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Abstract 

Catalysis with enzymes and zeolites have in common the presence of well-defined single active 

sites, as well as the presence of pockets or cavities in where the transition state of the reaction 

can be stabilized by means of longer range interactions. We show here that for a complex reaction 

such as the conversion of methanol to olefins (MTO), it is possible to synthesize reaction-adapted 

zeolites by using mimics of the key molecular species involved in the molecular mechanism of 

MTO. The effort has been concentrated on the intermediates of the paring mechanism since the 

paring is less favored energetically than the side chain route. All the OSDAs based on mimics of the 

reaction intermediate molecules, exclusively crystallize cage-based small pore zeolitic materials in 

the aluminosilicate or the silicoaluminophosphate (SAPO) forms, being all of them adequate to 

perform the MTO reaction. Among the zeolite structures obtained, RTH is the one that favors the 

most the whole reaction steps following the paring route and, gives the highest C3
=/C2

= and C4
=/C2

= 

ratio in the products.  
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INTRODUCTION 

The methanol-to-olefins (MTO) is a commercial process that produces light olefins (C2
=-C5

=) from 

synthesis gas via methanol, using zeolite-based catalysts.(1, 2) While methanol is obtained today 

from synthesis gas derived from natural gas and coal, it is expected that in a future energy 

scenario, in which abundant and inexpensive H2 will be obtained from water, methanol will be a 

key molecule to store H2, as well as to produce olefins and aromatics for chemicals. Despite the 

MTO technology has been successfully implemented, the mechanism of the reactions involved is 

not yet fully understood. This is due to the complexity of the process, and the fact that the product 

distribution and coke formation strongly depend on zeolite structure and reaction conditions.(3, 4) 

There is however a general consensus that the MTO reaction proceeds through an indirect 

“hydrocarbon pool (HP) mechanism”, according to which organic species initially formed from 

methanol during an induction period and confined within the zeolite channels and cavities, act as 

co-catalysts for the reaction.(5-11) These HP species are repeatedly methylated by methanol or 

dimethylether and subsequently split off light alkenes. In fact, the HP species, i.e. aromatic 

polymethylbenzenes (PMBs) and their corresponding carbenium ions (MB+),(5, 12) as well as 

polymethylcyclopentenyl (MCP+) cations,(13, 14) have been detected by in situ 13C MAS NMR 

spectroscopy using isotopically-labelled methanol in different zeolites, and have been proposed as 

the main components of the hydrocarbon pool in H-SAPO-34, H-BEA and H-ZSM-5 catalysts.  

Two competitive routes have been presented as possible pathways according to the HP 

mechanism, i.e. the side-chain (15, 16) and the paring routes (see Figure 1).(17) The side-chain 

path proceeds via the alkylation of the polymethylbenzene-related intermediates with methanol, 

followed by side-chain elimination to form the light olefins, preferentially ethylene and 

propylene.(5, 12) The paring cycle comprises an initial contraction of the polymethylbenzenium 

cations (MB+), followed by the expansion of polymethylcyclopentenyl cations (MCP+), resulting in 
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the preferential formation of propylene.(10, 13, 17) The experimental observation of the two 

types of cations, MB+ and MCP+, by in situ techniques indicate the feasibility of pathways during 

the MTO process.(13, 14) However, the lower energy-barriers calculated for the side-chain 

mechanism in H-ZSM-5 suggest that the light olefins would be preferentially achieved through 

aromatic side-chain alkylations.(10) 

It has been described in the literature that when small pore zeolites containing cavities in their 

structure are used in the MTO reaction, the product selectivity towards different light olefins as 

well as the catalyst lifetime are influenced by the framework structure.(18) That observation could 

be explained by the ability of the cavities present in the zeolite to favor the formation of different 

polyalkylated aromatics depending on their size/shape. In general, small pore zeolites with very 

large cavities [i.e. zeolite AFX: 15.9x10.4 Å] would favor an excessive alkylation of the aromatic HP 

species resulting in a faster catalyst deactivation by coke formation, whereas very small cavities 

[i.e. zeolite LEV: 9.8x9.5 Å] would mostly preclude the HP reaction mechanisms, limiting their 

catalytic activity.(19) On the other hand, different small pore zeolite structures containing cavities 

with intermediate sizes, though prepared with similar crystal sizes and chemical compositions, 

present different selectivities towards ethylene and propylene.(20-24) For instance, the high-silica 

