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Abstract

In this paper we introduce a concept of weak stability in non-autonomous
dynamical system. We show that the set of weak stable points is residual and
investigate the relation between weak stability and shadowing property. We
also discuss the relation between weak stability of non-autonomous dynamical
system and its induced set-valued system.
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1. Introduction1

Let f : X → X be a continuous map acting on a compact metric space2

(X, d). A autonomous discrete dynamical system is a pair (X, f). A non-3

autonomous discrete system difference equation is the following:4

xn+1 = fn(xn), n ≥ 0, (1)

where {fn}∞n=0 is a sequence of continuous maps and each fn is a self-map on5

X. Set F = {fn}∞n=0 for the sake of simplicity. Note that the autonomous6

dynamical system is a special case of system (1) when fn = f for all n ≥ 0.7

We refer to Section 2 for other notions and notations mentioned in this8

section.9
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Non-autonomous dynamical systems deal with the situations which dy-10

namics can vary with time. Recently, the study of non-autonomous dynam-11

ical systems become active and many elegant results have been obtained12

[1, 2, 3, 4, 5, 6]. The dynamics in non-autonomous case can be vary compli-13

cated. Hence it is natural to study the pseudo-orbits for a better understand-14

ing of true orbits. Along this line, the study of shadowing property in au-15

tonomous dynamical systems attracts lots of attention [7, 8, 10, 11, 12, 13, 14,16

and the references therein]. In [9], a concept of weak stability has been intro-17

duced, and it is shown that orbital shadowing property is generic in the set18

of weak stable homeomorphisms. Motivated by this idea, we discuss weak19

stability in nonautonomous dynamical systems.20

On the other hand, a discrete dynamical system uniquely induces its set-21

valued system which on the space of compact subsets. It is natural to ask22

the following question: What is the relation between dynamical properties23

of the original and set-valued systems? The study of the dynamics of the24

induced system has been extensively studied and many elegant results have25

been obtained[15, 16, 17, and the references therein].26

In this present paper, a concept of weak stability has been introduced27

and the relation between shadowing and weak stability has been discussed.28

The relations between some chaotic properties of the nonautonomous discrete29

dynamical system and its set-valued system have also been investigted.30

Below, basic notions are introduced in Section 2. Main results are pre-31

sented in Section 3.32

2. Basic concepts and notations33

Let F = {fn}∞n=0 be a sequence of continuous selfmaps defined on a34

compact metric space X. An orbit of a point x0 ∈ X, denoted by o(x, F ) =35

{xn}∞n=0, is defined as follows:36

xn = fn(xn−1), n = 1, 2, · · ·

Denote Fn : X → X by37

Fn = fn ◦ fn−1 · · · ◦ f2 ◦ f1.

For δ > 0, a δ-pseudo-orbit for F is a sequence {xn}∞n=0 in X such that38

d(fi+1(xi), xi+1) < δ for i ∈ N. A finite δ-pseudo-orbit {xi}bi=0 is called a39

δ-chain from x0 to xb with length b+ 1.40
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For ε > 0, F has shadowing property if, there is a δ > 0 such that41

every δ-pseudo-orbit for F can be ε-shadowed by some point y ∈ X, that is42

d(Fi(y), xi) < δ for all i ∈ N, where N denotes the set of all positive integers.43

F is chain transitive if for any x, y ∈ X there is a δ-chain of F from x to y.44

Let K(X) be the collection of all non-empty compact subsets of X. Define45

the ε-neighborhood of a nonempty subset A in X to be the set46

Nε(A) = {x | d(x,A) < ε},

where d(x,A) = infa∈A ρ(x− a).47

The Hausdorff separation ρ(A,B) of A,B ∈ K(X) is defined by48

ρ(A,B) = inf{ε > 0| A ⊆ Nε(B)},

The Hausdorff metric on K(X) is defined by letting49

Hd(A,B) = max{ρ(A,B), ρ(B,A)}.

For a compact space X, the topology generated by Hd coincides with the50

finite topology. In this case KF(X), the set of all finite subsets of X is dense51

in K(X). Also, K(X) is compact if and only if X is compact.52

3. Main Results53

In this section, we investigate the so-called weak stability in (X,F ) (recall54

that F = {fn}∞n=0).55

Definition 3.1. We call x a weak stable point of F , or F is weak stable at56

x, if for every ε > 0 there exist δ > 0 and an integer T such that o(z, F ) ⊂57

Nε({Fi(z) ; i = −T, . . . , T}) for any z ∈ X with d(z, x) < δ.58

Theorem 3.2. Let {fn}∞n=0 be a sequence of homeomorphisms on a compact59

space X. Then the set of weak stable points is residual in X.60

Proof. Let ε > 0 and U = {Ui | i = 1, 2, · · ·, k} be a finite open covering of X61

with diam(Ui) <
ε
2
. Set K = {1, 2, · · ·, k}. For every x ∈ X, choose Lx ⊂ K62

satisfying the following:63

1. o(x, F ) ⊂ ∪{Ui | i ∈ Lx}64

2. o(x, F ) ∩ Ui 6= ∅65
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Let Wε be the set of all a ∈ X such that for ε > 0, there exist δa > 066

and positive integer Ta with d(a, x) < δa implies o(x, F ) ⊂ Nε({Fi(x)}) for67

i = −Ta, · · ·, Ta. Obviously, Wε is open. To prove that Wε is dense in X, fix68

any a ∈ X. Choose λ1 > 0 such that for every x ∈ Nλ1(a),69

d(Fi(a), Fi(x)) <
ε

2
.

