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Abstract.  

Accurate quantification of white matter hyperintensities (WMH) from Magnetic Resonance 

Imaging (MRI) is a valuable tool for the analysis of normal brain ageing or neurodegeneration. 

Reliable automatic extraction of WMH lesions is challenging due to their heterogeneous spatial 

occurrence, their small size and their diffuse nature. In this paper, we present an automatic 

method to segment these lesions based on an ensemble of overcomplete patch-based neural 

networks. The proposed method successfully provides accurate and regular segmentations 

due to its overcomplete nature while minimizing the segmentation error by using a boosted 

ensemble of neural networks. The proposed method compared favourably to state of the art 

techniques using two different neurodegenerative datasets.  

 

Keywords: lesion segmentation, MRI, brain, patch-based, neural network, ensemble 

 

 

 

 

 



2 
 

1. Introduction 

White matter hyperintensities (WMH) are regions of increased MR signal in T2-Weighted 

(T2W) and FLuid Attenuated Inversion Recovery (FLAIR) images that are distinct from 

cavitations (Wardlaw,2012). The number, size and location of WMH can provide important 

information into the aetiology and progression of various diseases. This has been extensively 

studied in normal ageing, cerebrovascular disease, dementia (Kuo and Lipsitz ,2004; Debette 

and Markus, 2010) and its influence on co-morbidities (Lee et al.,2015). The presence, 

topography and volume of WMH is used as biomarkers for stroke (Kuller et al., 2004; Wong et 

al., 2002), small vessel cerebrovascular disease (CVD) (Schmidt et al., 2004), dementia (Debette 

and Markus, 2010) and in multiple sclerosis (MS) (Filippi and Rocca, 2011).  

In clinical practice, qualitative visual rating scales have been frequently used (Scheltens et al., 

2009). However, in order to use WMH volume and spatial location as a biomarker, lesions 

need to be accurately and precisely segmented. Some promising early-automated methods 

have been used in longitudinal clinical studies (Mäntylä  et al., 1997), with later studies focused 

on improving the sensitivity, specificity and robustness of automated WMH segmentation. 

Manual and semi-automated segmentation of WMH is a tedious process requiring trained 

observers and several hours per image for manual delineation by an expert making it 

unsuitable for routine clinical and research usage (Udupa et al., 1997). Moreover, manual 

segmentation is prone to inter and intrarater variability. 

With many large clinical studies investigating ageing, cerebrovascular disease, and dementia, 

there is a need for robust, repeatable, accurate, and automated techniques for the 

segmentation of WMH. In recent years, several methods have been proposed to automatically 

segment WMH in CVD and in MS. While the underlying pathology is different, the radiological 

signatures of MS and CVD are sufficiently similar that methods developed for one have good 

performance for the other (Caligiuri et al., 2015). Demyelinating lesions of MS and 

cerebrovascular disease appear as hyperintense regions on T2W and FLAIR images. Initial 

approaches to segment of WMH relied on the higher intensity in lesions compared to 

surrounding tissue to threshold the image after correction for inhomogeneities (Jack et al., 

2001; Souplet et al., 2008). The hyperintensity assumption is challenged by the natural 

variation in intensity found in normal tissues across the brain such as the septum pellucidum 

and CSF flow artefacts around the ventricles (Neema  et al., 2010). Other problem includes 

residual intensity inhomogeneity, even after correction.  

To address these issues, more complex methods have been proposed. These methods can be 

classified into unsupervised and supervised. Unsupervised methods rely on the natural 

separation of image features using clustering type approaches. For example, the lesion growth 

algorithm (LGA) publicly available as part of the lesion segmentation toolbox (LST) has been 

widely used (Schmidt  et al., 2012). In this method, both T1W and FLAIR images are required to 

first compute a map of possible candidate lesions whose centres are then used as seeds to 

segment the entire lesions using region growing. Also included in the LST toolbox, a more 

recent method, the lesion prediction algorithm (LPA), only requires FLAIR images as input. 