SSZ-39 (AEI, cage dimensions: 12.6x11.2 Å) and RUB-13 (RTH, cage dimensions: 11.6x10.0 Å) 

zeolites tend to give higher propylene/ethylene ratio compared to high-silica CHA (cage 

dimensions: 11.7x10.2 Å) zeolite (see Figure S1),(20, 22) though the size of the pores and cavities, 

especially in the case of RTH and CHA, are very close. According to these results, it could be 

envisioned that even small differences in the zeolite cages may stabilize in a different manner the 

formation of the HP aromatic intermediates shown in Figure 1, favoring the side chain or the 

paring mechanism, and changing in that way the selectivity within the olefins obtained.  
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If this is so, it seems reasonable that if one was able to design the cage cavity within the small pore 

zeolite with the adequate size and/or shape for maximizing the stabilization of particular HP 

intermediates, the catalyst lifetime and/or the preferential selectivity towards specific light olefins 

could also be maximized. In this sense, we have very recently described a new ab-initio zeolite 

synthesis methodology based on the use of organic structure directing agents (OSDAs) that mimic 

the transition states of some preestablished chemical reactions. The objective was that these 

mimic OSDAs could drive the synthesis towards adequate zeolite structures to catalyze the 

preestablished chemical reactions.(25) Following this strategy, different zeolite structures were 

synthesized that improved the activity and/or the selectivity to target products for different 

industrially-relevant chemical reactions.(25) 

We propose here that the synthesis of zeolite-based MTO catalysts could be carried out using 

mimics of the HP intermediates as OSDAs. Then, if this was successful, the crystallization of 

zeolites presenting adjusted cages for maximizing the host-guest interactions between the 

inorganic framework and the polyalkylated aromatic MTO intermediates could be achieved, and 

olefin selectivity could be influenced. It would be of special interest if one could, in this way, direct 

the reaction towards the energetically less favorable paring route, which should give a higher 

selectivity to the most desired propylene versus ethylene.  

 

RESULTS AND DISCUSSION 

According to previous theoretical studies on the MTO process (8, 10, 13), and our own DFT 

calculations presented in the Supporting Information (Figures S2-S5), the paring route starts with a 

ring contraction of the polymethylbenzenium (MB+) cation to form either a isopropyl-alkylated 

intermediate (see INT1a in Figure 1 and INT1 in Figure S2) or a polyalkylated bicyclic intermediate 

(see INT1b in Figure 1 and INT1 in Figure S3), that splits off propene generating a 
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polymethylcyclopentenyl (MCP+) cation (INT3 in Figure 1, S2 and S3). It has also been proposed 

that a second isomerization of INT1 via INT2 can produce isobutene and a less substituted MCP+ 

cation in two steps (see Figures S2 and S3). After olefin release there is a ring expansion of the 

MCP+ intermediate INT3 that, in two steps, is converted into a low-alkylated MB+ cation (INT5 in 

Figure 1 and S5) which is further alkylated by two methanol molecules regenerating the initial HP 

species and the reaction cycle starts again. 

Following the described ab-initio mimicking approach for the synthesis of reaction-adapted 

zeolites, we have first prepared a series of OSDAs (see Figure 2a) that mimic the key molecular 

species involved in the paring mechanism, i.e. INT1, INT3 and INT5. In principle, if the above 

OSDAs were able to crystallize small pore zeolites, they should maximize interactions between the 

organic molecules and the walls within the zeolite cavity. Then, the zeolite or zeolites synthesized 

should minimize the energy for the formation of the molecular species involved in the paring 

mechanism and, accordingly, increase the C3
=/C2

= ratio. 

Taking the isopropyl alkylated or the polyalkylated bicyclic HP intermediates (see INT1a and INT1b, 

respectively, in Figure 1) as possible candidates involved in the ring contraction step of the paring 

cycle, we carried out the preparation of two OSDAs, i.e. OSDA1a and OSDA1b (see Figure 2a) as 

mimics. Then, a zeolite synthesis phase diagram was considered (see Figures S6 and S7) with the 

following synthesis variables: Si/Al [6-15], OSDA/Si [0.2-0.4], NaOH/Si [0-0.2], H2O/Si [3-20], and 

P/Al [0.8-0.9] ratios, together with the use of different sources of Si, Al, or P (see experimental). In 

this way, the directing effects of the OSDAs towards the crystallization of zeolites 

(silicoaluminates) or related-zeotypes (i.e. silicoaluminophosphates, SAPOs) was studied. 