where i = −Ta, · · ·, Ta.70

Assume that a /∈ Wε. For 0 < δ1 < λ1 there exists a1 ∈ Nδ1(a) such that71

for i = −Ta, · · ·, Ta,72

d(Fm1(a1), Fi(a1)) ≥ ε,

where |m1| > Ta. We also have for i = −Ta, · · ·, Ta,73

d(Fm1(a1), Fi(a)) ≥ ε

2
,

Indeed, if d(Fm1(a1), Fi(a)) < ε
2
, then74

d(Fm1(a1), Fi(a1)) ≤ d(Fm1(a1), Fi(a)) + d(Fi(a), Fi(a1)) <
ε

2
+
ε

2
= ε,

which is a contradiction. Consequently,75

Fm1(a1) /∈ N ε
2
({Fi(a)}Tai=−Ta).

Notice that diam(Ui) <
ε
2
, thus Fm1(a1) /∈ Ui for all i ∈ La, and then there76

exists j ∈ K−La such that Fm1(a1) ∈ Uj. Thus La ⊂ La1 . Choose a positive77

integer m2 > m1 such that for all j ∈ La1 ,78

{Fi(a1)}m2
i=−m2

∩ Uj 6= ∅.

Thus79

o(a1, F ) ⊂ Nε({Fi(a1)}m2
i=−m2

).

Still, one could choose λ2 > 0 such that for every x ∈ Nλ2(a1),80

d(Fi(a1), Fi(x)) <
ε

2
.

where i = −m2, · · ·,m2.81

If a1 ∈ Wε then the proof is done, otherwise there exists a2 ∈ Nδ2(a1) ⊂82

Nδ1(a) implies for i = −m2, · · ·,m2,83

d(Fm3(a2), Fi(a2)) ≥ ε,
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where |m3| > m2.84

Using the same technique as above we obtain85

Fm3(a2) /∈ N ε
2
({Fi(a1)}m2

i=−m2
),

and then Fm3(a2) /∈ Ui for all i ∈ La1 , hence there exists j ∈ K − La1 such86

that Fm3(a2) ∈ Uj. Consequently, La1 ⊂ La2 .87

By continuing this process there is a∗ ∈ Nδ1(a) such that La∗ = K, since88

K is finite. Thus a∗ ∈ Wε, which completes the proof of density of the set89

Wε. Set W = ∩∞n=1W 1
n
, then W is residual in X.90

Lemma 3.3. If F has the shadowing property, then so does Fk for k ∈ N.91

Lemma 3.4. Let Fk be chain transitive for k ∈ N. If F has the shadowing92

property, then Fk is topological transitive.93

Proof. By Lemma 3.3, Fk has the shadowing property. Let B(x, r1) and94

B(y, r2) be balls of x, y ∈ X, respectively. For 0 < ε < min{r1, r2}, there95

exists δ > 0 such that every δ-pseudo-orbit of Fk can be ε-shadowed by96

some point of X. Since Fk is chain transitive, there exists a δ-chain {x =97

x0, · · ·, xn = y} from x to y. Thus there is z ∈ X such that d(z, x) < ε and98

d(Fkn(z), y) < ε. Consequently, Fkn(B(x, r1)) ∩ B(y, r2) 6= ∅. It follows that99

Fk is topological transitive.100

Theorem 3.5. Let (X, d) be a compact metric space. Let Fn be chain tran-101

sitive for n ∈ N. If F has a weak stable point, then F does not have the102

shadowing property.103

Proof. Let ε > 0 and x ∈ X be a weak stable point of F . Let U = ∪si=1Ui be104

a finite open covering of X with diam(Ui) <
ε
6
. Then there exist 0 < η < ε

6
105

and n1, n2, · · ·, ns ∈ N such that for y ∈ B(x, η), Fni(y) ∈ Ui for i = 1, 2, · · ·, s.106

Take T = max{|ni| : 1 ≤ i ≤ s}. Then107

d(Fn(y), Fni(y)) <
ε

6

for n ∈ N,−T ≤ i ≤ T . If F has the shadowing property, then there exists108

0 < δ < η such that each δ-pseudo-orbit of F can be η-shadowed by some109

point t ∈ X. By Lemma 3.4, F is topological transitive, there exists k ∈ N110

such that F−k(B(x, δ
2
))∩B(x, δ

2
) 6= ∅. Take z ∈ F−k(B(x, δ

2
))∩B(x, δ

2
). Since111

Fk is chain transitive, there exists a δ-chain {y = y0, y1, · · ·, ym = z} from y to112
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z. Thus {y, f1(y), ···, Fk−1(y), y1, f1(y1), ···, Fk−1(y1), y2, ···, ym−1, f1(ym−1), ··113

·, Fk−1(y1), z} is a δ-chain of F , which can be η-shadowed by some point114

t ∈ X. It follows that115

d(t, y) < η, d(F(m+l)k(t), z) < η, l = 0, 1, · · ·.

