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Abstract 33 

The feasibility of using supercritical CO2 assisted by ultrasound (SC-CO2-HPU) 34 

in continuous mode (3.06 min residence time) for the non-thermal pasteurization of 35 

orange juice was evaluated. The proposed technology was effective for microbial 36 

inactivation; complete inactivation was obtained for E. coli and total aerobic mesophilic 37 

bacteria while 99.7% reduction for S.cerevisiae. Results showed that the SC-CO2-HPU 38 

treatment brought about small changes in the pH, ºBrix and titratable acidity of the juice. 39 

Furthermore, although SC-CO2-HPU technology produced a higher browning index 40 

(211%) and greater changes in color, it was possible to improve the cloud of juice by 41 

173%; what is more, a smaller percentage of phenolic compounds (6.5%) and ascorbic 42 

acid (5.5%) was lost compared to the thermally pasteurized juice (10 % decrease in both 43 

parameters). Moreover, the antioxidant capacity could be increased (12%) with respect 44 

to the natural juice. Therefore, SC-CO2-HPU technology appears to be effective for 45 

microbial pasteurization and the mild process conditions used could lead to an increase 46 

in the juice quality.  47 

 48 

 49 

Industrial relevance 50 

The demand for high quality processed foods which preserve their natural and fresh-like 51 

characteristics has awakened a growing interest in non-thermal technologies. The 52 

ultrasound-assisted SC-CO2 continuous system is an innovative non-thermal technology 53 

that could represent a development in the area of emerging technologies. This 54 

technology allows high quality products to be obtained by preserving their natural 55 

bioactive compound content while maintaining their fresh-like organoleptic 56 

characteristics. In fact, food experts working in academia, industry or governmental 57 

agencies worldwide foresee that non-thermal emerging technologies will be among the 58 

most impactful novel food processing technologies for the next decade in terms of 59 

product commercialization. 60 

 61 
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1. Introduction 70 

 71 

In recent years, while developed countries have witnessed a rise in the consumption 72 

of processed fruit juices, that of fresh citrus fruit has been on the wane (Tiwari, O'Donnell, 73 

Muthukumarappan, & Cullen, 2009a). Worldwide, orange juice is a very popular product 74 

due to its high nutritional value, its bioactive components, such as phenolic compounds, 75 

vitamin C and carotenoids, and its sensory characteristics (Ortuño, Balaban, & Benedito, 76 

2014). 77 

Despite its low pH, this juice needs to be processed because it is of limited stability 78 

due to microbial growth and enzyme activity, which can cause unpleasant organoleptic 79 

changes or the degradation of compounds during storage (Fabroni, Amenta,  Timpanaro, 80 

& Rapisarda, 2010; Ferrentino, Plaza, Ramirez‐Rodrigues, Ferrari, & Balaban, 2009; 81 

Khandpur, & Gogate, 2016 ; Liu et al, 2010; Zinoviadou et al, 2015). 82 

Although thermal pasteurization remains the most commonly-used method for the 83 

preservation of juices, there is growing interest in developing alternative techniques. The 84 

new techniques are expected to minimize changes in the nutritional and organoleptic 85 

characteristics of food, obtaining fresher and richer juices than traditional thermal 86 

technology. Two such techniques are high hydrostatic pressure (HHP) and pulsed 87 

electric fields (PEF), which result in better quality retention and adequate shelf life; 88 

however, they cannot inactivate enzymes, such as PME, well enough to produce a shelf-89 

stable juice, unless they are combined with elevated temperatures. In addition, these 90 

new technologies involve high investment and operational costs, which is an important 91 

obstacle to their industrial application (Niu et al, 2010; Ozuna, Paniagua-Martínez, 92 

Castaño-Tostado, Ozimek, & Amaya-Llano, 2015; Tiwari, Muthukumarappan, O'donnell, 93 

& Cullen, 2009b; Vervoort et al., 2011). Moreover, at present, HHP processing consists 94 

of batch processes, which limits its use because of its low processing capacity (Damar 95 

& Balaban, 2006). 96 

For the purposes of processing large volumes of liquid food, such as orange juice, a 97 

continuous preservation process is more desirable. This objective can be attained by 98 

applying supercritical fluids, a non-thermal preservation technique in which both CO2 and 99 

the product are pumped through the system by high-pressure pumps, mixed and 100 

maintained in contact for a period of time (Fabroni et al., 2010; Paniagua-Martínez, 101 

Mulet, García-Alvarado, & Benedito, 2016). 102 

Supercritical CO2 (SC-CO2) has a density close to that of liquids, as well as gas 103 

properties like high diffusivity and low viscosity; therefore, it has excellent transport 104 

properties. Furthermore, these properties can be controlled by temperature and pressure 105 



 
 

changes (Calix, Ferrentino, & Balaban, 2008; Niu et al, 2010.; Wimmer & Zarevúcka, 106 

2010). Supercritical CO2 is considered an excellent alternative to solvents because of its 107 

non-toxic and non-flammable nature and its relatively low critical pressure and 108 

temperature (73.6 bar, 31.0 °C). Moreover, the SC-CO2 has a lethal effect on bacteria 109 

(Garcia González et al., 2007). This effect is directly proportional to the applied pressure, 110 

time and temperature. SC-CO2 acts on bacteria as follows: first, solubilization occurs in 111 

the external liquid phase, causing carbonic acid formation (which dissociates into 112 

bicarbonate and hydrogen ions); therefore, it increases cell membrane fluidity and 113 

permeability, increasing the diffusion of CO2 into the cell and causing a decrease in 114 

intracellular pH. Thus, the inactivation/inhibition of key cellular metabolic enzymes for 115 

microorganisms occurs. As a result, a disorder in the electrolyte balance of intracellular 116 

constituents is produced and vital constituents of cells and cell membranes are extracted 117 