Interestingly, the silicoaluminate form of the CHA zeolite, SSZ-13, was obtained using OSDA1a and 

OSDA1b (see Figures S6 and S7). In the case of OSDA1a, the SSZ-13 material was crystallized only 

under very specific synthesis conditions (Si/Al=6, see SSZ-13 in Figure S6). Furthermore, it should 



7 
 

be noted that the CHA-related zeolite is the sole microporous material obtained within all the 

synthesis conditions studied. In contrast, OSDA1b allows the selective crystallization of SSZ-13 

zeolite under broader synthesis conditions, revealing the excellent organic directing role of the 

OSDA1 towards the crystallization of CHA-related zeolites (see Figure S7). The PXRD patterns of 

the as-prepared SSZ-13_OSDA1a and SSZ-13_OSDA1b materials confirm the crystallization of CHA 

as pure crystalline phase in both cases (see in Figure S10). Elemental analyses reveal that the 

organic molecules remain intact within the crystallized products (see Table S2). The calcined SSZ-

13 materials show similar textural properties compared to other CHA-related zeolites reported 

previously in the literature (micropore volume 0.22-0.25 cm3/g), and the chemical analysis 

indicate that the final Si/Al molar ratios are comparable to the initial Si/Al molar ratios introduced 

in the synthesis gels (6 and 15 for the SSZ-13_OSDA1a and SSZ-13_OSDA1b, respectively, see 

Table S3). These two samples have also been studied by FE-SEM microscopy, observing that the 

SSZ-13_OSDA1a and SSZ-13_OSDA1b show average crystal sizes of 200-400 nm and 60-80 nm, 

respectively (see Figure S11).       

At this point, we decided to measure the catalytic activity and selectivity of the SSZ-13 zeolites 

obtained and compare with those reported in the literature for the conversion of methanol into 

olefins. Thus, from the different SSZ-13 samples obtained with OSDA1b, we selected one sample 

with a Si/Al ratio of 15 (see SSZ-13 in Figure S7), since the “standard” SSZ-13 reported in the 

literature synthesized using N,N,N-trimethyladamantammonium (TMAda) as OSDA is usually 

prepared with that Si/Al molar ratio.(26, 27) 

The catalytic activity of these SSZ-13 zeolites has been evaluated for the MTO reaction at 350C 

with a WSHV of 0.8 h-1. For comparison purposes, a standard SSZ-13 zeolite has been prepared 

(see physico-chemical properties for the SSZ-13_std in Table S3). However, since the crystal size of 

our SSZ-13_OSDA1b is very small, a nanosized SSZ-13 has also been prepared for a fair 
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comparison. The nanosized SSZ-13 was prepared by combining the use of TMAda and a surfactant 

molecule (cetyltrimethylammonium, CTMA) as OSDAs (see physico-chemical properties for the 

SSZ-13_nano in Table S3).(27) As seen in Table 1, the catalytic lifetime of the SSZ-13_OSDA1a 

zeolite is remarkably lower than the observed for the SSZ-13_std, due to the lower Si/Al molar 

ratio of the former (Si/Al=6).(23) However, the SSZ-13_OSDA1b zeolite presents comparable Si/Al 

molar ratios (Si/Al=15) to other related-CHA zeolites used previously in the literature for the MTO 

reaction, as it is the case of the SSZ-13_std and SSZ-13_nano.(27) As shown in Figure 3, the SSZ-

13_OSDA1b zeolite shows a very important increase of the catalyst lifetime compared not only to 

the “standard” SSZ-13 catalyst, which presents larger crystal size, but also compared to the SSZ-13 

with nanosized crystallites (see Figure 3). In fact, the dropping of methanol conversion below 95% 

is obtained at 1000 min time on stream for the SSZ-13 catalyst synthesized using the mimic 

OSDA1b, whereas for the standard SSZ-13 and the surfactant-based nanosized SSZ-13 materials 

are 212 and 472 min, respectively (see Table 1). These results highlight the importance of using a 

mimic OSDA of the HP intermediates for synthesizing a very active and stable CHA-related MTO 

catalyst compared to other similar SSZ-13 catalysts synthesized with the TMAda catalyst.    

