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ABSTRACT: A Bayesian procedure, which allows
consideration of the individual variation in the feed
resource allocation pattern, is described and imple-
mented in 2 sire lines of rabbit (Caldes and R). The
procedure is based on a hierarchical Bayesian scheme,
where the first stage of the model consists of a multiple
regression model of feed intake on metabolic BW and
BW gain. In a second stage, an animal model was as-
sumed including batch, parity order, litter size, and
common environmental litter effects. Animals were
reared during the fattening period (from weaning at
32 d of age to 60 d of age) in individual cages on an
experimental farm, and were fed ad libitum with a com-
mercial diet. Body weight (g) and cumulative feed in-
take (g) were recorded weekly. Individual BW gain (g)
and average BW (ABW, g) were calculated from these
data for each 7-d period. Metabolic BW (g0.75) was esti-
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INTRODUCTION

In rabbits, current selection programs are focused
on selecting paternal lines for growth rate during the
fattening period or weight at a fixed age. One objective
of selection is to improve feed efficiency as a correlated
response to selection for those traits. Feed efficiency
is usually measured using the feed conversion ratio
(feed intake/weight gain), and is considered to be 1 of
the most important traits in rabbit breeding (Armero
and Blasco, 1992). However, Piles et al. (2004) found
that the genetic correlation between growth rate and
feed conversion ratio is not very large, and suggested
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mated as ABW0.75. The number of animals actually mea-
sured was 444 and 445 in the Caldes and R lines, respec-
tively. Marginal posterior distributions of the genetic
parameters were obtained by Gibbs sampling. Posterior
means (posterior SD) for heritabilities for partial coef-
ficients of regression of feed intake on metabolic BW
and feed intake on BW gain were estimated to be 0.35
(0.17) and 0.40 (0.17), respectively, in the Caldes line
and 0.26 (0.19) and 0.27 (0.14), respectively, in line R.
The estimated posterior means (posterior SD) for the
proportion of the phenotypic variance due to common
litter environmental effects of the same coefficients of
regression were respectively, 0.39 (0.14) and 0.28 (0.13)
in the Caldes line and 0.44 (0.22) and 0.49 (0.14) in line
R. These results suggest that efficiency of use of feed
resources could be improved by including these coeffi-
cients in an index of selection.

that other alternatives, such as a selection index,
should be used instead, with the objective of improving
response to selection for the feed conversion ratio.

On the other hand, Rauw et al. (2000, 2002) have
described a 2-step procedure that allows comparison
of genetic lines by the efficiency of metabolic resource
allocation for BW maintenance, growth, and other met-
abolic processes, such as physiological activity and re-
sponses to stress or pathogens.

The aim of the present paper was to describe and
implement a Bayesian method based on this strategy
using a hierarchical Bayesian scheme (Wakefield et
al., 1994). The procedure allowed consideration of the
individual variation in the resource allocation pattern,
and as a consequence, its possible utilization in an
index of selection for feed efficiency (Blasco, 2001). The
procedure also had all of the advantages of linear or
nonlinear hierarchical models described by Varona et
al. (1997) and illustrated later on in cattle (Varona et
al., 1998; Rekaya et al., 2000, 2001), poultry (Mignon-
Gastreau et al., 2000), and rabbits (Blasco et al., 2003;
Piles et al., 2003).
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MATERIALS AND METHODS

The research protocol was approved by the animal
care and use committee of Institut de Recerca i Tecno-
logia Agroalimentàries (IRTA).

Method

The model was based on the hierarchical Bayesian
scheme of Wakefield et al. (1994). The joint posterior
density of an unknown vector of parameters (θ) and
hyper parameters (φ), given the data (y), is ex-
pressed as

p(θ, φ | y) ∝ p(y | θ)p(θ | φ)p(φ),

where p(θ, φ | y) is the posterior density, p(y | θ) is the
likelihood (first-stage of the hierarchical model), p(θ |
φ) is the prior density of the parameters given the
hyper parameters (second-stage), and p(φ) is the prior
density of the hyper parameters. In this model, uncer-
tainty about unknowns at some level is accounted for
when inferring unknowns at other levels and all (co)-
variances between observations are taken into ac-
count, leading to a correct statement of precision of
estimates (Varona et al., 1997).