(Fabroni et al., 2010; Garcia González et al., 2007; Kincal et al., 2005; Ortuño, Martínez-118 

Pastor, Mulet, & Benedito, 2013; Paniagua et al., 2016). 119 

Despite all the aforementioned advantages of SC-CO2 inactivation, even the 120 

continuous systems require long treatment times and high pressures and temperatures 121 

(Fabroni et al., 2010; Kincal et al., 2005) to ensure the safety and stability of food, limiting 122 

the efficiency of the inactivation process, compromising the food quality and increasing 123 

processing costs. In this sense, there is growing interest in process intensification, with 124 

the simultaneous application of different non-thermal technologies, in the search for 125 

synergistic effects. One of the techniques that synergistically improves the inactivation 126 

mechanisms of SC-CO2 is high power ultrasound (HPU), which accelerates and 127 

improves heat and mass transfer processes (Ortuño et al., 2013, 2014; Paniagua et al., 128 

2016).  129 

When high power ultrasound propagates in a liquid, cavitation bubbles are generated 130 

by pressure changes. These microbubbles collapse violently in the succeeding 131 

compression cycles of a propagated sonic wave. This results in localized high 132 

temperatures, pressures and significant shearing effects. Consequently, the intense 133 

local energy and high pressure bring about a localized pasteurization effect (without 134 

causing significant temperature increases, while shortening processing time and cutting 135 

energy consumption) (Abid et al., 2013; Tiwari, Mu hukuma appan, O’Donnell, & Cullen, 136 

2008a; Tiwari et al., 2009). Therefore, with the combination of SC-CO2 and HPU (SC-137 

CO2-HPU), an increase is produced both in the solubilization rate of SC-CO2 in the liquid 138 

and in the mass transfer due to the vigorous stirring produced by the ultrasonic field. 139 

Thereby, a quick saturation of CO2 in the medium is achieved, as well as the 140 

intensification of the inactivation mechanisms. Furthermore, cavitation and agitation 141 

produced by the HPU cause cell wall damage, increasing the SC-CO2 penetration, the 142 



 
 

intracellular compound extraction and the death of microbial cells. In addition, thermal, 143 

chemical and mechanical effects induced by HPU cavitation contribute to enzyme 144 

inactivation (Tiwari et al., 2008a). The combined use of use of SC-CO2 and HPU can be 145 

considered as a green processing technique since it can contribute to the reduction of 146 

energy and waste, the increase of the product quality and safety and the decrease of the 147 

carbon and water footprint (Chemat et al., 2017).   148 

Ortuño, Martínez-Pastor, Mulet, and Benedito (2012) reported that by using a batch-149 

mode SC-CO2 at 350 bar and 36 °C for 25 min, a reduction of 1 log-cycle in Escherichia 150 

coli DH1 (E. coli) was obtained in orange juice. However, Kincal et al. (2005) reported 151 

that a continuous SC-CO2 treatment (210 bars, 34.5 °C, 10 min residence time) caused 152 

at least a 5 log-cycle reduction in pathogens (E. coli O157: H7, Salmonella Typhimurium 153 

and Listeria monocytogenes). Consequently, it can be expected that batch-mode 154 

equipment requires a much longer inactivation time compared to continuous SC-CO2 155 

systems. There are a few studies of batch-mode SC-CO2 intensified using ultrasound 156 

(SC-CO2-HPU); two of them prove the complete inactivation of the E.coli and 157 

S.cerevisiae population in orange juice after 1.5 min (225 bar, 36 °C) and 5 min (350 bar, 158 

36 °C) of treatment, respectively (Ortuño et al., 2012, 2013). In order to improve the 159 

efficiency of batch SC-CO2 treatments, a continuous system was developed by Paniagua 160 

et al. (2016) who studied the inactivation of S. cerevisiae in apple juice, using the 161 

continuous flow SC-CO2-HPU at different juice residence times (3.06-9.2 min), 162 

temperatures (31-41 °C) and pressures (100-300 bars). The results demonstrated that 163 

the maximum inactivation achieved by the system was 7.8 log-cycles. However, there 164 

are no studies covering either the use of this continuous technique (SC-CO2-HPU) for 165 

other types of juices or the effect of the process on the product quality. Therefore, the 166 

aim of this study was to determine the effect of SC-CO2-HPU treatment in a continuous 167 

regime on both the inactivation of the microbiota and the quality attributes of orange 168 

juice. 169 

 170 

2. Materials and methods 171 

 172 

2.1. Orange juice 173 

Valencia Navel oranges (Citrus sinensis) were purchased from a local market and 174 

kept at 4 °C for 2 days until juice extraction. Orange juice was obtained by washing, 175 

peeling and extracting the fruit juice (Ultra Juicer, Robot Coupe J80, USA). Juice 176 

extraction took place just prior to the treatment application; consequently, an extraction 177 

was required for each experiment. Each experiment required about 1.5 L of juice, 1 L 178 

was used for processing (SC-CO2-HPU and thermal pasteurization), and 0.5 L served 179 



 
 

as control. Juices were not inoculated and only the inactivation of the microbiota was 180 

considered. 181 

 182 

2.2. SC-CO2-HPU processing 183 

Laboratory continuous regime equipment was designed and built for supercritical CO2 184 

assisted by high power ultrasound (SC-CO2-HPU) (Figure 1) (Paniagua et al., 2016). 185 

The SC-CO2-HPU process applied to the juice was as follows: first, liquid carbon 186 

dioxide was supplied from the tank to the chiller reservoir in which it was compressed to 187 