The second step of the paring mechanism is the formation of the pentaMCP+ intermediate cation 

(see INT3 in Figure 1), accompanied by the formation of a molecule of propylene. According to 

this, we propose a pentamethylimidazolium cation as potential mimic of the pentaMCP+ 

intermediate (see OSDA3 in Figure 2a). Most interestingly, the use of OSDA3 resulted in the 

preferential crystallization of the RUB-13 (RTH structure, 8x8-rings) and STA-6 (SAS structure, 8-

rings) when the syntheses of silicoaluminates or silicoaluminophosphates were respectively 

attempted (see Figure S8). These results show the high specificity of this organic molecule towards 

these small-pore crystalline frameworks, both containing the presence of large cavities within 

their structures.  
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In the case of the RUB-13, we have selected a sample synthesized with a Si/Al molar ratio of 16 

(see RUB-13 in Figure S8) for further comparisons with the above described SSZ-13 materials, 

whereas in the case of the silicoaluminophosphate STA-6, a preliminary screening of some of the 

achieved SAS-related crystalline samples within the microscope reveals a better crystal 

homogenization for the selected STA-6 sample (see Figure S8).  

The RUB-13_OSDA3 sample crystallizes with an average crystal size of 60-90 nm, and the STA-

6_OSDA3 sample shows orthorhombic crystals with average size of 1x4 µm (see FE-SEM images in 

Figure S11). Elemental analyses of the as-prepared RUB-13_OSDA3 and STA-6_OSDA3 materials 

indicate that, in both cases, the OSDA3 molecules remain intact within the crystals (see Table S2). 

Moreover, the calcined RUB-13_OSDA3 and STA-6_OSDA3 samples show micropore volumes of 

0.25 and 0.16 cm3/g, respectively, which are comparable to those reported previously in the 

literature for related materials.(22, 28) Chemical analyses indicate that their chemical 

compositions are almost identical to the initial chemical composition introduced in their 

corresponding synthesis gels, resulting in a Si/Al ratio of 16 and a Si/(Al+P) ratio of 0.13 for the 

RUB-13_OSDA3 and STA-6_OSDA3, respectively. 

The catalytic activity of the RUB-13_OSDA3 and STA-6_OSDA3 materials has been evaluated for 

the MTO reaction, as before, at 350C with a WSHV of 0.8 h-1. The lower initial methanol 

conversion values and much higher catalyst deactivation observed with STA-6_OSDA3 (see Figure 

S15a), is a consequence of the combination of the one-dimensional pore system present within 

the SAS structure together with the relative large crystal sizes of the STA-6_OSDA3 (1x4µm), which 

increase the diffusional problems of reactants and products. Nevertheless, it is important to 

remark that despite the lower initial methanol conversion, the selectivity towards the desired 

propylene product is very high (45%, see Figure S15b), suggesting that the SAS-cage would be 
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adequate to undergo the MTO reaction. The improvement of the diffusion path length by reducing 

the crystal size or by creating intra-crystalline mesoporosity, should increase the catalyst life.  

In the case of the RUB-13_OSDA3 catalyst, it shows an improved catalyst lifetime compared to the 

standard SSZ-13 zeolite, and a substantially higher propylene selectivity, being the 

propylene/ethylene ratio (3.1, see Table 1) much higher than for the CHA-related 

silicoaluminates (0.76-0.96, see Table 1). The high selectivity when using the RUB-13_OSDA3 

catalyst,(22, 29) together with the high specificity of the mimic OSDA3 towards the crystallization 

of the RTH zeolite, made us to propose that the RTH cavity should better stabilize the pentaMCP+ 

intermediate than other cage-based small pore zeolites, and then maximize the propylene 

formation through the paring route compared to other cage-based small pore zeolites. 

Interestingly, the presence of pentaMCP+ species within the RUB-13_OSDA3 catalyst was 

undoubtedly observed by 13C CP-MAS NMR spectroscopy when the MTO reaction was performed 

using 13C labelled methanol as substrate (see Figures S20c and S20d). 

In the third step of the paring mechanism, there is a ring expansion of the 

polymethylcyclopentenyl intermediates into a low-alkylated benzene derivative followed by a 

further alkylation by two methanol molecules resulting in a high-alkylated benzene intermediate 

(see INT6 in Figure 1). Thus, we have synthesized an alkylated pyridinium cation as potential mimic 

of this polyalkylated benzene HP intermediate. As seen in Figure S9, SAPO-18 (AEI structure, 

8x8x8-rings) is the preferred crystalline material when OSDA6 is used as organic template. The AEI 

structure is highly related to CHA, since both present tri-dimensional 8-ring pores with the same 

framework density (15.1 T atoms per 1000 Å3) and large cavities within their structures. 

