se presenta como una solucion para
la identificacién de cambios progresivos en las propiedades
de propagacién eléctrica auriculares que, eventualmente,
pueda ayudar a reconocer procesos internos, como el re-
modelado auricular, o predecir la ocurrencia de episodios
arritmicos, como la fibrilacién auricular.
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Resumen

La base de datos QT (BDQT) es un referente en andlisis elec-
trocardiogrdfico gracias a dos factores: la amplia variedad de
morfologias que contiene y las anotaciones manuales, que deter-
minan los puntos fiduciales de un buen niimero de latidos. Por
ello, es una referencia habitual en la validacion de delineadores
de ECG. Sin embargo, un porcentaje significativo de sus anota-
ciones se ha calificado como impreciso, lo cual hace que ningiin
algoritmo de delineacion, por eficiente que sea, pueda conseguir
un resultado optimo. En este trabajo se analizan tanto las impre-
cisiones de anotacion, como la influencia del ruido en el ECG
durante la anotacion. Se han estudiado las anotaciones en on-
das P porque este efecto es mayor para ondas de baja amplitud.
Estas anotaciones se compararon con el resultado de aplicar un
delineador automdtico a la sefial original con ruido y, después,
reduciendo éste mediante un método eficiente basado en la trans-
formada Wavelet. Los resultados mostraron que las anotaciones
automdticas se encontraban mds cerca de las manuales para el
caso de seiial ruidosa en un porcentaje significativo de los re-
gistros, evidenciando la influencia del ruido en la localizacion
de las anotaciones manuales. Concretamente, esta mejora irreal
en la delineacion se obtuvo para el inicio, pico mdximo y final de
onda P, en el 45.83 %, 52.29 % y 56.25 % de los registros, respec-
tivamente. Por tanto, para mejorar la fiabilidad de la validacion
de delineadores, se hace necesaria la revision de las anotaciones
de la BDQT o el reemplazo de ésta por otra mejor anotada.

1. Introduccion

Para poder ser usado en un contexto clinico, cualquier al-
goritmo de procesado de ECG debe ser validado mediante
la evalucién de su rendimiento en un contexto lo mds rea-
lista posible [1]. Para ello, es necesaria la disponibilidad
de bases de datos lo suficientemente extensas como para
que cubran la gran diversidad de patrones de ondas que los
registros de ECG pueden presentar [1]. Ademads, para el ca-
so especifico de métodos como los delineadores de ondas,
son necesarias anotaciones que definan de forma precisa
los instantes de tiempo en los que ocurren estos eventos.
Para poder confiar en las anotaciones, éstas deben haber
sido minuciosamente realizadas de forma manual por ex-
pertos. Sin embargo, son muchos los factores que pueden
influir negativamente en este proceso y, por tanto, compro-
meter su resultado.

Los investigadores tienen a su disposicién un nimero con-
siderable de bases de datos estandares de ECG, cuyas ca-
racterfsticas propias estdn estrechamente ligadas al objeti-
vo especifico por el cual se crearon inicialmente. Dos de
ellas son la base de datos de arritmias MIT-BIH [2] y la
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base de datos AHA, que se desarrollaron para evaluar el
desempeiio de distintos detectores de arritmias. Por otro la-
do, la base de datos europea ST-T se cre6 como respuesta
al creciente interés en el andlisis del segmento ST-T como
indicativo de isquemia miocdrdica [3]. Sin embargo, nin-
guna de las bases de datos hasta ahora mencionadas contie-
ne anotaciones manuales que definan los limites y el pico
maximo de las ondas del ECG, algo fundamental para la
validacién de algoritmos automadticos de delineacion. Asi,
respondiendo a esta necesidad, surgieron la base de datos
de mediciones multiderivacién CSE [4] y la base de datos
QT (QTDB) [5]. Sin embargo, debido a caracteristicas dis-
tintivas, como la posibilidad de acceso libre o una mayor
cantidad de ondas anotadas de forma manual por expertos,
esta ultima base de datos se ha posicionado como la re-
ferencia mds usada para la validacién de delineadores de
onda P en los ultimos afios. No obstante, las anotaciones
de la BDQT no son siempre precisas, lo cual puede llegar
a generar desconfianza en su uso como via de validacién de
algoritmos de procesado de ECG. Por ello, en este estudio
se evaluard la calidad de las anotaciones de la BDQT, para
el caso de la onda P, y se analizard el origen de los posibles
errores en la localizacion de las mismas.