200 bar by means of the injection of pressurized gaseous N2. The liquid CO2 was 188 

supplied from the bottom of the chiller reservoir (which stores it at −18 °C) to the pump 189 

where it was compressed at the target pressure. The equipment was stabilized at the 190 

treatment pressure ( P ) and temperature (T ) by flowing SC-CO2 at a constant flow rate 191 

of 5 mL/min. Thereafter, the ultrasound equipment was connected, and once the process 192 

conditions ( P ,T ) were attained, the sample to be treated was pumped to the mixing 193 

point (7, Fig.1) where it mixed with the SC-CO2. The mixture went into the sonication 194 

vessel (8, Fig. 1), where the HPU was applied. For the experiments with HPU, the power 195 

applied during the whole experiment was 40 W±5W (I=250 ±10mA; U=220 ±5 V, 196 

measured with a Digital Power Meter, Yokogawa, Model WT210). Pressure and 197 

temperature were kept constant during the experiment. The mixture of juice/SC-CO2 198 

exiting the sonication vessel went into the holding tube (14, Fig. 1) and, finally, into the 199 

separation vessel (15, Fig. 1), where it was depressurized and the CO2 separated from 200 

the juice and recirculated to the reservoir (3, Fig. 1). Prior to each experiment, the 201 

different sections of the equipment through which the product flows were cleaned and 202 

sanitized with disinfectant solution (Delladet VS2, Diversey, Spain) and distilled and 203 

autoclaved water. To determine the effect of temperature on both the quality parameters 204 

and on the inactivation of the microbiota of orange juice, samples (0.5 L) were treated 205 

by SC-CO2-HPU in a continuous system at 100 bar and different temperatures (31, 36 206 

and 41 °C). The pressure and temperature conditions were selected according to 207 

Paniagua et al. (2016), taking into account that low pressures reduce the operating costs 208 

while maintaining an acceptable microbial inactivation. The flow rate of juice was 25 209 

mL/min and the residence time 3.06 min. The process conditions were selected from 210 

previous experiments in order to attain adequate inactivation levels. All the experiments 211 

were run in triplicate. 212 

 213 

2.3. Heat treatment 214 



 
 

To evaluate the effect of conventional thermal treatment on the quality parameters 215 

and microbiota inactivation of orange juice, the juice was pasteurized (PASC Computer 216 

Controlled Laboratory pasteurizer, EDIBON, Spain) at 90 °C for 1 minute. For this 217 

purpose, the juice was placed in a feed tank, driven by a pump to a plate heat exchanger, 218 

rapidly heated to the desired temperature and taken to the holding tube where it 219 

remained throughout the processing time. After the treatment, the juice was cooled 220 

rapidly in a water bath (4 °C). Experiments were run in triplicate. Thus, it was possible to 221 

compare the SC-CO2-HPU processing results (quality and microbiology) with those of 222 

the conventional heat treatment. 223 

 224 

2.4. Microbiota analysis 225 

The viability of E. coli, total aerobic mesophilic and S. cerevisiae in the orange juice 226 

samples was determined by the plate count method to evaluate the effect of both 227 

treatments (SC-CO2-HPU in continuous system and thermal pasteurization) on the 228 

microbiota of orange juice. Each sample was serially diluted with sterilized distilled water. 229 

100 µL of the appropriate dilution (10-1 and 10-2) were plated in triplicate on LB Agar, 230 

PCA Agar or YPD Agar plates and incubated for 24 h at 37 °C, 35 °C or 30 °C, for E. 231 

coli, total aerobic mesophilic or S. cerevisiae, respectively, before counting. Results were 232 

expressed as -log(N/N0), where N0 is the initial number of cells in the control sample and 233 

N is the number of cells in the sample after the different treatments. When the total 234 

microbial inactivation was achieved, results were expressed as log(N0). 235 

 236 

2.5. Physico-chemical analysis of orange juice 237 

All the physico-chemical measurements were taken in triplicate. 238 

2.5.1. pH and °BRIX 239 

The pH of treated and untreated orange juice samples was measured using a digital 240 

pH-meter (pH Crison 25, Spain). Samples were measured in triplicate at room 241 

temperature. 242 

Soluble solids were measured using a refractometer (Pocket Digital Refractometer 243 

Hand-held, Atago, Japan). Measurements were taken in triplicate at room temperature. 244 

 245 

 246 

2.5.2. Titratable acidity 247 

Titratable acidity was measured using the method described by Kincal et al. (2006), 248 

using NaOH 0.1 N. Results were obtained in triplicate and expressed as grams of citric 249 

acid per 100 mL of juice. 250 

 251 



 
 

2.5.3. Phenolic compounds 252 

Total phenolic compounds were determined by the method described by Gao, 253 

Ohlander, Jeppsson, Björk, and Trajkovski (2000) applying 1:3 dilution factor of the 254 

samples. The quantification of the phenolic compounds with respect to a standard curve 255 

of gallic acid with concentrations between 110.4 and 552 ppm was performed. Results 256 

were expressed as ppm equivalent of gallic acid. 257 

 258 

2.5.4. Antioxidant capacity (FRAP) 259 

Antioxidant capacity was assessed by the method described by Pulido, Bravo, and 260 

Saura-Calixto (2000) using the FRAP reagent and applying 1:20 dilution factor of the 261 

samples. To obtain the results, a calibration curve of Trolox with concentrations between 262 