Nevertheless, their cages are different, being the AEI cage basket-shaped and wider at the bottom 

than the CHA cage, which is more symmetric (see Figure S1).(30) 
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The selected SAPO-18 material (see SAPO-18_OSDA6 in Figure S9) has been characterized by 

different techniques to unravel its physico-chemical properties. It shows an average crystal size of 

7-10 µm (see SAPO-18_OSDA6 in Figure S11). ICP analysis reveals analogous chemical 

compositions to those introduced initially in the synthesis gel (see Table S3).  

The catalytic activity of the SAPO-18 material synthesized using OSDA6 has been tested for the 

MTO reaction at 350C with a WSHV of 0.8 h-1. For comparison purposes, a typical SAPO-34 (CHA 

structure), synthesized using tetraethylammonium (TEA) as OSDA (see experimental section in 

Supporting Information) has also been tested. The SAPO-34 material shows longer catalyst 

lifetimes than the SAPO-18_OSDA6 material (440 versus 25 min for SAPO-34_std and SAPO-

18_OSDA6, respectively, see X95 in Table 1), as could be expected just by taking into account their 

crystal sizes (0.5 versus 7-10 µm for SAPO-34_std and SAPO-18_OSDA6, respectively, see Figure 

S11). However, when the product selectivities are analyzed, it can be seen that the SAPO-

18_OSDA6 sample not only gives a larger C3
=/C2

= compared to the SAPO-34_std (2.0 and 1.3 for 

the SAPO-18_OSDA6 and SAPO-34_std, respectively, see Table 1), but also gives a much higher 

selectivity to C4
= (20.0 and 15.0 for the SAPO-18_OSDA6 and SAPO-34_std, respectively, see 

Table 1).  

It should be taken into account that the paring hydrocarbon pool mechanism can also favor the 

formation of C4
= light olefins.(31) Therefore, it could be then expected that those zeolite structures 

that favor the paring route will maximize the C3
=/C2

= and C4
=/C2

= ratio. Indeed, the two materials 

giving a higher C3
=/C2

=, which are RUB-13_OSDA3 and SAPO-18_OSDA6, they also give higher 

C4
=/C2

= compared to typical SSZ-13 or SAPO-34 materials (see Table 1). These results clearly 

suggest that the particular shape of the RTH and AEI cages should favor the paring hydrocarbon 

pool compared to another cage-based small-pore zeolite, such as CHA that presents larger and 

more symmetrical cages, where the side-chain alkylation would more easily occur. In fact, the 
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outstanding improvement of the catalytic activity observed for SSZ-13_OSDA1b compared to other 

CHA-related zeolites cannot be attributed to a better stabilization of some of the hydrocarbon 

pool intermediates within the pairing route, since the C3
=/C2

= and C4
=/C2

= ratios are comparable to 

those observed for standard SSZ-13 zeolites. Although we do not have a definitive explanation for 

this catalytic activity improvement at present, a different distribution of the acid sites within the 

cavities of the nanosized CHA materials forced by the OSDA1b cation during the synthesis, could 

explain the remarkable catalytic differences observed. 

To get a deeper insight into the preferential stabilization within the zeolites of the different 

species involved in the paring and side-chain routes, DFT calculations including dispersion 

interactions were performed on pure silica models of the RTH and CHA cavities (see Figure 4), 

considering both heptaMB+ and 1,2,2,3,5-pentaMB+ cations as initial hydrocarbon pool species. 

The calculated interaction energies show a stronger stabilization of all intermediates and 

transition states involved in the paring route (structures INT0 to INT5 in Figures S2, S3 and S5) in 

the RTH cavity, with calculated values between -50 and -60 kcal/mol for the first part of the 

mechanism (Table 2) and slightly lower, from -45 to -55 kcal/mol after split off of the olefin (Table 

S4), both for heptaMB+ and pentaMB+ HP species. As regards the intermediates involved in the 

side-chain route, notice that while INT7 participating in the formation of ethylene is also highly 

stabilized by the RTH cavity, the interaction energy obtained for INT8 is more than 20 kcal/mol 

lower, reflecting a worse fitting of this bulkier intermediate within the RTH framework, and 

discarding the formation of propylene via the side-chain pathway in RTH.   