Within the same category, (Weiss et al., 2013) proposed a dictionary learning-based approach 

that segments lesions as outliers from a projection of the dataset onto a normative dictionary. 
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Similarly (Raniga et al., 2011) used a generative model to segment lesions by detecting outlier 

tissue. More classical unsupervised approaches have also been proposed (Admiraal-Behloul  et 

al., 2005).  

Supervised methods require training datasets where WMH lesions are manually annotated by 

experts. This type of methods can work on single channel (FLAIR or T2W) or multi-channel data 

(FLAIR or T2W and T1W and PDW). Supervised methods for WMH segmentation typically 

involve machine learning methods at a voxel level with pre and/or post processing steps to 

improve the sensitivity and specificity of the results. Such methods have used support vector 

machines (Lao et al., 2008), k-nearest neighbours (Steenwijk et al., 2013), random forests 

(Ithapu et al., 2014; Geremia et al., 2010: Jesson and Arbel,2015), artificial neural networks 

(Dyrby et al., 2008), deep learning (Brosch et al., 2015; Ghafoorian et al., 2016; Valverde et al., 

2017) or multiatlas patch-based label fusion methods (Guizard et al., 2015). All these methods 

were trained on either single or multi-channel voxel intensities jointly with some other 

context-related features and typically within a standardized anatomical space. Independently 

of the features used, these methods perform the classification step at the voxel level, and do 

not take into account label spatial correlations, which might affect their performance. 

To overcome the lack of local consistency (i.e. each voxel is labelled independently of 

neighbour voxels) of the methods performing voxel-wise classification, we propose an 

automatic pipeline for hyperintense lesion segmentation based on the use of patch-wise 

neural network classifier that segments the lesions taking in consideration patch labels local 

context in an overcomplete manner which further reduces classification errors. This pipeline 

benefits from some pre-processing steps aimed to improve the image quality and to locate it in 

a standardized geometrical and intensity space. The proposed method which extends a 

previous method recently published (Manjón et al.,2015) uses a boosting based ensemble 

learning strategy to minimize the classification error. In the following sections, the proposed 

method is described and compared to manual assessment and two state-of-the-art methods. 

This comparison is performed on data from two datasets.  

2. Material and Methods 

2.1. Data description 

AIBL dataset 

In this work, we used a set of 128 subjects (including a wide range of white matter lesion 

severity, aged 38.6-92.1, male/female: 60/68) from the Australian Imaging Biomarkers and 

Lifestyle (AIBL) study (www.aibl.csiro.au) (Ellis et al., 2009). FLAIR scans were acquired for all 

the subjects on a 3T Siemens Magnetom TrioTim scanner using the following parameters: 

TR/TE: 6000/421 ms, flip angle: 120⁰, TI: 2100 ms, slice thickness: 0.90 mm, image matrix: 

256×240, in-plane spacing: 0.98 mm. The ground truth for training and evaluating the 

proposed method was generated by manual delineation of the hyperintense lesions from all 

the FLAIR images by Dr. Parnesh Raniga using MRIcro. Lesion boundaries were delineated on 

axial slices after bias correction and anisotropic diffusion smoothing and lesion volumes were 

filled in. Slices were segmented from inferior to superior with neighbouring slices examined to 

confirm contiguous lesions. Care was taken to avoid segmenting normally hyperintense regions 
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such as the septum pellucidum as lesions. One to two voxel boundaries around the ventricles 

and large penetrating areas were excluded if they appeared hyperintense as these normally 

correspond to CSF flow artefacts.    

MICCAI 2008 dataset 

We also used a publicly available clinical dataset provided by the MS lesion segmentation 

challenge at MICCAI 2008 (Styner et al., 2008). As done by Weiss et al. (2013), we used the 20 

available labelled training cases as well as the test dataset (results on test dataset were 

submitted to the online web service for its evaluation). The data comes originally from the 

Children’s Hospital Boston (CHB) and the University of North Carolina (UNC). Although there 

are T1W, T2W and FLAIR images available in this dataset, our method only required the use of 

the FLAIR images. 