50 and 750 µM was built, plotting the concentration of Trolox versus absorbance at 30 263 

minutes. The antioxidant capacity of samples at 30 minutes with the FRAP reagent was 264 

expressed as the equivalent Trolox concentration at 30 minutes.  265 

 266 

2.5.5. Browning index 267 

Browning index was used to discover the effect of treatments on juice browning. For 268 

this purpose, a spectrophotometric method was used after centrifuging and filtering the 269 

samples. This method is described by Xu et al. (2011). In the present study, however, 270 

the centrifugation time was 10 minutes and the angular velocity 12600 rpm.  271 

 272 

2.5.6. Color 273 

Color was measured using a colorimeter (Spectrophotometer CM-2500d, Konica 274 

Minolta, Japan) based on the L*, a*, b* color coordinates (Kincal et al., 2006; Ferrentino 275 

et al, 2009). Color measurements were taken in triplicate. 276 

The total color difference (ΔE) was determined from Equation 1, which indicates the 277 

magnitude of the color change after treatment. 278 

 279 

                             ∆E=[ (L-L0)2+(a-a0)2+(b-b0)2 ]½                                                                  (1) 280 

 281 

where: L0, a0 and b0 are the color values of untreated juice and L, a and b those of the 282 

treated samples. Differences in perceivable color can be classified as very different (ΔE 283 

> 3), different (1,5 < ΔE < 3) and slightly different (ΔE < 1,5) (Tiwari, Muthukumarappan, 284 

O'donnell, & Cullen, 2008b). 285 

 286 

2.5.7. Cloud 287 



 
 

To evaluate the loss of cloud or juice clarification after treatment, a spectrophotometric 288 

method was used after sample centrifugation, as described by Ferrentino et al. (2009). 289 

 290 

Absorbance was recorded as the cloud value with distilled water used as blank. The 291 

percentage of cloud change was calculated by Equation 2. 292 

 293 

 294 

Percentage cloud change = final cloud value−initial cloud value 
initial cloud value

∙ 100                         (2) 295 

2.5.8. Ascorbic acid 296 

The ascorbic acid content was measured using the 2, 6 dichloroindophenol titrimetric 297 

method (AOAC 967.21). The ascorbic acid reduced the indicator dye, 2, 6 298 

dichloroindophenol, to a colorless solution through oxidation–reduction reactions. 299 

 300 

2.6. Statistical Analysis 301 

 302 

Using the statistical package, Statgraphics Centurion XVI, a multifactorial ANOVA 303 

was carried out, and LSD (Least Significant Differences) were identified in order to 304 

evaluate the influence of the treatments considered (Ortuño et al., 2012). 305 

 306 

3. Results and discussions 307 

 308 

3.1. Microbiota inactivation after the SC-CO2-HPU treatment 309 

 310 

The inactivation of the microbiota of orange juice is shown in Table 1. After the SC-311 

CO2-HPU treatment was applied, the total inactivation of the initial microbial load of E.coli 312 

and total aerobic mesophilic bacteria was measured at the different temperatures 313 

employed. However, the initial population of S.cerevisiae could not be completely 314 

inactivated, obtaining levels of inactivation of 2.60, 2.24 and 2.19 log cycles at 31, 36 315 

and 41 ºC, respectively, which corresponds to average reductions of 99.7, 99.4 and 316 

99.3%, respectively. The use of different temperatures produced no significant 317 

differences (p>0.05) in the level of S.cerevisiae inactivation. The difficulty of achieving 318 

the complete inactivation of S. cerevisiae could be related with its thicker cell wall, which 319 

measures 124.8 nm, in comparison with E.coli, which is 17.7 nm but also mainly to the 320 

different structure of bacteria and yeast (Ortuño et al., 2014). In a similar way to the 321 

results of the present study, Ortuño et al. (2014) obtained a reduction of 7 and 4 log units 322 

in E.coli and S.cerevisiae, respectively, starting from the same initial cell concentration, 323 



 
 

for a treatment of orange juice with SC-CO2-HPU (225 bar; 31ºC; 6 min). In the same 324 

way, but using SC-CO2-HPU in continuous system (200 bar, 36°C), Paniagua-Martínez 325 

et al. (2016) obtained reductions of 6.8 log cycles in S. cerevisiae in 3.1 min of residence 326 

time using apple juice as model medium. Fabroni et al. (2010), studied the effect of 327 

continuous SC-CO2 (130-230 bar, 5.08 L/h juice flow rate, 1.96-3.91 L/h of CO2 flow rate 328 

and 15 min of residence time) on the inactivation of total aerobic mesophilic bacteria and 329 

yeast population in blood orange juice, obtaining reductions of 3 log cycles for each type 330 

of microorganism.   331 

On the other hand, the thermal pasteurization treatment attained the complete 332 

inactivation of the assessed microbiota.  333 

 334 

3.2. Effect of the SC-CO2-HPU treatment on the physico-chemical properties of orange 335 

juice 336 

 337 

3.2.1. pH, °Brix, Titratable acidity (TA) 338 

The results of pH, °Brix and TA are shown in Table 2. The continuous treatment of 339 

orange juice using SC-CO2-HPU had a non-significant (p>0.05) effect on the pH of the 340 

juice, similarly to what happens in the case of the thermal treatment (Table 2). No 341 

significant (p<0.05) differences were observed between the pH of the juice after the SC-342 

CO2-HPU or the pasteurization treatments.  This could be due to the short treatment time 343 

and to the low initial pH value of the juice. In this regard, for pH values of 3.7-3.8, the 344 

dissociation of the carbonic acid formed by the dissolution of the CO2 into the juice is 345 

difficult, due to the high dissociation constants of carbonic acid and the bicarbonate 346 

(pKa=6.57 and pKa=10.62, respectively) (Zhou, Wang, Hu, Wu, & Liao, 2009). Kincal et 347 

al. (2006) observed a change of between 0.14% and 0.54% in the pH of orange juice 348 

treated with a continuous SC-CO2 process (380, 720 and 1070 bar; 0.40-1.18 ratio 349 