2. Base de datos QT

La BDQT, disponible gratuitamente en Physionet, estad
compuesta por un total de 105 registros de ECG de dos
canales con una duracién de quince minutos cada uno. Es-
tas sefiales se seleccionaron de otras bases de datos exis-
tentes, especificamente, de forma que reflejasen la amplia
variabilidad de morfologias que puedan presentar las on-
das del ECG en el mundo real [5]. Ademads, esta base de
datos contiene anotaciones manuales que marcan la posi-
cién de inicio, pico maximo y final de la onda P; inicio y
final del complejo QRS; pico y final de la onda T'y, si estu-
viese presente, pico y final de la onda U. Por cada registro,
se proporcionan anotaciones de, al menos, 30 latidos se-
leccionados para representar el patrén de forma de onda
predominante en la sefial.

Esta base de datos consta de dos grupos de anotaciones
realizadas por sendos expertos. Sin embargo, uno de los
conjuntos contiene Unicamente 11 registros anotados, por
lo que rara vez se ha usado para validar algiin método de
delineacion de ECG. Debido a ello, este estudio se centra
en el analisis del grupo con mayor nimero de anotaciones.
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El proceso de anotacion manual de sefiales es una tarea len-
tay compleja. Ademas, variables tales como la experiencia
del anotador, su grado de concentracién y cansancio, la fia-
bilidad y precision de la herramienta de anotacién usada, o
la presencia de morfologias andmalas en la sefial, pueden
influir en el resultado final de la anotacidn, comprometien-
do su exactitud.

Asimismo, las sefiales del ECG se ven afectadas en gran
medida por diversas fuentes de ruido, como el produci-
do por la actividad eléctrica de los misculos cercanos al
corazoén, la red eléctrica o un mal contacto del electrodo
usado para la obtencién de la sefial [6]. El problema de es-
tas perturbaciones es que pueden producir alteraciones de
la auténtica morfologia de la sefial. Ademas, para ondas
de baja amplitud, como la onda P, este efecto se acrecien-
ta. Por ello, la onda P se ha seleccionado en el presente
trabajo como objeto para la evaluacion de las anotaciones
manuales de la BDQT. Ademas, el estudio de esta onda
ha despertado un creciente interés debido a la demostrada
relacion existente entre sus caracteristicas morfoldgicas y
ciertas afecciones cardiacas, como la recurrencia de la fi-
brilacién auricular [7].

3. Analisis de la fiabilidad de la BDQT
3.1. Anotaciones multiderivacion

En el proceso de anotacién manual de los registros de la
BDQT, se analizaron ambos canales simultineamente, y
la decision sobre la posicion de cada punto fiducial se to-
mo de forma que ésta fuese comun para las dos derivacio-
nes [5]. Sin embargo, es conocido que la disposicién en el
tiempo de las distintas ondas del ECG es diferente en fun-
cion de la derivacion considerada en cada caso, pues cada
una corresponde a una proyeccion distinta del vector car-
diaco [8]. Por tanto, este modo de proceder, unido a la falta
de informacién acerca de cudl de los dos canales se utilizé
como referencia de la anotacién en cada caso, dificulta el
uso de esta base de datos anotada como método de valida-
cién de algoritmos de delineacion.

Para superar este obstaculo, los desarrolladores de este tipo
de algoritmos se han inclinado por dos estrategias diferen-
tes [9]. Por un lado, algunos han optado por asumir que
para la anotacion de cada registro se considerd tnicamente
una de las derivaciones, tomando asi, como referencia para
cada uno de ellos, el canal en el que las correspondientes
al método automadtico se acerquen mads a las manuales. Por
otro lado, otros desarrolladores han decidido tomar como
referencia, para cada punto marcado manualmente en la
base de datos, la anotacion automadtica mas cercana a €l,
sin importar a qué derivacién corresponda. Ambas estra-
tegias, de un modo u otro, estdn orientadas a obtener una
ventaja injusta de la base de datos, debido a la forma en la
que estd anotada.

3.2. Criterios de anotacién variables

En la comunidad cientifica no existe un consenso claro
acerca de la posicion exacta de los limites de la onda P en
el ECG. Por ello, al no conocer el criterio seguido por los

sel117
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.