2.2. Preprocessing 

Several pre-processing steps are applied to project the images into a standardized geometrical 

and intensity space:   

1. Noise reduction: The Spatially Adaptive 3D Non-local Means Filter was applied to reduce 

the noise in the images. This filter was chosen because it automatically adapts to both 

stationary and spatially varying noise levels (Manjón et al., 2010).  

 

2. Registration to MNI space: All the images were aligned into a common coordinate space, 

enabling the use of location as a feature to capture intensity variation across brain 

anatomy. To do this, the images were linearly registered (affine transform) to the 

Montreal Neurological Institute (MNI) space using the MNI152 template. This was 

performed using the Advanced Normalization Tools (ANTs)  (Avants and Tustison, 2009).  

 

3. Inhomogeneity correction and Brain extraction: SPM12 segmentation module was used to 

perform the inhomogeneity correction of the images and to provide an initial 

segmentation of the brain tissues: gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) (Ashburner and Friston, 2005). A brain mask was created by 

thresholding the (GM+WM) probability maps. This binary mask was further refined by 

applying an opening morphological operation (using a 5x5x5 voxel kernel) to remove small 

external non-brain related areas. The fact that in SPM12 several Gaussian distributions are 

used to model each tissue type helped to successfully perform the inhomogeneity 

correction robustly.  

 

4. Intensity normalization: The estimated brain mask was used to select only brain voxels. 

The resulting volume was intensity standardized by dividing all brain voxels by the median 

intensity within the brain region. Finally, resulting intensities were squared to enhance 

image contrast. 

 

2.3. Proposed method 

Lesion segmentation was performed in three steps:  
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1- Lesion candidate ROI selection 

Within the brain mask, a region of interest (ROI) is created by using a conservative threshold, 

aiming at including all the lesions and some tissue (see section below). The goal of this step 

was to reduce the number of voxels to be classified, by reducing the true negatives as lesions 

in FLAIR images typically show higher intensities than normal white matter.  

2- Neural Network classifier 

The ROI contains a mixture of normal tissue and lesion voxels. A neural network was trained to 

classify voxels belonging to those two classes. We used neural networks instead of other 

powerful classifiers such as random forest or support vector machines due to the possibility to 

perform structured prediction (whole patch classification) as we will describe later. Several 

features were extracted from every voxel within the selected ROI and the neural network was 

used to map these features into the corresponding class (lesion/non-lesion). 

 Features: The features used to train the network were a 3D patch P1 around the voxel/s to 

be classified, a second larger 3D patch P2 , used to model the spatial context at a larger 

scale, the x, y and z voxel coordinates of the center voxel of the patch P1 in MNI space and 

a value representing the a priori lesion probability (also of the center voxel of the patch P1 

being classified). This a priori lesion probability map (Figure 1) was obtained by averaging 

all training lesion maps in the MNI space (convolved with a 5 mm3 Gaussian kernel). In our 

experiments, we used a P1 of size 3x3x3 voxels, a P2 of 5x5x5 voxels (however, since 3x3x3 

of the 5x5x5 voxels of P2 are already included in the patch P1 we subsampled the patch P2 

so we took only odd voxels (1,3,5) in all three dimensions, which resulted in a total of 27 

voxels). Thus, the number of features vector was 58: 27 P1 + 27 P2 voxel intensities, 3 

spatial coordinates and 1 apriori lesion probability). 

 

 Network topology: A feedforward multilayer perceptron with one hidden layer was 

implemented. Two different output layer settings were tested, voxel-wise and patch-wise. 