The stabilization of cationic species in CHA is weaker than in RTH and depend on the degree of 

methylation of the HP species. Thus, the structures formed from pentaMB+ cation are stabilized by 

40-55 kcal/mol, while the values obtained starting from heptaMB+ are always lower than -50 

kcal/mol. It is of particular relevance the low interaction energy values obtained for the heptaMB+ 
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INT0 intermediate and for the two intermediates from the side-chain route, INT7 and INT8, in CHA, 

all of them around 20 kcal/mol less stable than their corresponding counterparts with pentaMB+ 

cation as HP. This might be related to the 3-fold symmetry of the CHA cavity, which does not allow 

the planar and fully methylated heptaMB+ ring to have all the methyl groups pointing to 8MR 

windows to avoid steric repulsion. Meanwhile, in the case of the less substituted pentaMB+ its 

smaller size allows this cation to move slightly towards the bottom of the cavity thus maximizing 

the stabilizing dispersion interactions (see Figure 4). On the other hand, the shape of the RTH cage 

provides a perfect fit with all structures involved in the paring route, and only the highly 

substituted INT8 intermediate, generating propylene via the side-chain route, is less stabilized due 

to steric repulsions.   

The differences between RTH and CHA are clearly evidenced in the energy profiles shown in Figure 

5. According to the DFT calculations, pentaMB+ cation is similarly stabilized in both zeolites, but its 

reactivity towards the paring route is low due to the endothermicity of the first step of this 

pathway producing the bi-cyclic intermediate INT1. Therefore, preferential stabilization of 

pentaMB+ should direct the reaction towards the side-chain route. Further methylation of 

pentaMB+ to heptaMB+ cation is difficult in CHA but energetically favored in RTH, so that the 

whole process following the paring route is favored within RTH framework.   

These data also imply that the main species composing the HP in CHA and RTH are different: 

pentaMB+ cations in the former and heptaMB+ cations in the latter. To evaluate this point, the 

organic species retained within the SSZ-13_std (CHA) and RUB-13_OSDA3 (RTH) catalysts when the 

MTO reaction was performed using 13C labelled methanol as substrate were identified using 13C 

CP-MAS NMR spectroscopy (see Figure S20 in the Supporting Information). Different spectra were 

obtained for the two materials. The spectrum for SSZ-13_std is dominated by two peaks at 125 

and 128 ppm associated to -CH2- in benzene rings and two peaks at 19 and 21 that can be assigned 
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to methyl groups in partially alkylated methylbenzene molecules. The spectrum for RUB-

13_OSDA3 (RTH) is more complex and contains, in addition, signals at 132-134 ppm and 11-16 

ppm related to fully alkylated benzene and cyclopentadiene rings, as well as a peak at 154 ppm 

previously assigned to polymethylcyclopentenyl (MPC+) cationic species.(13) These data support 

the preferential stabilization of heptaMB+ and MCP+ species in the RTH cavities, thus favoring the 

paring route and increasing the selectivity to propylene and butenes.  

CONCLUSIONS 

The results presented here show that the ab-initio design of zeolites for the particular industrially-

relevant MTO reaction by properly selecting the OSDA molecules based on the HP intermediates 

proposed in the literature, is a very attractive methodology not only to design very active and 

selective MTO catalysts, but also to extract more fundamental knowledge about the very complex 

reaction mechanism. It is important to remark that the use of the mimics of the paring HP 

intermediates as OSDAs has resulted in the almost exclusive crystallization of cage-based small 

pore zeolites, being most of them very active and/or very selective towards the most desired light 

olefins.  

The results obtained with SSZ-13_OSDA1b are especially remarkable since they surpass, by far, the 

stability of any other CHA reported up to now. The directing effect of the mimic OSDA towards the 

structure and, probably, towards the location of the active sites under our synthesis conditions 

helps to further validate our synthesis methodology.(25)  

This rationalized synthesis approach has been useful for synthesizing zeolites well-adapted for the 