CO2/juice; 40ºC; 10 min). Fabroni et al. (2010) observed an increase in the pH of orange 350 

juice of around 1.47% after a treatment with a continuous SC-CO2 process (230 bar; 5.08 351 

L/h juice; 3.91 L/h CO2; 36ºC; 15 min), as well as a percentage of 1.18% after thermal 352 

pasteurization. As can be observed from Table 2, the range of pH values of the control 353 

samples used in the different experiments comprises the range of the pH of the treated 354 

ones; this points to the scarce impact of the treatment on this quality attribute, the natural 355 

variability being more noticeable than the possible effect of the treatment. 356 

 357 

In the case of the °Brix, the results obtained showed a slight decrease at 31 ºC (-358 

0.81%), 36 ºC (-1.74%) and 41 ºC (-1.41%), although non-significant (p<0.05) 359 

differences between the control and processed juice samples were observed for any 360 



 
 

treatment. Gasperi et al. (2009) studied the use of a batch SC-CO2 treatment (100 bar; 361 

36 ºC; 10 min) on apple juice, and found a reduction percentage of 0.85%. Kincal et al. 362 

(2006) obtained reductions of approximately 1.80% after a continuous SC-CO2 treatment 363 

(380 bar; 0.40 ratio CO2/juice; 40ºC; 10 min) of orange juice. As happened for the pH, 364 

the natural variability of the juice is more important than the possible influence of the 365 

treatment on the ºBrix. 366 

 367 

Finally, the acidity results showed that, although an average reduction of 4.94% was 368 

found for the SC-CO2-HPU treated samples, the differences were not significant (p>0.05) 369 

due to the high degree of variability of the natural orange juice and the resulting 370 

treatments.  371 

In a similar way, both Kincal et al. (2006) and Tiwari et al. (2008a) found non-372 

significant changes in acidity after a continuous SC-CO2 treatment (720 bar; 0.64 ratio 373 

CO2/juice; 40ºC; 10 min) and an ultrasonic process (8.61-22.79 W/cm2; 2-10 min), 374 

respectively.  375 
 376 
 377 

3.2.2. Phenolic compounds and antioxidant capacity 378 

The content of phenolic compounds significantly (p<0.05) decreased after the 379 

continuous SC-CO2-HPU treatment compared to that of the untreated juice, for all the 380 

temperatures studied (-3.54, -3.68 and -4.15% at 31, 36 and 41ºC, respectively; Figure 381 

2). The differences among the treatments for this parameter were only significant 382 

(p>0.05) between 31 and 41ºC. Moreover, a significant difference (p<0.05) in phenolic 383 

compounds was found between the SC-CO2-HPU and pasteurization treatments; thus, 384 

while the average decrease in phenolic compounds for SC-CO2-HPU treatments was of 385 

-3.79±0.9%, the thermal pasteurization brought about a decrease of -10%. This greater 386 

loss of phenolic compounds could be due to the high degree of degradation of 387 

carbohydrates and organic acids during the thermal processing, which could give rise to 388 

furfurals and other carbonyl compounds which may form condensation products with 389 

polyphenols (Fabroni et al., 2010). The results found in this study coincide with those 390 

reported by Fabroni et al. (2010), who found reductions of 5.27% after a continuous SC-391 

CO2 treatment (130 bar; 5.08 L/h juice; 1.96 L/h CO2; 36ºC; 15 min) of orange juice and 392 

9.99% for a conventional thermal pasteurization treatment (90ºC, 30 s). Therefore, it 393 

seems that the use of HPU, which intensifies the microbial inactivation, do not negatively 394 

affect the amount of phenolic compounds in the processed orange juice. Similarly, 395 

Rawson et al. (2011a) observed no reduction in the content of phenolic compounds after 396 

a HPU treatment (24.1–60 µm; 25-45 ºC; 2-10 min) of watermelon juice. 397 



 
 

The antioxidant capacity results showed a significant (p<0.05) decrease in the 398 

samples processed with SC-CO2-HPU compared to the control samples (Figure 3), 399 

except for the treatment at 31 ºC in which a significant (p<0.05) increase (12.13%) was 400 

obtained. However, between 36 and 41 ºC, there were no significant differences, leading 401 

the treatments to reductions of 3.68 and 3.96%, respectively. Therefore, the use of 402 

temperatures of over 31ºC in the SC-CO2-HPU treatment leads to a greater reduction in 403 

the juice antioxidant capacity. On the other hand, thermal pasteurization presented a 404 

significantly (p<0.05) greater reduction (-9.07%) in the antioxidant capacity compared to 405 

the continuous SC-CO2-HPU treatments. Fabroni et al. (2010) reported similar results 406 

after a continuous treatment with SC-CO2 (130-230 bar; 5.08 L/h juice; 3.91 L/h CO2; 36 407 

ºC; 15 min) of orange juice: the percentages of antioxidant capacity decreased by 408 

between 1.39 and 2.53% versus 5.50 and 10.89% for pasteurized juice. However, in the 409 

present study, an increase in the antioxidant capacity was observed at 31ºC. It has been 410 

widely reported that the use of HPU can lead to an increase in the antioxidant capacity 411 

of vegetable samples, due to the increased extraction of active compounds. Therefore, 412 

two effects could be superimposed in the present study: the increase in the antioxidant 413 

capacity due to HPU and the decrease due to the SC-CO2 treatment and the 414 

temperature. In the case of 31ºC, the result of these two effects brought about an 415 

increase in the antioxidant capacity, since the greater quantity of compounds extracted 416 

from juice pulp would compensate for the decrease produced by the SC-CO2 treatment. 417 