In the first case, the network that we used had 58xNx1 neurons (being N the number of 

neurons of the hidden layer) so only the center voxel of patch P1 was classified. In the 

second case, we used a 58xNx27 network (labelling the whole patch P1 rather than just the 

central voxel). In this second case, an overcomplete approach was used so that each 

labelled voxel had contributions from several adjacent patches as done in denoising 

(Manjón et al., 2010). This improved segmentation accuracy (more votes per voxel) and 

enforced regularity in the final labelling. A sigmoid activation function was used in the 

hidden layer while a linear function was used for the output layer. 
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Figure1. Example FLAIR image overlaid with the a priori probability lesion map. As can be noticed, the 

periventricular area shows a high lesion probability.   

 

3- Ensemble-based classification  

Neural networks are very powerful classifiers but, since their outputs are based on a random 

initialization of their weights or sample ordering the accuracy varies across different training 

sessions. Traditionally, several training sessions are performed and the best one is chosen for 

the final classifier. However, this approach is not necessarily the best option as it can lead to 

overfitting problems. To minimize this problem, one common solution has been the use of 

ensembles of classifiers (Opitz and Maclin, 1999) which ideally may help to minimize the 

variance and bias of the classification error by combining several classifiers outputs. In this 

paper, we have explored two popular ensemble variants: bagging (Breiman,1994) and boosting 

(Schapire, 1990).  

Bagging (Bootstrap aggregating) is a machine learning ensemble method designed to improve 

the stability and accuracy by averaging the outputs of several classifiers trained on different 

randomly selected datasets. This approach reduces classification error variance and helps to 

minimize the overfitting problem. On the other side, boosting is also an ensemble-based 

algorithm that combines the output of several classifiers to minimize not only the classification 

error variance but also the bias. In boosting, the classifiers are not independently trained as in 

bagging but the output of one classifier is used to improve the next one. This approach 

iteratively gives more weight to the samples wrongly classified in the next classifier or 

performing a non-random selection on the training dataset selecting with higher probability 

samples wrongly classified previously. Finally, the different classifier outputs are combined 

according to their accuracy. 

In summary, after preprocesing, we apply the ensemble of trained neural networks in the 

selected ROI to create a lesion probability map. The obtained lesion probability map is then 

resampled into the native image space and thresholded to produce a binary lesion mask. The 

total processing time of the full pipeline is around 3 minutes. We called the proposed method 

HIST (for HyperIntense Segmentation Tool). 
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3. Experiments and results 

All experiments were performed using MATLAB 2015a and its neural network toolbox on a 

standard PC (intel i7-6700 and 16 GB RAM) running Windows 10.  

3.1. Parameter setting 

To evaluate our proposed method and to estimate all the parameter settings, we used the 

AIBL dataset (Ellis et al., 2009) to run some experiments. Specifically, the AIBL dataset (N=128) 

was split in two sets, one for training/validation (N=68) and one for testing (N=60). Neural 

network parameter settings were tuned using the validation set and later applied to the test 

set. To measure the quality of the proposed segmentation method we used the dice 

coefficient. The training/validation dataset was augmented by including the transformed data 

of each case (symmetric left-right cases along axial plane), which resulted in a total size of 136 

images (where 36 of these images were used for validation purposes and the rest for training). 

Network topology  

The neural network topology allows finding an optimal mapping between the input features 

describing the data and the desired output. In this study, we used a multilayer perceptron with 

one hidden layer. As input we used the 58 previously described features and as output the 27 

labels of the corresponding P1 3x3x3 patch of voxels. An experiment (using 10000 randomly 

selected training samples within the selected ROI) was performed to measure the dice 

coefficient as a function of the number of neurons of the hidden layer. We found 

experimentally that 63 neurons in the hidden layer was the optimal value balancing network 

simplicity (thus minimizing overfitting) and accuracy (in terms of Dice coefficient). We also 

tested the addition of a second hidden layer and the use of a bigger context patch P2 but the 

results were not significantly better. The final setup in all our experiments consisted of a 

network topology comprising 58x63x27 neurons (i.e. 5445 trainable weights). A scaled 

conjugate gradient backpropagation method was used to train the network (with it defaults 

parameters) as implemented in MATLAB 2015a neural network toolbox.  