First Stage of the Model. The first stage of the
model defines the multivariate regression model for
feed consumption. Individual feed intake in period j
was assumed to follow the model: yij = ai + bi ×
ABW0.75

ij + di × BWGij + εij, where yij is the cumulative
feed intake of individual i during the 7-d period j, ai
is the individual intercept, bi is the individual partial
coefficient of regression of feed intake (g/7-d) on meta-
bolic BW (g0.75/7-d), di is the individual partial coeffi-
cient of regression of feed intake on BW gain (g/7-d),
and ABWij and BWGij are the average BW (calculated
as the average of the initial and final BW) and BW
gain of individual i during period j. Individual meta-
bolic BW in each period (MBWij) was estimated as
ABW0.75

ij . The εij is the residual.
We assumed that the data were conditionally inde-

pendent and identically normal distributed. We also
assumed that all animals had the same residual vari-
ance (σ2

ε) at any period j, but more complete models
considering residuals to be heteroscedastic or not inde-
pendently distributed, or both, could also be imple-
mented: yij | ai, bi, di, σ2

ε ∼ N(ai + bi × ABW0.75
ij + di ×

BWGij, σ2
ε). Thus, the likelihood could be written as

f(y | θ, σ2
ε) = Π

N

i=1
Π
ni

j=1

1

√2πσε

exp
⎧
⎨
⎩
−(yij − ai − bi × ABW0.75

ij − di × BWGij)2

2σ2
ε

⎫
⎬
⎭
,

where y is the vector of data of individual feed intake
(g/7 d); θ′ = {a′, b′, c′} is the vector of parameters of

the multivariate regression model; a′ = {ai, i = 1,...,N}
is the vector of individual intercepts; b′ = {bi, i = 1,...,N};
and d′ = {di, i = 1,...,N} are the vectors of individual
partial coefficients of regression of feed intake on meta-
bolic BW and BW gain, respectively; N is the number
of individuals with data; and ni is the number of re-
cords for animal i.

Second Stage of the Model. The second stage of
the model describes the interindividual variation of
the nonobservable traits: the intercept and both coef-
ficients of regression. Thus, it constitutes the prior
information of the parameters of the model in the first
stage. These traits were determined by a vector of
systematic effects, a common litter environmental ef-
fect, an individual additive genetic effect, and a ran-
dom environmental component that we assumed to be
normally distributed. Thus,

a, b, d | βa, βb, βd, ca, cb, cd, ua, ub, ud, C, G, R

∼ N

⎛
⎜
⎜
⎝

Xβa + Wca + Zua

Xβb + Wcb + Zub, R ⊗ I
Xβd + Wcd + Zud

⎞
⎟
⎟
⎠
,

where βa, βb, and βd are vectors of systematic effects
on a, b, and d, respectively; ca, cb, and cd are vectors
of common litter effects; and ua, ub, and ud are vectors
of additive genetic effects for the intercept and the
partial coefficients of regression, respectively; X, W,
and Z are incidence matrices; and R⊗I is the (co)vari-
ance matrix of the random environmental effects,
where R is the (co)variance matrix between these ef-
fects within individual. We thus assumed that the ran-
dom effects were independent between individuals, but
not within each individual.

Third Stage of the Model. The third stage of the
model describes the uncertainty about first and second
stage parameters (joint prior density). We considered
that genetic and common litter effects were indepen-
dently distributed and that they had a normal prior
distribution:

⎛
⎜
⎜
⎝

ca

cb

cd

⎢
⎢
⎢

C

⎞
⎟
⎟
⎠

∼ N(0, C ⊗ I), and

⎛
⎜
⎜
⎝

ua

ub

ud

⎢
⎢
⎢

G

⎞
⎟
⎟
⎠

∼ N(0, G ⊗ A),

where G is the genetic (co)variance matrix of the inter-
cept and the partial coefficients of regression, A is the
numerator relationship matrix, and C is the (co)vari-
ance matrix of common litter effects of the intercept
and the partial coefficients of regression. We also as-
sumed that the systematic effects and the (co)variance
components (R, C, and G) had uniform prior distribu-
tions with boundaries to ensure the posterior distribu-
tions to be proper distributions (Press, 1989).
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Residuals in the first-stage of the model were as-
sumed to be independent of the interindividual (sec-
ond-stage) residuals, given the vector of individual in-
tercepts and partial coefficients of regression. They
were also assumed to be independent between individ-
uals; thus, let φ′ = {βa, βb, βd, ca, cb, cd, ua, ub, ud, C,
G, R, σ2

ε}. The joint prior density was

p(φ) = p(βa, βb, βd) × p(ca, cb, cd | C)

× p(ua, ub, ud | G) × p(C) × p(G) × p(R) × p(σ2
ε).

The joint posterior density was

p(θ, φ | y ∝ p(y | θ, σ2
ε)

× p(θ | βa, βb, βd, ca, cb, cd, ua, ub, ud, C, G, R) × p(φ),

and p(θ, φ | y) ∝ p(y | a, b, d, σ2
ε)

× p(a, b, d | βa, βb, βd, ca, cb, cd, ua, ub, ud, C, G, R)

× p(βa, βb, βd) × p(ca, cb, cd | C) × p(ua, ub, ud | G)

× p(C) × p(G) × p(R) × p(σ2
ε).

Marginal posterior distributions of all unknowns
were estimated using a Gibbs sampling procedure (Ca-
sella and George, 1992).

The fully conditional posterior distributions for the
intercept and the partial coefficients of regression were
obtained from the product of 2 normal distributions:

f(ai | bi, di, θ−i, β, u, c, σ2
ε, R, y) ∝ f(yi | ai, bi, di, σ2

ε)

× f(ai | bi, di, β, u, c, R).

1) From the conditional distribution of the data:

ai | bi, di, σ2
ε, yi

∼ N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
ni

j=1
(yij − bi × ABW0.75

ij − di × BWGij)

ni
, σ2

ε

ni

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

bi | ai, di, σ2
ε, yi ∼

N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
ni

j=1
(yij − ai − di × BWGij) × ABW0.75

ij

∑
ni

j=1
[ABW0.75

ij ]2

, σ2
ε

∑
ni

j=1
[ABW0.75

ij ]2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and di | ai, bi, σ2
ε, yi

∼ N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
ni

j=1
(yij − ai − bi × ABW0.75

ij ) × BWGij

∑
ni

j=1
[BWGij]2

, σ2
ε

∑
ni

j=1
[BWGij]2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

2) From the conditional distribution of the intercept
and both coefficients of regression given genetic and
environmental effects:

ai | bi, di, β, u, c, R

∼ N
⎛
⎜
⎝
ma − rab

raa(bi − mb) − rad

raa(di − md), 1/raa⎞
⎟
⎠
,

bi | ai, di, β, u, c, R

∼ N
⎛
⎜
⎝
mb − rab

rbb(ai − ma) − rbd

rbb(di − md), 1/rbb⎞
⎟
⎠
, and

di | ai, bi, β, u, c, R

∼ N
⎛
⎜
⎝
md − rad

rdd(ai − ma) − rbd

rdd(bi − mb), 1/rdd⎞
⎟
⎠
,

where raa, rab, rad, rbb, rbd, rdd are the corresponding
elements of the inverse of residual (co)variance matrix
(R); and ma, mb, md the corresponding means for a, b,
d given β, u, c, and R:

ma = Xiβa + Wica + Ziua,

mb = Xiβb + Wicb + Ziub, and

md = Xiβd + Wicd + Ziud.

The fully conditional posterior distribution for the
location parameters was

f(β,u,c | θ,σ2
ε,G,C,R,y) ∝ f(θ | β,u,c,σ2

ε,G,C,R,y)

× f(β) × f(u | G) × f(c |C).