MTO reaction and could be extended to other chemical processes presenting complex reaction 

mechanisms, where the ability to design very specific structured catalysts could favor the 

stabilization of particular intermediates and, consequently, maximize the yield towards the 

desired products.        
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Figure 1: Proposed hydrocarbon pool mechanisms, including the paring and side-chain routes, 

for the MTO reaction. Figure adapted from ref. (10, 13) 
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Figure 2: (a) Proposed OSDA mimics of the different intermediates present in the HP paring 

route and, (b) zeotypes obtained using these OSDA mimics 
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Figure 3: Comparison of the methanol conversion with TOS for the SSZ-13_OSDA1b, SSZ-13_std, 

and SSZ-13_nano zeolites reaction (reaction conditions: T=350C, WHSV=0.8 h-1, wcat=50 mg) 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Figure 4: DFT optimized structures of INT0 species in RTH (top left) and CHA cavity models. INT0 

from HeptaMB+ (bottom left) and PentaMB+ (bottom right) in CHA are shown. 
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Figure 5: Calculated energy profile for the paring route in RTH (blue) and CHA (red) models.  
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Table 1: Catalytic properties for the different small pore zeolites for MTO reaction (reaction 

conditions: T=350C, WHSV=0.8 h-1, wcat=50 mg) 

  Catalyst lifetime (min) Selectivity (%) at X95 

Sample Structure X95 X50 C2= C3= C4= C3=/C2= C4=/C2= 

SSZ-13_OSDA1a CHA 50 75 40.8 37.8 5.6 0.92 0.14 

SSZ-13_OSDA1b CHA 1005 1360 45.2 34.4 10.9 0.76 0.24 

RUB-13_OSDA3 RTH 270 645 14.7 45.1 24.7 3.07 1.68 

SAPO-18_OSDA6 AEI 25 90 22.2 44.5 19.9 2.00 0.89 

SSZ-13_std CHA 212 311 39.3 37.8 15.4 0.96 0.39 

SSZ-13_nano CHA 472 757 43.2 37.4 14.2 0.86 0.33 

SAPO-34_std CHA 440 844 33.3 46.2 13.7 1.38 0.40 
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Table 2: Stabilization of cationic intermediates and transition states by interaction with RTH and 

CHA cavity models. DFT calculated interaction energies in kcal/mol. 

   

 RTH CHA RTH CHA 

INT0 -57,5 -29,4 -51,7 -46,1 

TS01 -55,1 -42,1 -51,9 -48,7 

INT1 -56,1 -39,3 -50,9 -47,8 

TS12 -54,2 -39,0 -51,1 -48,2 

INT2 -49,8 -40,1 -50,1 -48,1 

T23 -54,5 -36,1 -52,3 -48,5 

INT34m/2m+C4
= -59,2 -51,6 -57,6 -51,5 

TS13 -59,7 -40,9 -56,6 -53,3 

INT35m/3m+C3
= -57,5 -45,5 -63,3 -54,9 

INT7 -51,7 -26,1 -42,4 -48,2 

INT8 -25,8 -29,5 -21,2 -51,5 

 

 

 

 

 

 

 

 



23 
 

References: 

1. M. Stocker, Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. 
Mesopor. Mater. 29, 3-48 (1999). 

2. P. Tian, Y. Wei, M. Ye, Z. Liu, Methanol to Olefins (MTO): From Fundamentals to 
Commercialization. ACS Catal. 5, 1922-1938 (2015). 

3. S. Ilias, A. Bhan, Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS 
Catal. 3, 18-31 (2013). 

4. D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Understanding the Failure 
of Direct C-C Coupling in the Zeolite-Catalyzed Methanol-to-Olefin Process. Angew. Chem. 
Int. Ed. 45, 1714-1719 (2006). 

5. W. Song , J. F. Haw , J. B. Nicholas , C. S. Heneghan, Methylbenzenes Are the Organic 
Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 
10726-10727 (2000). 

6. S. Svelle et al., Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene 
Formation Is Mechanistically Separated from the Formation of Higher Alkenes. J. Am. 
Chem. Soc. 128, 14770-14771 (2006). 

7. S. Teketel, U. Olsbye, K. P. Lillerud, P. Beato, S. S., Selectivity control through fundamental 
mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. 
Micropor. Mesopor. Mater. 136, 33-41 (2010). 

8. D. M. McCann et al., A Complete Catalytic Cycle for Supramolecular Methanol-to-Olefins 
Conversion by Linking Theory with Experiment. Angew. Chem. Int. Ed. 47, 5179-5182 
(2008). 

9. D. W. K., K. Hemelsoet, M. Waroquier, V. Van Speybroeck, Complete low-barrier side-chain 
route for olefin formation during methanol conversion in H-SAPO-34. J. Catal. 305, 76-80 
(2013). 

10. V. Van Speybroeck et al., First principle chemical kinetics in zeolites: the methanol-to-
olefin process as a case study. Chem. Soc. Rev. 43, 7326-7357 (2014). 