ROI selection 

To segment hyperintense lesions in the brain we benefit from the fact that in general they 

have a high intensity value on FLAIR MRIs and thus a simple threshold can be used to define a 

sensitive ROI. This threshold was selected to be low enough not to miss any true lesion but 

high enough to minimize the number of non-lesion voxels. To estimate this threshold, the 

neural network described above was used with different thresholds (from 1.1 to 1.8 at steps of 

0.1) while measuring the mean dice on the validation set. We compared the results obtained 

from the candidate region to investigate how much the network was improving the initial 

results. As shown in at Figure 3 (left), a simple global thresholding of =1.6 provided a mean 

dice of 0.59 ± 0.16. Using a lower threshold produced a low dice due to high number of false 

positives while a higher threshold reduced the dice due to the increase of false negatives. On 

the other hand, the application of the proposed network within the corresponding candidate 

ROI showed a very significant improvement in dice measure for all used thresholds (Figure 3 

right). In this case, we obtained the optimal dice result of 0.78±0.10 for =1.5. This 
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improvement was only due to the exclusion of false positives since the network did not 

evaluate voxels not included in the candidate mask.  

Figure 2. Left: Mean dice using as segmentation the candidate ROI obtained with different thresholds. 

Right: Mean dice after aplying the proposed neural network to the corresponding candidate ROIs 

obtained with different thresholds (validation data results).    

Network output aggregation: Voxel-wise vs overcomplete Patch-wise 

In our proposed method, we classify patches instead of independent voxels aiming at 

improving accuracy by regularizing segmentation results. To investigate this hypothesis, we 

compared the dice score between the two different scenarios described in the method section 

(voxel-wise and patch-wise). We trained a voxel-wise (58x63x1) neural network where only the 

central voxel of the patch P1 was labelled and compared its results with the described patch-

wise version. The average validation dice coefficient of the voxel-wise version was 0.73±0.12, 

which was notably lower than the corresponding patch-wise version (0.78±0.10) 

demonstrating the effectiveness of our patch-wise classification strategy.  

Ensemble of neural networks  

To further improve the classification results of our proposed method we explored two variants 

of ensemble methods, bagging and boosting.   

For the bagging experiments, we trained 10 networks using 20000 samples randomly selected 

from the candidate regions of the training dataset. All probability maps resulting from each 

network were uniformly averaged to produce the final probability map. For the boosting 

experiments, we also trained 10 networks using 20000 samples randomly selected from the 

training dataset. However, in this case, after the first network, samples with the wrong 

classifications were selected with more probability than correctly classified samples. All 10 

resulting networks outputs were averaged using the dice coefficient of each individual network 

to produce the final output.          

We evaluated the impact of the bagging/boosting approaches (specifically the optimal number 

of neural networks combined). In Figure 3 (left), the evolution of the Dice coefficient (during 

training) as a function of the number of averaged trained networks is shown. Our experiments 

showed that bagging and boosting improved the classification results but reached a plateau 

when10 networks were used. However, boosting produced a more pronounced improvement 
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compared to bagging thanks to its systematic error reduction capabilities (the first network 

had a training dice of 0.917 while when using 10 networks we reached 0.922).   

Due to the enhanced accuracy of the proposed method (thanks to its ability to reduce false 

positives), we re-evaluated the optimal ROI threshold but this time using a boosted ensemble 

of networks. In Figure 3 (right), the mean dice of the validation set is presented for different 

thresholds. As can be noticed, the enhanced performance of the network ensemble allowed 

using a lower threshold reducing the number of false negatives (and increasing true positives) 

and therefore improving the overall performance of the method. Thus, the final threshold of 

the method was set to =1.2.  

With these settings, we trained the final network ensemble (M=10) using randomly selected 

sets of 1000000 samples from the total population of around 4600000 sample patches 

(including all training and validation cases). Every network took approximately 5 hours to train 

so the training time of the 10 networks in a single computer was around 2 days. The final mean 

dice of the test set using the final ensemble was 0.802 ±0.103.  