Thus,

gi | g−i,θ,σ2
ε,G,C,R,y ∼ N

⎡
⎢
⎢
⎣

RHSi − ∑
i≠j

lijgi

lij
, 1

lij

⎤
⎥
⎥
⎦
,

where g−i is the vector g′ = [β′, u′, c′] without the
element i, RHSi is the corresponding element of the
Right-Hand Side, and lij the corresponding coefficient
of the mixed model equations constructed as if the
observed traits were the intercept and the regres-
sion coefficients:

⎡
⎢
⎢
⎣

X′R−1X X′R−1Z X′R−1W
Z′R−1X Z′R−1Z + (G ⊗ A)−1 Z′R−1W
W′R−1X W′R−1Z W′R−1W + (I ⊗ C)−1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

β

u
c

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

X′R−1θ

Z′R−1θ

W′R−1θ

⎤
⎥
⎥
⎦
.

The fully conditional posterior distributions for the
(co)variance matrices were
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f(R | θ, σ2
ε, β, u, c, y) ∝ f(θ | β, u, c, R) × f(R).

Thus,

R | θ, σ2
ε, β, u, c, y

∼ W−1(N − 4, (θ − Xβ − Zu − Wc)′(θ − Xβ − Zu − Wc))

f(G | θ, σ2
ε, β, u, c, y) ∝ f(θ | β, u, c, G) × f(G).

Thus,

G | θ, σ2
ε, β, u, c, y ∼ W−1(q − 4, U′A−1U),

where U = [ua, ub, ud], where ua, ub, and ud are vectors
with the genetic values of the intercept and regression
coefficients for all individuals of the genealogy, and q
is the number of individuals in the genealogy. In ad-
dition,

f(C | θ, σ2
ε, β, u, c, y) ∝ f(θ | β, u, c, C) × f(C).

Thus,

C | θ, σ2
ε, β, u, c, y ∼ W−1(p − 4, P′P),

where P′ = [c′
a, c′

b, c′
d]. ca, cb, and cd are vectors with

the common litter effects of the intercept and regres-
sion coefficients, and p is the number of levels of
this factor.

The fully conditional posterior distribution for fit-
ting the error variance was

f(σ2
ε | θ, β, u, c, R, y) ∝ f(y |θ, σ2

ε).

Thus,

σ2
ε | θ, β, u, c, R, y

∼ χ−2
⎡
⎢
⎣∑

N

i=1
∑
ni

j=1
[yij − ai − bi × ABW0.75

ij

− di × BWGij]2, Nd − 2
⎤
⎥
⎦
,

where Nd was the number of observations.

Implementation

The procedure was implemented using data from 2
elliptical selection experiments performed to estimate
the genetic parameters of BW gain and feed conversion
ratio during the fattening period in rabbit lines Caldes
and R. The elliptical selection design (Cameron and
Thompson, 1986) is based on selecting parents with
extreme values and estimating the heritability by off-
spring-parent regression. The extreme individuals are
the animals that lie outside of an ellipse defined by a

Table 1. Number of records and means (SD) for individ-
ual metabolic BW (MBW, g0.75/7 d) and BW gain (BWG,
g/7 d) in each 7-d period, in the Caldes and R lines
of rabbits

No. of
Line Period rabbits MBW BWG

Caldes 1 433 177 (29) 362 (81)
2 439 225 (34) 405 (80)
3 439 273 (37) 397 (75)
4 437 315 (38) 349 (71)

R 1 443 188 (26) 410 (69)
2 442 240 (30) 426 (75)
3 437 290 (31) 421 (64)
4 434 333 (33) 337 (79)

quadratic index, Ii = x′
iP−1

0 xi, where xi is the 2-trait
data vector of individual i, and P0 is the phenotypic
(co)variance matrix of these traits.

The Caldes line was formed by crossing animals from
5 New Zealand White lines and a California × New
Zealand synthetic line. Line R originated by crossing a
California line with a synthetic line created by mating
rabbits from commercial male lines. Both lines were
selected for growth rate by individual selection from
1993 and 1980, respectively (Estany et al., 1992; Gó-
mez et al., 1999).