 418 

3.2.3. Browning index and color 419 

Tables 3 and 4 show the results obtained for the browning index and color, 420 

respectively. The SC-CO2-HPU treatment of orange juice produced a significant (p<0.05) 421 

increase in the browning index when compared with the control sample at every 422 

treatment temperature; the higher the temperature, the greater the browning index 423 

increase (Table 3). However, the only significant differences found were those between 424 

the treatment at 31 ºC and the other two temperatures considered. The average change 425 

in the browning index for the SC-CO2-HPU treated samples was of 226%. An even 426 

greater difference between the variation of the browning index in treated and untreated 427 

samples was observed by Tiwari et al. (2008b) when working on sonicated orange juice 428 

(40-100% amplitude), where it increased by 636.8%. Those authors attributed the 429 

browning of the samples to the destruction of the pigments, mainly carotenoids, 430 

produced by the HPU. One of the main factors contributing to the browning of orange 431 

juice is ascorbic acid oxidation, leading to the appearance of reactive carbonyl groups, 432 

such as furfural and 5-hydroxymethylfurfural, which can be precursors of non-enzymatic 433 

browning (Bharate, & Bharate, 2012; Bull et al., 2004; Yeom, Streaker, Zhang, & Min, 434 



 
 

2000). In addition, the browning effect could be linked to the decomposition of sugars or 435 

caramelization (Vervoort et al., 2011) as well as to the Maillard reactions between 436 

reducing sugars and free amino groups, leading to the formation of melanoidins, which 437 

are compounds that cause dark browning (Ibarz-Martínez, Pagán, Garza, & Ibarz, 2010). 438 

Vervoort et al. (2011) reported that the non-enzymatic browning is accelerated by the 439 

temperature and processing time, as observed for the SC-CO2-HPU treatment (Table 3).  440 

 441 

 However, the changes in the browning index are much larger for the SC-CO2-HPU 442 

treatment than for that of the thermal pasteurization. This shows that, although 443 

temperature is an influential factor as regards juice browning, the mixing of the juice with 444 

SC-CO2 and/or the application of ultrasound are much more determinant. 445 

 446 

On the other hand, the non-enzymatic browning produced by the treatment with SC-447 

CO2-HPU was also observed from the results of the color analysis (Table 4). For every 448 

treatment, there was a decrease in  the L*, a*, b* values. Thus, the decrease in the L* 449 

value showed a loss in brightness or increase in darkness which is directly related with 450 

juice browning (Tiwari et al., 2008b; Yeom et al., 2000), although it could also be related 451 

with the juice cloud, because the reflected light is affected by the cloud (Liu, Hu, Zhao, 452 

& Song, 2012). The decrease in a* and b* values showed the color change to tonalities 453 

less red and yellow. Considering the ΔE parameters, the greatest color difference was 454 

obtained in samples treated with SC-CO2-HPU at 36 °C, followed by 41 and 31 °C, while 455 

a smaller color difference was observed for the pasteurized juice. Moreover, in this case, 456 

the ΔE values do not point to a relationship with temperature. Therefore, with ΔE values 457 

above 3, the color changes were noticeable for every treatment considered. A similar 458 

finding was observed by Fabroni et al, (2010) in orange juice samples after continuous 459 

SC-CO2 treatment (130 bar; 5.08 L/h juice; 1.96-3.91 L/h CO2; 36 ºC; 15 min) and 460 

thermal pasteurization (88-91 °C, 30s). These authors also observed a decrease in L*, 461 

a*, b* values for both types of treatments, obtaining ΔE values of 7.87-11.89 and 2.88-462 

6.23 for the continuous treatment of SC-CO2 and thermally pasteurized juice, 463 

respectively. The color changes that take place after SC-CO2-HPU treatment could also 464 

be related to the cavitation effect of HPU, which regulates various physical, chemical and 465 

biological reactions, between them, carotenoid degradation due to the free radicals 466 

formed during the treatment (Abid et al., 2013; Tiwari et al., 2008a).  467 

 468 

3.2.4. Cloud 469 

The cloud is related with the particle suspension which is composed of a complex 470 

mixture of proteins, pectins, lipids, hemicellulose, cellulose, and other minor components 471 



 
 

(Niu et al., 2010; Tiwari et al., 2009b). This is an important attribute that positively affects 472 

the turbidity, taste, aroma and characteristic color of orange juice. Its loss is mainly 473 

attributed to the enzymatic activity of the PME, which causes phase separation in the 474 

juice and the resulting loss of cloud (Bull et al., 2004; Polydera, Galanou, Stoforos, & 475 

Taoukis, 2004). 476 

 477 

The SC-CO2-HPU treatment of orange juice significantly (p<0.05) increased the cloud 478 

values when compared with the control at every temperature considered (Figure 4), 479 

showing that there is a significant (p<0.05) difference between the treatments at 31 and 480 

36 ºC when compared to that at 41 ºC. The average increases in the cloud value were 481 

of 195.0, 198.4 and 270.6% at 31, 36 and 41ºC, respectively; therefore, the cloud value 482 

increased when the treatment temperature rose. In a similar way, after the SC-CO2 483 

treatment (400 bar; 55ºC; 10-60 min) of orange juice, Niu et al. (2010) obtained 484 

percentages of cloud increase of 91.33-115.48%. Also, Tiwari et al. (2008a), after the 485 

ultrasonic treatment of orange juice (8.61-22.79 W/cm2; 2-10 min) obtained increases of 486 