Figure 3. Left: Dice coefficient as a function of the number of networks used in the ensemble for bagging 

(blue) and boosting (red)(training data results). Right: Dice as a function of the ROI selection threshold on 

Boosting (validation data results). 

3.2. Comparison with other methods 

We compared the performance of HIST with related publically available methods included in 

the LST toolbox (http://www.applied-statistics.de/lst.html). The first was the LGA method that 

uses both T1W and FLAIR images (Schmidt et al., 2012) (LGA method takes around 10 minutes 

to segment a new case) and the second was the LPA that only requires a FLAIR image to 

perform the lesion segmentation (LPA method is faster than LGA and takes only 3.5 minutes to 

segment a new case). We measured the results in native space so all compared methods share 

the same data conditions. To do so, we applied an inverse affine transform to map the 

resulting lesion probability map to native space. As a final step, the final map was thresholded 

in native space to create a binary lesion mask. We used a binarization threshold of 0.45 to 

compensate for the interpolation blurring introduced by the inverse transformation used to 

map the results from MNI to native space. To measure the quality of the proposed method we 

used the dice coefficient, sensitivity, specificity, the normalized volume difference (absolute 

difference of the reference and estimated volume divided by the reference volume) and the 
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volume correlation coefficient relating automatically estimated and manually segmented 

lesion volumes in the dataset. 

In Tables 1 and 2 the dice coefficient and mean volume difference for these methods and for 

different lesion sizes is presented. The proposed method significantly outperformed the 

compared methods for all lesion sizes. In table 3, the volume correlation shows that the HIST 

method had the stronger volume correlation (0.9938). Figure 5 shows the boxplot graphs of 

dice, sensitivity, specificity and the dataset volume correlation and Figure 6 shows a visual 

example of the segmentation results of one test case.  

Table 1. Mean dice coefficient. Best results in bold. HIST results were significantly better than compared 

methods for all lesion sizes and in overall (p<0.05).  

Method 
                                          Lesion size* 

Small (N=19) Medium (N=25) Big (N=16) All (N=60) 

LST-LGA 0.4518±0.1531 0.6700±0.0694 0.7668±0.0406 0.6267±0.1597 

LST-LPA 0.4973±0.1688 0.7101±0.0983 0.7886±0.0679 0.6636±0.1669 

HIST 
 

0.6945±0.1340 0.8141±0.0507 0.8743±0.0377 0.7923±0.1095 

*Small(<4 ml), medium(4 ml to 18 ml), big(>18 ml) 

Table 2. Mean volume difference. Best results in bold. HIST results were significantly better than 

compared methods for all lesion sizes and in overall (p<0.05). 

Method 
                                          Lesion size* 

Small (N=19) Medium (N=25) Big (N=16) All (N=60) 

LST-LGA 0.4044±0.2249 0.2383±0.2131 0.2437±0.1130 0.2923±0.2076 

LST-LPA 0.3878±0.2583 0.1817±0.1156 0.1304±0.0650 0.2333±0.1963 

HIST 
 

0.2776±0.1810 0.1289±0.1221 0.0634±0.0750 0.1585±0.1577 

*Small(<4 ml), medium(4 ml to 18 ml), big(>18 ml) 

Table 3. Pearson correlation for the total WMH volume. Best results in bold. 

Method 
                                          Lesion size* 

Small (N=19) Medium (N=25) Big (N=16) All (N=60) 

LST-LGA 0.7712 0.8859 0.9732 0.9835 

LST-LPA 0.8178 0.7649 0.9649 0.9730 

HIST 
 

0.7875 0.9067 0.9912 0.9938 

*Small(<4 ml), medium(4 ml to 18 ml), big(>18 ml) 
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Figure 4. Evaluation results of WMH segmentation in AIBL dataset. Dice, sensitivity, specificity and 

volume correlation results. 