6228 623 6232 623 6236 6238 624 6242
Tiempo (ms) x10°

Figura 1. Ejemplo de los dos canales, a) y b), de un segmento
de seiial correspondiente al registro selll7 de la BDQT, en los
que se muestran, sobre dos ondas P consecutivas, sus discutibles
anotaciones manuales mediante lineas verticales. Concretamen-
te, las ondas se corresponden a la 19 y la 20" onda P manual-
mente anotada en este registro. Obsérvense, especialmente, los

finales de la segunda onda P en cada registro.

expertos para localizar los puntos fiduciales en esta onda,
generalmente no es posible clasificar una anotacién como
errénea o imprecisa de forma categérica. Sin embargo, en
algunos casos especificos, es dificilmente debatible que las
anotaciones son manifiestamente defectuosas.

Uno de los casos en los que esto ocurre es cuando el pun-
to anotado se encuentra significativamente lejos de la zona
de la sefial en la que una anotacién puede ser considera-
da como correctamente localizada de forma intuitiva. En
la Figura 1 se muestra un ejemplo de dos ondas P consecu-
tivas anotadas que responden a esta situacién. Se muestran
ambos canales debido a la ya comentada falta de informa-
cién especifica acerca de cudl se tomé en cuenta durante el
proceso de anotacidn.

Por otro lado, otra situacién en la que el error en la anota-
cién manual es incontestable, tiene lugar cuando se iden-
tifican criterios de anotacién dispares en ondas cuya mor-
fologia es muy similar, tal y como se muestra en la Figu-
ra 2. En ella se puede observar como el final de dos ondas
consecutivasse ha anotado tomando dos criterios dispares,
etiquetados como c.1 y c.2. Asi, para cada onda, se han
marcado tanto la anotacion manual original como la posi-
cién aproximada que hubiese tenido ésta si para cada caso
se hubiese seguido el criterio alternativo. De esta manera,
aunque ambos criterios pudieran ser aceptados como vali-
dos, esta manifiesta discordancia evidencia un error en, al
menos, una de las anotaciones.

470



XXXV Congreso Anual de la Sociedad Espaiiola de Ingenieria Biomédica. Bilbao, 29 Nov -1 Dic, 2017

sel 15814
T T

3 Ondal

6.006 6.008 6.01 6.012 6.014 6.016
Tiempo (ms) x10°

Figura 2. Ejemplo de los dos canales, a) y b), de un segmento
de sefial correspondiente al registro sell15814 de la BDQT, en el
que se muestra la disparidad de criterios seguidos para la ano-
tacion del final de las dos primeras ondas P de este registro. Con
lineas continuas se marcan las anotaciones manuales y con dis-
continuas, la posicién aproximada de la anotacion si se siguiese
el criterio alternativo, c.1 ¢ c.2., en cada caso

3.3. Importancia del ruido

Por dltimo, se debe tener en cuenta que las biosefiales co-
mo el ECG, y especialmente las ondas P debido a su baja
amplitud, se ven profundamente afectadas por ruido. Asi,
anotar seflales que muestren altos niveles de ruido puede
provocar desplazamientos indeseados en la posicion de los
puntos fiduciales marcados. Por ello, aunque los especia-
listas estdn entrenados para superar estas condiciones ad-
versas, y muchas veces consiguen obviar la presencia de
ruido; otras veces, éste hace que fallen en el proceso de
anotacion, pese a tomar decisiones similares. Esto puede
ser facilmente revelado por medio de un tratamiento sim-
ple de limpieza de ruido de la sefial, tal y como se muestra
en la Figura 3. En ella se exhiben dos ondas P anotadas,
a) y b), y, bajo éstas, en a’) y b’), las mismas ondas tras
aplicarles un proceso de reduccion de ruido basado en la
transformada Wavelet [10]. Asi, en a) se observan, sobre la
sefial ruidosa, unas anotaciones que podrian ser considera-
das defectuosas, y, tras limpiar la sefial, en a’) comproba-
mos que éstas son bastante precisas. Por contra, en b) y b’)
se presenta el caso opuesto, en el que una onda con ruido
pudiera parecer bien anotada y tras reducir la presencia de
éste, estas anotaciones pasan a ser mas discutibles.