63-222%. As can be observed, after the SC-CO2-HPU treatment of juice, the cloud was 487 

preserved and improved. This phenomenon is mainly due to the reduction in the 488 

enzymatic activity of the PME, as well as the system depressurization, which 489 

homogenizes juice, causing the breakdown or reduction of the colloidal particles in the 490 

juice (Kincal et al., 2006; Liu et al., 2012). Another factor that contributed to the increase 491 

in the cloud is the HPU effect, which produced the rupture of the linear molecule pectin, 492 

reducing its molecular weight (Tiwari et al., 2009b). The cloud values obtained after 493 

pasteurization were significantly (p<0.05) lower than those obtained after SC-CO2-HPU 494 

treatment which indicates that the use of this novel SC-CO2-HPU-based technology 495 

could improve some quality attributes of orange juice while reducing the processing time 496 

compared to when only SC-CO2 or HPU is used. 497 

 498 

3.2.5. Ascorbic acid 499 

The continuous SC-CO2-HPU orange juice treatment at the different temperatures 500 

considered produced a statistically significant reduction (p<0.05) in ascorbic acid when 501 

compared with the control (Figure 5). However, a considerable percentage of ascorbic 502 

acid was preserved after treatments, observing reductions of only 4.55, 5.85, and 6.50%, 503 

at 31, 36, and 41 °C, respectively. As can be observed, the ascorbic acid loss increased 504 

as the temperature rose, although, in the range considered, the only significant (p<0.05) 505 

differences that exist are those between the treatment at 31 and that carried out at 41ºC. 506 

This slight degradation may be due to the formation of free radicals produced by the 507 

effect of cavitation generated by the HPU, leading to the oxidation of polar organic 508 



 
 

compounds, such as ascorbic acid and total phenols; and it may also be due to the 509 

thermolysis produced inside bubbles and the subsequent activation of the Maillard 510 

reaction (Tiwari et al, 2009a; Rawson et al, 2011b). A significant difference (p <0.05) 511 

between the ascorbic acid content of the juice after SC-CO2-HPU treatment and thermal 512 

pasteurization was also observed, with a greater loss of ascorbic acid in the case of the 513 

thermal pasteurization (-10.05%). The greater reduction in ascorbic acid in the latter 514 

treatment can be explained by the application of a higher processing temperature, since 515 

ascorbic acid is a thermolabile nutrient (Sanchez-Moreno et al., 2005) and seems to be 516 

more affected by high temperatures than by the use of the combined treatment (SC-CO2-517 

HPU). Similar behavior was observed by Fabroni et al. (2010) after the continuous SC-518 

CO2 processing of orange juice, finding a lower reduction of ascorbic acid in SC-CO2-519 

HPU treated samples (6.37%, 130 bar; 5.08 L / h juice; 1.96 L / h CO2; 36 ° C; 15 min) 520 

compared to the thermally pasteurized ones (88-91 °C, 30s). Also, Tiwari et al. (2009a) 521 

obtained reductions of 1.46-5.17% of ascorbic acid after the ultrasonic treatment of 522 

orange juice (from 0.33 to 0.88 W / mL; 10.2 min) and a reduction of 7.14% after thermal 523 

pasteurization. Despite the decrease in ascorbic acid when using SC-CO2-HPU, at the 524 

lowest temperature, less than half is reduced if compared to the case of thermal 525 

pasteurization. 526 

In order to apply new processing techniques at industrial level it is important to 527 

consider the best process conditions (Boukroufa, Boutekedjiret, Petigny, 528 

Rakotomanomana, & Chemat, 2015). In this regard, according to the results of the 529 

present study, the use of a low pressure (100 bar), close to the critical pressure of CO2 530 

(72.9 bar), and a low temperature (31ºC), which provides the best juice quality, would 531 

facilitate the scaling of the process to the juice industry. Nevertheless, since the use of 532 

ultrasound in liquid food could lead to degradation of some chemical compounds 533 

(Jacotet-Navarro et al., 2016), further research should be conducted to evaluate the 534 

influence of ultrasound intensification on possible degradation of bioactive compounds 535 

in juices. 536 

 537 

 538 

4. Conclusions 539 

The SC-CO2-HPU continuous treatment was effective for microbial inactivation in 540 

orange juice, the effectiveness being dependent on the microbial cell wall thickness. The 541 

SC-CO2-HPU continuous treatment did not affect the pH, ºBrix or Titratable acidity of the 542 

juice. Moreover, compared with thermal pasteurization, the loss of phenolic compounds 543 

was small and the antioxidant capacity could even be increased with respect to the 544 

untreated juice. Although the treatment affected the color of the juice, causing an overall 545 



 
 

darkening, the cloud and, therefore, the stability of the treated juices were greatly 546 

improved. The obtained results demonstrated the potential of the continuous SC-CO2-547 

HPU inactivation technique, the use of mild process conditions leading to an increase in 548 

the quality of the product processed using this technique. Moreover, the fact that the 549 

proposed technique works in a continuous mode greatly facilitates its industrial 550 

implementation. 551 

 552 
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Highlights 

 

• Ultrasound-assisted continuous SC-CO2 reduced the orange juice microbiota 

• The treatment produced greater changes in color (darkening) than thermal 

pasteurization. 

• The cloud of the treated juice and the phenolic and vitamin contents were improved 

by 173%, 6.5% and 5.5%, respectively. 

• The antioxidant capacity of the treated juice increased with respect to the fresh 

(untreated) one.  

• Ultrasound intensification may improve the acceptance of SC-CO2 processing by 

the food industry. 



Figure Captions 

 

Fig. 1. Supercritical CO2 continuous treatment system. 1. CO2 tank; 2. N2 tank; 3. Chiller 

reservoir; 4. CO2 Pump; 5. Liquid reservoir; 6. Liquid Pump; 7. Mixing point; 8.Sonication 

vessel; 9. Sonotrode; 10. Insulation joint; 11. Ceramics; 12. Power generation unit; 13. 