Note that F(m+l)k(t) ∈ X = ∪si=1Ui, then F(m+l)k(t) ∈ Ui for some i = 1, ···, s.116

However, Fni(y) ∈ Ui. Therefore,117

d(F(m+l)k(y), z) ≤ d(F(m+l)k(y), Fni(y)) + d(Fni(y), F(m+l)k(t)) + d(F(m+l)k(t), z)

<
ε

6
+
ε

6
+
ε

6
=
ε

2
.

Then118

d(F(m+l)k(y), x) ≤ d(F(m+l)k(y), z) + d(z, x) <
ε

2
+

ε

12
=

7ε

12
.

Consequently, o(y, Fk)− B(x, ε) ⊂ { y, Fk(y), · · ·, F(m−1)k(y)} is a finite set.119

Thus o(y, Fk) 6= X, there exist y∗ ∈ X and λ > 0 such that B(y∗, λ) ⊂120

X − o(y, Fk).121

On the other hand, since x is a weak stable point of F , it is a weak122

stable point of Fk. Thus there exists ξ > 0 such that if d(x, y) < ξ then123

d(Fkni(x), Fkni(y)) < λ
6

for −T ≤ i ≤ T . Due the topological transitivity124

of Fk, there is a point ω ∈ X such that o(ω, Fk) = X. Hence there exist125

m, j ∈ N with −T ≤ m− j ≤ T such that126

d(Fkj(ω), x) < ξ, d(Fkm(ω), y∗) <
λ

6
.

Therefore,127

d(F(m−j)k(y), y∗) ≤ d(F(m−j)k(y), F(m−j)k(x)) + d(F(m−j)k(x), F(mk(ω)) + d(F(mk(ω), y∗)

<
λ

6
+
λ

6
+
λ

6
< λ,

which contradicts withB(y∗, λ) ⊂ X−o(y, Fk). This completes the proof.128

Theorem 3.6. Let (X,F ) be a non-autonomous dynamical system and A be129

a dense invariant subset of X. Then F is weak stable if and only if F |A is130

weak stable.131
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Proof. It is obvious that the weak stability of F implies the same one of F |A.132

Conversely, assume that F |A is weak stable. Fix any x∗ ∈ X. Due133

density of A and uniform continuity of F , for ε > 0, there exists δ > 0 such134

that if z ∈ A ∩ Nδ(x
∗) then d(Fn(x∗), Fn(z)) < ε

3
. Since F |A is weak stable,135

there is T ∈ N such that d(Fn(x∗), Fi(x
∗)) < ε

3
for i = −T, · · ·, T .136

Take any y ∈ X with d(x∗, y) < δ, thus137

d(Fn(y), Fi(y)) < d(Fn(y), Fn(x∗)) + d(Fn(x∗), Fi(x
∗)) + d(Fi(x

∗), Fi(y))

<
ε

3
+
ε

3
+
ε

3
= ε

for i = −T, · · ·, T . Therefore F is weak chain continuous. This completes138

the proof.139

Theorem 3.7. Let (X,F ) be a non-autonomous dynamical system and (K(X), F )140

be its induced set-valued system. Then F is weak stable if and only if F is141

weak stable.142

Proof. Assume that F is weak stable. To prove that F is weak stable, by143

Theorem 3.6, it suffices to show that the weak stability of F on KF(X), as144

KF(X) is dense in K(X). Take A = {x1, x2, · · ·, xk} ∈ KF(X). Since F is145

weak stable, for ε > 0, there exist δj > 0 and Tj ∈ N such that146

d(Fn(yj), Fi(yj)) < ε

for every yj ∈ X with d(xj, yj) < δj, where i = −Tj, · · ·, Tj and j = 1, · · ·, k.147

Set δ = max{δj} and T = max{Tj}. Let B = {y1, y2, · · ·, yk}. Then148

B ∈ KF(X) satisfies the following149

Hd(A,B) < δ

and150

Hd(F n(A), F i(B)) < ε,

for i = −T, · · ·, T . It follows that F is weak stable.151

Conversely, fix any x ∈ X. Then {x} ∈ KF(X). To prove F is weak152

stable, it is sufficient to observe that153

d(x, y) = Hd({x}, {y})

and154

Hd(F n({y}), F i({y})) = d(Fn(y), Fi(y))

for every y ∈ X with d(x, y) < δ. This completes the proof.155
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