Experimental animals were allocated to individual
cages on the experimental farm of IRTA and were fed
ad libitum with a commercial diet (16.4% CP, 15.2%
fiber, 4% fat, DM basis). Body weight (g) and cumula-
tive feed intake (FI, g) during the fattening period
(from weaning at 32 d of age to 60 d of age) were
recorded weekly. Individual BW gain (BWG, g) and
average BW (g) were calculated from these data per
animal for each 7-d period and for the entire fattening
period. The correlation between MBW and BWG was
low in both lines (0.22 and 0.05 in the Caldes and R
lines, respectively). The number of animals measured
was 444 and 445 in the Caldes and R lines, respec-
tively.

The means (SD) of the individual metabolic BW and
BW gain in each period and each line are shown in
Table 1. Details about the experimental design, the
elliptical selection procedure, and the intensity of se-
lection from weighted selection differentials are given
in Piles et al. (2003).

The statistical analysis was performed for each line
separately. The increase in residual variance due to a
scale effect was considered to be negligible because the
fattening period is very short in rabbits (only 4 wk).
On the other hand, the number of observations was
small and it was necessary to reduce the number of
parameters to estimate. Thus, residuals were consid-
ered to be homoscedastic and independently distrib-
uted. A uniform prior distribution was also considered
for the individual intercepts, instead of the probability
density coming from the second stage of the hierarchi-
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cal model. Thus, the joint posterior density for the
analyses was

p(θ, φ | y) ∝ p(y | a, b, d, σ2
ε)

× p(b, d | βb, βd, cb, cd, ub, ud, C, G, R) × p(a)

× p(βb, βd) × p(cb, cd | C) × p(ub, ud | G) × p(C)

× p(G) × p(R) × p(σ2
ε).

The model assumed for each coefficient of regression
included the systematic effects of: sex (male or female),
batch (10 levels), litter size in which the animal was
born (8 levels: <6, 6, 7, 8, 9, 10, 11, and >11), parity
order (3 levels: first, second, third, and greater), the
common litter effect, and the additive genetic effect.
There were 561 and 553 animals in the pedigree file
for the Caldes and R lines, respectively, corresponding
to all of the animals from the elliptical selection experi-
ments and their parents.

The Gibbs sampler was implemented using 3 chains
of 2,500,000 iterations. The first 500,000 iterations of
each chain were discarded, and samples of the parame-
ters of interest were saved for each of 10 iterations.
Gibbs samples were used to estimate features of the
marginal posterior distribution (i.e., mean, SD, and
posterior credibility regions of size 95%). Gelman and
Rubin’s (1992) diagnostic test was used to assess con-
vergence. Convergence was also tested for each chain
using the criteria of Geweke (1992). Autocorrelation
between samples and Monte-Carlo error of features of
marginal distributions (Geyer, 1992) were also cal-
culated.

RESULTS AND DISCUSSION

In order to evaluate the goodness of fit of the model
and the adequacy of some of the assumptions made,
we plotted the means of the posterior distributions of
residuals against the means of the posterior distribu-
tions of the predicted values in both lines (Figure 1).
This plot reveals that there was no dependence of the
residuals on the predicted values and the assumption
of constant residual variance held.

Table 2 shows the summary statistics of the esti-
mated marginal posterior distributions of the propor-
tion of the phenotypic variance due to additive genetic
effects (h2), the proportion of the phenotypic variance
due to common litter effects (c2), and phenotypic vari-
ance (σ2) for partial coefficients of regression of feed
intake on metabolic BW (b) and feed intake on BW
gain (d), and the residual variance (σ2

ε), in the Caldes
and R lines. Table 2 also shows the values of several
features of the chains that describe the simulation
processes. From visual inspection of the trace plots
and results of Geweke’s test, there was no evidence
against convergence for each variable in each simula-
tion process. Moreover, the value of the scale factor of
the Gelman and Rubin test was 1 or very close to 1

Figure 1. Plot of the means of the posterior distributions
of residuals against the means of the posterior distribu-
tions of the predicted feed intake (g/d) in the Caldes and
R lines of rabbits.