Thermostatic bath; 14. Continuous contact tube; 15. Separation vessel; 16. Treated 

sample; 17. CO2 Recirculation; 18. Sonication vessel output, 19. Separation vessel output, 

V. valve; VS. non-return valve; VM. micrometric valve; P. Manometer; T. temperature 

sensor. 

Fig. 2. Loss of phenolic compound content in orange juice after different treatment 

conditions. 

Fig. 3. Percentage variation of antioxidant capacity in orange juice under different 

treatment conditions. 

Fig. 4. Percentage variation of cloud in orange juice under different treatment conditions. 

Fig. 5. Percentage variation of ascorbic acid in orange juice under different treatment 

conditions. 

 

 

 

 

 

 

 













TABLE 1. Inactivation of microbiota in orange juice after SC-CO2+HPU and thermal pasteurization treatments   

  
E.coli* 

  
S.cerevisiae* 

  
Total aerobic mesophilic* 

   
 

N0 N Log N0  N0 N -Log N/N0  N0 N Log N0 
Treatment / conditions 

            

SC-CO2-HPU/ 
 100 bar, 31 ºC 

 
5.75E+03 0.00E+00 3.47±0.61 

 
1.20E+05 2.00E+02 2.61±0.40 

 
1.22E+03 0.00E+00 2.95±0.43 

SC-CO2-HPU/ 
 100 bar, 36 ºC 

 
1.24E+04 0.00E+00 3.80±0.63 

 
4.53E+04 2.55E+02 2.24±0.21 

 
3.66E+03 0.00E+00 3.50±0.31 

SC-CO2-HPU/ 
 100 bar, 41 ºC 

 
1.35E+04 0.00E+00 3.84±0.79 

 
1.58E+05 1.04E+03 2.19±0.02 

 
9.65E+03 0.00E+00 3.95±0.23 

Thermal pasteurization/ 
 90 ºC, 1 min 9.11E+02 0.00E+00 2.82±0.43  6.16E+03 0.00E+00 3.54±0.54  1.03E+03 0.00E+00 2.88±0.48 

 



 
TABLE 2. pH, ºBrix and titratable acidity values of orange juice after SC-CO2+HPU and thermal pasteurization treatments 

  
pH  ºBrix  Titratable acidity (g citric acid/100ml)* 

  
Control 

 
Treated 

 
Variation   

Control 
 

Treated 
 

Variation   
Control 

 
Treated 

 
Variation 

 
Treatment / 
conditions 

 

           

SC-CO2-HPU/ 
100 bar, 31 ºC 

 
3.58±0.04a 3.60±0.05a 0.56±0.01%  12.23±0.23a 12.13±0.23a -0.81±0.3%  

  0.874±0.02a 0.835±0.021ab -4.46±0.15% 

SC-CO2-HPU/ 
100 bar, 36 ºC 

 
3.63±0.03a 3.67±0.02a  

1.10±0.08%  11.46±0.06bc 11.26±0.05c -1.74±0.05%   0.757±0.05abc 0.718±0.05bc -5.15±0.26%  

SC-CO2-HPU/ 
100 bar, 41 ºC 

 
3.68±0.005a 3.69±0.005a 0.27±0.05%  12.20±0.17a 12.03±0.11a -1.39±0.12%   0.747±0.04bc 0.708±0.04c -5.22±0.52%  

Thermal 
pasteurization/ 
90 ºC, 1 min 

3.61±0.08a 3.62±0.09a 0.28±0.09%  12.03±0.12a 11.86 ±0.05ab -1.41±0.23%   0.836±0.04ab 0.829±0.04ab -0.83±0.11%  

Different letters for the same quality parameter within a row and column indicate significant differences (p <0.05) 
 

 



TABLE 3. Browning index of orange juice after SC-CO2+HPU and thermal 
pasteurization treatments 

  
Browning Index (A420 nm) 

   
Control 

 
Treated 

  
 Variation 

Treatment / conditions 
 

   

SC-CO2-HPU/100 bar, 31 ºC 
 

0.21±0.00a 0.66±0.02b 216.40±7.85%  

SC-CO2-HPU/100 bar, 36 ºC 
 

0.23±0.01a 0.75±0.01c 228.13±4.49%  

SC-CO2-HPU/100 bar, 41 ºC 
 

0.22±0.00a 0.72±0.01c 233.49±4.03%  

Pasteurization/90 ºC, 1 min 0.21±0.01a 0.22±0.01a 5.38±0.19%  
 

Different letters within a row and column indicate significant differences (p <0.05) 
 

 



TABLE 4. Color values of orange juice after SC-CO2+HPU and thermal pasteurization treatments 

  
Color* 

 
 

Control 
 

 Treated   

  
L* 

 
a* 

 
b*   

L* 
 

a* 
 

b*   
ΔE 

Treatment / 
conditions 

 
         

SC-CO2-HPU/ 
100 bar, 31 ºC 

 
33.86±2.04 4.61±1.11 56.75±3.57  29.76±2.88 0.805±1.59 49.73±4.84  8.85±0.60 

SC-CO2-HPU/ 
100 bar, 36 ºC 

 
40.52±0.96 5.54±0.35 64.30±2.45  33.86±1.73 0.98±0.73 55.79±2.47  11.74±1.25 

SC-CO2-HPU/ 
100 bar, 41 ºC 

 
33.96±1.39 6.37±0.93 6.37±0.93  30.21±0.67 1.44±0.23 50.54±1.01  8.70±1.86 

Pasteurization/ 
90 ºC, 1 min 

 
35.00±0.25 8.25±1.20 58.74±0.26  32.42±0.13 4.52±0.28 54.47±0.18  6.27±0.87 

 