11. C. M. Wang, Y. D. Wang, Z. K. Xie, Verification of the dual cycle mechanism for methanol-
to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. 
Catal. Sci. Technol. 4, 2631-2638 (2014). 

12. B. Arstad, S. Kolboe, The Reactivity of Molecules Trapped within the SAPO-34 Cavities in 
the Methanol-to-Hydrocarbons Reaction. J. Am. Chem. Soc. 123, 8137-8138 (2001). 

13. S. Xu et al., Direct observation of cyclic carbenium ions and their role in the catalytic cycle 
of th emetahnol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 
11564-11568 (2013). 

14. J. Chen et al., Elucidating the olefin formation mechanism in the methanol to olefin 
reaction over AlPO-18 and SAPO-18. Catal. Sci. Tech. 4, 3268-3277 (2014). 

15. A. Sassi et al., Methylbenzene Chemistry on Zeolite HBeta:  Multiple Insights into 
Methanol-to-Olefin Catalysis. J. Phys. Chem. B 106, 2294-2303 (2002). 

16. A. Sassi, M. A. Wildman, J. F. Haw, Reactions of Butylbenzene Isomers on Zeolite HBeta:  
Methanol-to-Olefins Hydrocarbon Pool Chemistry and Secondary Reactions of Olefins. J. 
Phys. Chem. B 106, 8768-8773 (2002). 

17. M. Bjørgen, U. Olsbye, D. Petersen, S. Kolboe, The methanol-to-hydrocarbons reaction: 
insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions 
over zeolite H-beta. J. Catal. 221, 1-10 (2004). 



24 
 

18. M. Zhang et al., Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 
10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle 
mechanism. RSC Adv. 6, 95855-95864 (2016). 

19. Y. Bhawe et al., Effect of Cage Size on the Selective Conversion of Methanol to Light 
Olefins. ACS Catal. 2, 2490−2495 (2012). 

20. N. Martin et al., Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-
olefin (MTO) process. Chem. Commun. 52, 6072-6075 (2016). 

21. M. Dusselier, M. A. Deimund, J. E. Schmidt, M. E. Davis, Methanol-to-Olefins Catalysis with 
Hydrothermally Treated Zeolite SSZ-39. ACS Catal. 5, 6078-6085 (2015). 

22. T. Yokoi, M. Yoshioka, H. Imai, T. Tatsumi, Diversification of RTH-Type Zeolite and Its 
Catalytic Application. Angew. Chem. Int. Ed. 48, 9884-9887 (2009). 

23. Y. Ji, M. A. Deimund, Y. Bhawe, M. E. Davis, Organic-Free Synthesis of CHA-Type Zeolite 
Catalysts for the Methanol-to-Olefins Reaction. ACS Catal. 5, 4456-4465 (2015). 

24. M. Liu et al., Differences in Al distribution and acidic properties between RTH-type zeolites 
synthesized with OSDAs and without OSDAs. Phys. Chem. Chem. Phys. 16, 4155-4164 
(2014). 

25. E. M. Gallego et al., “Ab initio” synthesis of zeolites for preestablished catalytic reactions. 
Science 355, 1051–1054 (2017). 

26. S. I. Zones, U.S. Patent 4544538, 1985, assigned to Chevron. 
27. Z. Li, M. T. Navarro, J. Martínez-Triguero, J. Yu, A. Corma, Synthesis of nano-SSZ-13 and its 

application in the reaction of methanol to olefins. Catal. Sci. Technol. 6, 5856-5863 (2016). 
28. R. Martínez-Franco, A. Cantin, M. Moliner, A. Corma, Synthesis of the Small Pore 

Silicoaluminophosphate STA‑6 by Using Supramolecular Self-Assembled Organic Structure 
Directing Agents. Chem. Mater. 26, 4346-4353 (2014). 

29. J. E. Schmidt, M. A. Deimund, D. Xie, M. E. Davis, Synthesis of RTH-Type Zeolites Using a 
Diverse Library of Imidazolium Cations. Chem. Mater. 27, 3756−3762 (2015). 

30. M. Moliner, C. Franch, E. Palomares, M. Grill, A. Corma, Cu–SSZ-39, an active and 
hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. 
Commun. 48, 8264-8266 (2012). 

31. C. M. Wang, Y. D. Wang, H. X. Liu, Z. K. Xie, Z. P. Liu, Theoretical insight into the minor role 
of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. 
Micropor. Mesopor. Mater. 158, 264-271 (2012). 

 


