ANNEX

Figure S1. Graphic representation of the pUPD vector. It contains the bacterial ampicillin resistance gene (AmpR) for counterselection, the bacterial replication origin ColE1 and the *lacZ* gene for blue-white colony screening. *Bsml* and *Bsal* Type IIS restriction enzymes flank the *lacZ* gene. T7 and SP6 sequences flank the expected insert.

Figure S2. Graphic representation of pDGB3 α **1 and pDGB** Ω **1 vectors.** Destination pCAMBIAbased vectors. pCAMBIA backbone contains the bacterial origin of replication pBR322 for *E. coli* propagation and pVS1-Rep and pVS1 STA for *A.tumefaciens* replication and stability, respectively. pDGB α vectors contain the kanamycin resistance gene (KanR), whilst pDGB Ω contain the spectinomycin resistance gene (SpmR). *BsmBI* and *BsaI* recognition sites are depicted as green and orange, respectively. GB barcodes flank the *lacZ* gene. LB and RB refers to the Left and Right Borders of the T-DNA region.

Figure S3. pDGB3α y pDGB3Ω destination vectors for Level 1 and Level 2 GB3.0. assembly. There are eight GB3.0. destination vectors: four alpha and four omega plasmids, identified as 1 and 2 (direct orientation) or 1R or 2R (reverse orientation). This toolkit has been developed to carry out a theoretically endless number of binary assemblies through a "loop" design. The four vector options allow both the selection of a desired order (1 precedes 2) and orientation (1R and 2R for the reverse orientation of a genetic construct). *BsmBI* (orange) and *BsaI* (red) recognition sites are rationally positioned to carry out simultaneous digestion/ligation ("one-pot" reaction), so once a plasmid is cut it cannot be ligated to its original backbone. Standardized overhangs (barcodes) as a result of *BsmBI* or *BsaI* digestions are coloured in green, blue and pink. Modified from Supplemental Figure S1 of *Hernanz-Koers et al.* (2018).

Figure S4. Sanger sequencing of an expected FB120 construct. (A) Sequencing with pCambia FW primer (P6) and alignment against the expected FB120 sequence.

Figure S4. Sanger sequencing of an expected FB120 construct. (B) Sequencing with pCambia RV (P7) primer and alignment against the GB lacZ cassette. The overall alignment resulted in the identification of a truncated sequence, with the aberrant ligation of a partial FB120 sequence with the *lacZ* cassette.

	Ladder	1	2
12.0 kb 10.0 kb 9.0 kb 8.0 kb 7.0 kb 5.0 kb 5.0 kb 4.0 kb 3.0 kb 2.0 kb 1.6 kb			
1.0 kb 850 bp 650 bp 500 bp 400 bp	\equiv		

Figure S5. Expected band patter for the restriction analysis with *Ndel*. (1) FB126 (2) Aberrant ligation of FB126 without the FB120 partner.

Primer ID	Sequence (5'-3')	Use
P1	TAATACGACTCACTATAGGG	pUPD T7
P2	GATTTAGGTGACACTATAGAATAC	pUPD SP6
P3	GCTTTCGCTAAGGATGATTTCTGG	pUPD2 FW
P4	CAGGGTGGTGACACCTTGCC	pUPD2 RV
P5	TTGTCTCCCCATAACAATTA	EaDAcT CDS FW
P6	GGTGGCAGGATATATTGTGG	pCAMBIA FW
P7	CGCCCTTTTAAATATCCGATT	pCAMBIA RV

Table S1. List of primer pairs used for Sanger sequencing.