 

 

Figure 5. AIBL dataset visual example results. Note that HIST method successfully segmented 

hyperintense lesions without including non-pathological mid-sagittal plane hyperintensities.  
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Segmentation performance on periventricular and deep WMH 

In order to further investigate the segmentation performance of HIST regarding the varying 

location and size of WMH, each individual lesion in the WMH segmentations was labelled into 

two types, i.e., periventricular and deep WMH, based on its distance to the lateral ventricles. 

An example case with both substantial periventricular and deep WMH volumes is illustrated in 

Figure 7, where several small deep WMH were missed in the LPA segmentation results. In 

contrast, the HIST method delivered very robust lesion segmentation, particularly for small-

size deep WMH.  

Figure 8 summarizes the dice coefficients achieved by LGA, LPA and HIST for segmentation of 

periventricular and deep WMH. For segmentation of both periventricular and deep WMH, the 

HIST method has demonstrated a significant higher performance (p < 0.001) compared with 

the state-of-the-art methods, LGA and LPA. Furthermore, this advantage of the HIST method is 

more pronounced for segmentation of deep WMH with the average dice coefficient of 0.6636 

(±0.1594), which is much higher than the related average dice coefficients (<0.5) for LGA and 

LPA methods. 

 

Figure 6. Examples of periventricular (green) and deep (red) WMH segmentations using manual, LGA, 

LPA and HIST methods (Yellow arrows indicate under-segmentation of deep WMH). 
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(a) 

 
(b) 

Figure 7. Boxplots of dice coefficients for segmentation of (a) periventricular and (b) deep WMH using 

LGA, LPA and HIST methods. 

MICCAI 2008 dataset results  

To test our proposed method on an independent dataset we used the MICCAI 2008 challenge 

dataset. This allowed comparing the results of HIST with recent methods applied to the 

training and test datasets (Styner et al., 2008). In the training data case (N=20), we used the 

MICCAI 2008 challenge metrics (i.e. True Positive Rate (TPR), Positive Predictive Value (PPV)) 

and the Dice coefficient to be able to compare with related methods applied to this dataset. To 

further improving the method accuracy we retrained the 10 neural networks using all available 

data (i.e. the full AIBL dataset (N=128)). We did not use the MICCAI training data as we 

observed that some manually labelled cases contained segmentation errors and because we 

wanted to find out if results obtained using AIBL dataset can be extrapolated to other datasets. 
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We compared our results with published results of some other methods applied to the same 

training dataset (Weiss et al., 2013; Souplet et al., 2008; Geremia et al., 2010; Brosch et al., 

2015). Table 4 summarizes the results of this comparison. HIST method obtained the best 

results for the 3 metrics (mean value of the 20 cases for each metric) showing that the features 

learned on AIBL dataset were useful to segment lesions in other datasets.   

Finally, the proposed method was also applied to the test dataset (N=23) and the results were 

submitted through the challenge website (http://www.ia.unc.edu/MSseg) for its evaluation 

(note that the evaluation was performed by the challenge organizers as we have not access to 

the test dataset). HIST method was ranked the 9th over a total of 62 submissions (6th if multiple 

submissions from the same author are discounted). In table 5, the results of the different 

metrics are compared to the metrics of the two top performing methods (based on deep 

learning) (Jesson and Arbel, 2015; Valverde et al., 2017). Although the proposed approach was 

not the overall best performing method, it showed a low VD for both datasets and it was the 

most stable one with similar metrics for different datasets (note for example how VD is quite 

different in Jenson´s method in the two datasets while our metrics are more similar across 

datasets). Very importantly, HIST was the only method using only FLAIR images for the 

segmentation (the other compared methods used both T1w and FLAIR images).   

Table 4. Methods comparison on MICCAI train data. Best results in bold.   