4. Metodologia y resultados

Todos los registros de la BDQT, en mayor o menor me-
dida, estdn afectados por el ruido y, consecuentemente,

sel117 sele0211
a) Con ruido b) Con ruido
a) Sin ruido b’) Sin ruido

6192 6193 6194 6027 6028 6029
Tiempo (ms)  X10 Tiempo (mg) ~ X10°

Figura 3. Ejemplo ilustrativo del efecto del ruido sobre las ano-
taciones manuales de la BDQT. En a) y b) se muestran, respecti-
vamente, la 16° onda P anotada del registro sell17 y la 5* onda
del registro sele0211. En a’) y b’) se presentan las ondas resul-
tantes, junto con sus anotaciones, tras reducir la presencia de
ruido en las mismas.

también sus anotaciones. Para cuantificar aproximadamen-
te este hecho, se ha aplicado un delineador automatico a las
ondas P, antes y después de reducir la presencia de ruido
en la sefial mediante un método basado en la transforma-
da Wavelet [10]. Después, para cada caso, se ha calculado
el error absoluto medio entre las anotaciones automaticas
y las manuales. Esto se ha llevado a cabo aplicando el al-
goritmo a los dos canales y calculando el error para cada
punto fiducial como la diferencia temporal entre la anota-
cién manual y la automdtica mds cercana en cada caso.

Debido a su robustez bajo condiciones de ruido, para la
delineacién de ondas P se ha aplicado un nuevo método
adaptativo basado en la generacién de modelos Gaussianos
de ondas P [11]. Se analiz6 un total de 96 registros de la
BDQT, descartindose aquellos con menos de tres ondas P
consecutivas anotadas.

Los resultados de este estudio mostraron que, en muchos
casos, las posiciones de las anotaciones automadticas eran
mas proximas a las de las manuales para sefiales de ECG
con ruido que sin él. Esta mejora irreal en el desempefio
del algoritmo de delineacién bajo condiciones de ruido se
produjo para el inicio, pico maximo y final de las ondas P
en un 45.83 %, 57.29 % y 56.25 % de los registros, respec-
tivamente. Por lo tanto, se ha comprobado que la influencia
del ruido y, quizas, otros aspectos que lleven a la incorrecta
anotacién de las ondas P, son altamente relevantes y debe-
rian ser considerados seriamente.
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5. Discusion

Como se ha constatado a lo largo de este estudio, la exis-
tencia de anotaciones imprecisas en las ondas P en los
registros de la BDQT es un hecho innegable. Ya ante-
riormente algunos estudios han sefialado esta circustancia,
asumiendo el error producido por estos defectos [12]. Asi-
mismo, en otro estudio en el que se introdujo un nuevo
delineador de onda P, se report una mejora significativa
en los resultados obtenidos tras reanotar manualmente los
registros de la BDQT [13].

Las anotaciones defectuosas no son la tnica fuente de error
que afecta a la evaluacién de los métodos automaticos de
delineacién. En casos donde se adoptaron criterios de ano-
tacion diferentes incluso para ondas de morfologia similar,
como el mostrado en la Figura 2, es imposible que un al-
goritmo automadtico consiga ser preciso siempre. Por ello,
estas situaciones implicardn errores, aunque todas las ano-
taciones pudiesen ser justificadas como correctas.

También se han recalcado los inconvenientes que presenta
una referencia anotada mediante una estrategia multideri-
vacion, generando una mayor desconfianza en el resultado
que obtenga un método comparado con esta referencia.

Por ultimo, se ha demostrado que la presencia de ruido ha
afectado considerablemente al emplazamiento de las ano-
taciones. Asi, el resultado de la localizacién de los puntos
fiduciales para cualquier método automitico serd distinto
en caso de ser aplicado sobre sefiales con ruido que sin
él. De hecho, la delineacién automatica bajo condiciones
de ruido ha proporcionado un mejor resultado, con respec-
to a las anotaciones manuales de la BDQT, que la misma
delineacién aplicada sobre los registros limpios de ruido.
Esto demuestra que, en muchos casos, un buen delineador
capaz de ser completamente inmune al ruido podria verse
perjudicado por ello, y otro peor, que acepte errébneamen-
te el ruido como senal real, beneficiado. Es dificil conocer
hasta qué punto estas anotaciones desplazadas han podido
influir en los delineadores desarrollados en la literatura [9].
Sin embargo, lo que parece ser evidente es que este proce-
dimiento de validacién es deficiente, y que su mejora debe
ser prioritaria para el desarrollo de métodos de delineacion
de las ondas del ECG fiables y ttiles en la préctica clinica.