(the lowest value was 0.99) for all the parameters in
both lines. The autocorrelations between successive
samples of the same chain were high, indicating poor
mixing and small effective sample size. However, pool-
ing samples over chains after convergence, the Monte
Carlo SE were in all cases smaller than 0.4% of the
posterior mean, which suggests that the simulation
processes were sufficiently long and that the estimates
of features of the marginal posterior distributions
could be considered sufficiently accurate.

Estimated marginal posterior distributions were
nearly symmetrical and approximated a normal distri-
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Table 2. Heritability (h2), proportion of the phenotypic variance due to common litter
effects (c2), and phenotypic variance (σ2) for partial coefficients of regression of feed intake
(g/7 d) on metabolic BW (g0.75/7 d) and feed intake (g/7 d) on BW gain (g/7 d), and
residual variance (σ2

ε) in the Caldes and R lines of rabbits

Line P1 Item PM2 PSD3 HPD 95%4 r5 MCse6

Caldes b h2 0.348 0.171 [0.011, 0.653] 0.95 0.00099
c2 0.389 0.136 [0.128, 0.650] 0.86 0.00069
σ2 0.350 0.064 [0.229, 0.474] 0.69 0.00024

d h2 0.404 0.169 [0.095, 0.729] 0.94 0.00095
c2 0.275 0.130 [0.042, 0.521] 0.86 0.00062
σ2 0.286 0.060 [0.178, 0.405] 0.78 0.00026
σ2

ε 4,373 208 [3,968, 4,786] 0.13 0.398
R b h2 0.259 0.189 [0.0003, 0.633] 0.98 0.00101

c2 0.436 0.221 [0.0008, 0.811] 0.97 0.00116
σ2 0.066 0.029 [0.018, 0.123] 0.95 0.00015

d h2 0.268 0.140 [0.032, 0.533] 0.96 0.00073
c2 0.492 0.136 [0.227, 0.746] 0.90 0.00066
σ2 0.347 0.077 [0.207, 0.500] 0.82 0.00034
σ2

ε 5,540 243 [5,074, 6,023] 0.13 0.453

1P = parameter: b, partial coefficient of regression of feed intake (g/7 d) on metabolic BW (g0.75/7 d); d,
partial coefficient of regression of feed intake (g/7 d) on BW gain (g/7 d); and σ2

ε, residual variance.
2PM = posterior mean.
3PSD = posterior SD.
4HPD 95% = highest posterior density of 95%.
5r = autocorrelation between successive samples of the same chain.
6MCse = Monte Carlo SE.

bution; thus, the SD provided a good indication of the
accuracy of the estimates. The marginal posterior
means (SD) of genetic variance were 0.121 (0.063) and
0.118 (0.059) for b and d, respectively, in the Caldes
line and 0.017 (0.015) and 0.092 (0.051) for b and d,
respectively, in line R. The values of the limit k in the
interval from k to infinity that contains 95% of the
area of the marginal posterior density were 0.03 and
0.04 for b and d, respectively, in the Caldes line
and, 0.002 and 0.02 for b and d, respectively, in line
R. The marginal posterior means of the proportion of
the phenotypic variance due to additive genetic effects
of partial coefficients of regression were moderate, but
due to the small amount of data, the SD of the posterior
density for these parameters was very high. The values
of the limit k in the interval from k to infinity that
contains 95% of the area of the marginal posterior
density were 0.08 and 0.14 for b and d, respectively,
in the Caldes line and, 0.03 and 0.07 for b and d,
respectively, in line R. These results suggest that it is
feasible to improve efficiency of animals for the use of
feed resources through individual predictions of the
additive genetic values for these parameters. The par-
tial coefficient of regression of feed intake on metabolic
BW represents maintenance requirements per kilo-
gram of metabolic weight, whereas the partial coeffi-
cient of regression of feed intake on BW gain is related
to the efficiency of use of resources for growth. It should
be noted that some bias could exist in the estimates
of the partial regression coefficients and variance com-
ponents because both populations had been selected
for growth rate during the fattening period and the
entire history of the selection procedure was not con-

tained in the data employed for analysis (Gianola and
Fernando, 1986).