Method TPR PPV DICE 

Souplet2008 0.21 0.30 -- 

Geremia2010 0.40 0.40 -- 

Weiss2013 0.33 0.37 0.29 

Brosch2015 0.40 0.41 0.36 

HIST 0.45 0.47 0.43 

 

Table 5. Methods comparison on MICCAI test data. AD is the average Hausdorff distance and VD stands 

for the percent volume difference. Best results in bold.   

Dataset UNC CHB 

Method VD AD TPR FPR VD AD TPR FPR 

(1) Valverde2017 62.5 5.8 55.5 46.8 40.8 5.2 68.7 46.0 

(2) Jensson2015 46.9 5.1 43.9 32.3 113.4 6.1 53.5 24.2 

(9) HIST 33.1 5.7 63.8 69.7 59.3 6.4 68.0 68.6 
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4. Discussion 

In this paper, we have presented a new method to segment hyperintense lesions on FLAIR 

images based on an ensemble of overcomplete patch-wise neural network classifiers. We have 

shown that the proposed overcomplete patch-wise approach significantly improved the voxel-

wise network by enforcing the regularity of the segmentations and by minimizing the variance 

of the classification error due to the aggregation of many patch contributions. We used a 

boosting strategy to combine an ensemble of neural networks, improving the classification 

results by minimizing classification bias.  

Each step of our approach seeks to improve the results by increasing specificity while keeping 

the sensitivity stable. Therefore, we started with a simple threshold procedure that is sensitive 

but not specific. The ensemble of patch-based neural networks was then able to remove false 

positives while keeping true positives. The initial ROI selection was able to reduce the size and 

the diversity of data to be classified and thereby reduce some of the problem complexity. 

While it may be possible to train on all input data, we found this simple approach very 

effective.  

By taking an overcomplete approach and averaging the results of all the patches that a voxel 

belongs to, we are increasing the local neighbourhood that is taken into account when making 

the decision without a drastic increase in the computation time and memory required to train 

a network with more neurons to accommodate the larger input and output patches.  

The proposed method achieved the best classification results on AIBL dataset but also 

provided the highest volume correlation (0.994) with manual labelling, an important result for 

using HIST in clinical studies.  

In addition, the HIST method was applied to an independent MS dataset giving very 

competitive results demonstrating the generality of the proposed approach. It is interesting to 

note that the proposed method performed better than some state-of-the-art deep learning 

approaches that utilize multiple MR contrasts (Brosch et al.,2015) while our method only used 

FLAIR data. Although including T1 data could potentially improve the results, we decided not 

to include these data to keep the method as simple as possible and to show the strength of the 

proposed method on monomodal data.  

The competitive results we have obtained can be understood mainly thanks to the use of  

carefully selected features, such as the apriori probability map, and the use of a simple yet 

effective way to classify them (i.e. patch-based boosted ensemble) given the small size of the 

training data. In fact, ensemble classification has been lately used in some recent works 

combining outputs of deep neural networks with different topologies and/or training data 

(Kamnitsas et al., 2017; Dolz et al., 2017; Suk et al., 2017 ).    

One of the limitations of our proposed method is its relatively high FPR (Table 5). This is 

probably due to the thresholding process and its effect is especially significant at small and 

medium size lesions (Table 3) which results in a small overestimation of the lesion volume. One 

possible solution to this problem could be the use of error correction methods (Wang et 

al.,2011) to correct the segmentations given the systematic nature of the errors. Another 



16 
 

possible solution to minimize the number of false positives could be the use of a cascade 

approach similar the one proposed by Valverde et al. (2017). We plan to extend the proposed 

method in the near future using multimodal data (adding T1 images for example).      

5. Conclusion 

We have proposed a simple yet effective method to segment white matter hyperintense lesion 

on FLAIR images. The proposed method benefited from its overcomplete patch-based nature 

and boosting approach to provide regular and accurate segmentations. The proposed method 

compared favourably with many state-of-the-art methods in two different MRI datasets and 

can be a good choice to perform large-scale brain analysis studies.      
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