6. Conclusiones

En este estudio, se han evidenciado los defectos en las ano-
taciones manuales de la BDQT, generalmente aceptada pa-
ra validar delineadores automaticos de ECG. Entre otros, el
origen de estos errores es la falta de informacion sobre el
canal especifico anotado, la diversidad de criterios durante
el proceso de anotacién y/o el efecto que la presencia de
ruido tuvo en el resultado final de anotacion manual de los
registros. Este ultimo aspecto se ha cuantificado, demos-
trando que la relevancia del ruido es significativa y que
puede afectar seriamente a los resultados de los diferen-
tes delineadores desarrollados. Por todo ello, para mejorar
el desarrollo de delineadores fiables y precisos, asi como
para poder confiar en su validacion, es necesario que las
anotaciones manuales de la BDQT sean revisadas y sus re-

gistros limpiados de ruido o que se adopte como referencia
otra base de datos alternativa. Esta deberfa contar con to-
das las caracteristicas que se han sefialado en este estudio
como deseables: Una base de datos de ECGs extensa que
presente una gran variedad de morfologias, con anotacio-
nes manuales precisas sobre sefiales individuales en las que
la influencia del ruido sea minima.

Agradecimientos

Trabajo financiado por los proyectos TEC2014-52250-R
y DPI2017-83952-C3 MINECO/AEI/FEDER, UE.

Referencias

[1] Sornmo L, Laguna P. Ch. 6 - the electrocardiogram-a brief
background. In Bioelectrical Signal Processing in Car-
diac and Neurological Applications. Academic Press. ISBN
978-0-12-437552-9, 2005; 411 — 452.

[2] Moody GB, Mark RG. The impact of the MIT-BIH arrhyth-
mia database. IEEE Engineering in Medicine and Biology
Magazine May 2001;20(3):45-50. ISSN 0739-5175.

[3] Taddei A, Distante G, Emdin M, Pisani P, Moody GB, Zee-
lenberg C, Marchesi C. The European ST-T database: stan-
dard for evaluating systems for the analysis of ST-T changes
in ambulatory electrocardiography. European Heart Journal
1992;13(9):1164-1172.

[4] Willems JL, Arnaud P, Bemmel JHV, Bourdillon PJ, De-
gani R, Denis B, Graham I, et al. A reference data base
for multilead electrocardiographic computer measurement
programs. Journal of the American College of Cardiology
1987;10(6):1313 — 1321. ISSN 0735-1097.

[5] Laguna P, Mark RG, Goldberg A, Moody GB. Database for
evaluation of algorithms for measurement of QT and other
waveform intervals in the ECG. In Computers in Cardio-
logy. 1997; 673-676.

[6] Bollmann A, Husser D, Mainardi L, Lombardi F, Langley
P, Murray A, Rieta JJ, et al. Analysis of surface electro-
cardiograms in atrial fibrillation: techniques, research, and
clinical applications. Europace Nov 2006;8:911-26.

[7] Magnani JW, Williamson MA, Ellinor PT, Monahan KM,
Benjamin EJ. P-wave indices: current status and future
directions in epidemiology, clinical, and research applica-
tions. Circ Arrh and electroph Feb 2009;2:72-9.

[8] Rieta JJ, Alcaraz R. The Genesis of the Electrocardiogram
(ECG). In Wiley Encyclopedia of Electrical and Electronics
Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc.,
February 2017; 1-15.

[9] Beraza I, Romero I. Comparative study of algorithms for
ECG segmentation. Biomedical Signal Processing and Con-
trol April 2017;34:166-173.

[10] BoraPK, Sinha R, Yadav SK. Electrocardiogram signal de-
noising using non-local wavelet transform domain filtering.
IET Signal Processing February 2015;9(1):88-96.

[11] Gonzalez F, Alcaraz R, Rieta JJ. Electrocardiographic P-
wave delineation based on adaptive slope gaussian detec-
tion. In Computing in Cardiology Conference (CinC), vo-
lume 44. IEEE, 2017; In press.

[12] Lenis G, Pilia N, Oesterlein T, Luik A, Schmitt C, Dossel
O. P-wave detection and delineation in the ECG based on
the phase free stationary wavelet transform and using intra-
cardiac atrial electrograms as reference. Biomedizinische
Technik 2016;61(1):37-56.

[13] Martinez A, Alcaraz R, Rieta JJ. Application of the pha-
sor transform for automatic delineation of single-lead ECG
fiducial points. Physiol Meas 2010;31(11):1467-1485.

472