The proportion of environmental effects related to
the litter was not negligible for the 2 coefficients of
regression in both lines (Table 2). The estimated poste-
rior means (posterior SD) were 0.39 (0.14) and 0.28
(0.13) for b and d, respectively, in the Caldes line and
0.44 (0.22) and 0.49 (0.14) for b and d, respectively, in
line R. The greater importance of these effects during
the fattening period, compared with other species such
as pigs, is due to the proportionately shorter interval
of time from weaning to slaughter. In rabbits this in-
terval is only 4 wk, whereas in pigs, for example, it is
approximately 5 mo.

Posterior mean and posterior SD of the phenotypic
and genetic correlations between the partial coeffi-
cients of regression in the Caldes and R lines are shown
in Table 3. Due to the small amount of data, the esti-
mates of those parameters were very inaccurate and
nothing can be known about the genetic relationship
between the 2 partial regression coefficients and the
possible correlated response in the other trait when a
population is selected for increased efficiency of feed
use for growth or against feed required for BW main-
tenance.

Inferences with the proposed model are conditional
to the values of BWG and MBW. Both traits, BWG
and MBW, are subject to genetic and environmental
variation, and, therefore, more complex models could
be proposed to avoid the possible bias in the estimates
of the partial regression coefficients and variance com-
ponents. These models include both a recursive (Gia-
nola and Sorensen, 2004) and a reaction norm model
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Table 3. Phenotypic (rp) and genetic (rg) correlations between partial coefficients of regres-
sion of feed intake (g/7 d) on metabolic BW (g0.75/7 d) and feed intake (g/7 d) on BW
gain (g/7 d) in the Caldes and R lines of rabbits

Line P1 PM2 PSD3 HPD 95%4 r5 MCse6

Caldes rg 0.515 0.446 [−0.336, 0.991] 0.98 0.0027
rp 0.093 0.144 [−0.187, 0.372] 0.78 0.0006

R rg 0.599 0.532 [−0.738, 1.00] 0.99 0.0114
rp 0.699 0.171 [0.364, 0.972] 0.95 0.0068

1P = parameter.
2PM = posterior mean.
3PSD = posterior SD.
4HPD 95% = highest posterior density of 95%.
5r = autocorrelation between successive samples of the same chain.
6MCse = Monte Carlo SE.

(Su et al., 2006), with very complex implementation
and identification problems. These models will be an
interesting topic for future research.

The model proposed could be extended to include
coefficients of regression of feed consumption on other
production traits, such as backfat thickness in pigs or
egg production in poultry. Moreover, the model could
have some interesting applications in research of the
genetic causes of obesity and their relationship with
feed intake and energy expenditure. The model can
easily be adapted to include QTL or gene effects, and,
as a consequence, it can be used to study the role of
some regions of the genome, such as the leptin, leptin
receptor, or peroxisome proliferator-activated recep-
tor-gamma genes (Paracchini et al., 2005) in the alloca-
tion of feed resources in livestock or human popu-
lations.

A procedure based on the hierarchical Bayesian
scheme and on multiple regression models for the anal-
ysis of individual feed resource allocation pattern was
described and applied to data from animals of 2 sire
lines of rabbits. The procedure allows estimation of
systematic effects and variance components, and pre-
diction of breeding values for the use of feed resources
for maintenance of metabolic BW and BW gain, which
can be used in a selection index to improve the global
efficiency of use of feed resources. Estimated heritabil-
ities of partial coefficients of regression were moderate
to high in the 2 populations, indicating that efficiency
of feed use could be improved by selecting for these
coefficients. However, the accuracy of these estimates
was low and more research is needed with a larger data
set to draw reliable conclusions about the efficiency of
selection and the correlated responses. The proposed
model could be extended to include other production
traits.
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