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Characterizations of k-commutative equalities for some outer

generalized inverses

D.E. Ferreyra∗, F.E. Levis∗, N. Thome†

Abstract

In this paper, we present necessary and sufficient conditions for the k-commutative equality

AkX = XAk, where X is an outer generalized inverse of the square matrix A. Also, we give new

representations for core EP, DMP, and CMP inverses of square matrices as outer inverses with

prescribed null space and range. In addition, we characterize the core EP inverse as the solution

of a new system of matrix equations.
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1 Introduction

Let Cm×n be the set of m× n complex matrices. For A ∈ Cm×n, the symbols A∗, A−1, rk(A), N (A),

and R(A) will denote the conjugate transpose, the inverse (m = n), the rank, the kernel, and the

range space of A, respectively. Moreover, In will refer to the n× n identity matrix.

Let A ∈ Cm×n. We recall that the unique matrix X ∈ Cn×m satisfying

AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA
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is called the Moore-Penrose inverse of A and is denoted by A†. A matrix X ∈ Cn×m that satisfies the

equality AXA = A is called an inner inverse or {1}-inverse of A, and a matrix X ∈ Cn×m that satisfies

the equality XAX = X is called an outer inverse or {2}-inverse of A.

For a given complex square matrix A, the index of A, denoted by Ind(A), is the smallest nonnegative

integer k such that R(Ak) = R(Ak+1). We observe that the index of a nonsingular matrix A is 0, and

by convention, the index of the null matrix is 1. We also recall that the Drazin inverse of A ∈ Cn×n is

the unique matrix X ∈ Cn×n such that XAX = X, AX = XA, and Ak+1X = Ak, where k = Ind(A),

and is denoted by Ad. If A ∈ Cn×n satisfies Ind(A) ≤ 1, then the Drazin inverse of A is called the

group inverse of A and is denoted by A#.

The core inverse was introduced by Baksalary and Trenkler in [2]. For a given matrix A ∈ Cn×n, its

core inverse is the unique matrix X ∈ Cn×n defined by the conditions AX = PA and R(X) ⊆ R(A),

where PA is the orthogonal projector onto the range of A, i.e., PA = AA†. In case that such a matrix X

exists, it is denoted by A#©. Moreover, it was proved that A is core invertible if and only if Ind(A) ≤ 1.

Two generalizations of the core inverse have been recently introduced for complex square matrices.

Recall, for a given matrix A ∈ Cn×n of index k, the unique matrix X ∈ Cn×n such that

XAX = X and R(X) = R(X∗) = R(Ak), (1)

is called the core EP inverse of A and is denoted by A †© [8]. The authors proved that the core EP of

a matrix A ∈ Cn×n is the unique solution of

XAk+1 = Ak, XAX = X, (AX)∗ = AX, and R(X) ⊆ R(Ak), (2)

[8, Lemma 3.3]. Notice that equations in (2) are equivalent to a new set of equations containing

the same first three and changing the inclusion R(X) ⊆ R(Ak) with the equality R(X) = R(Ak).

Secondly, the concept of DMP inverse of A was introduced in [5]. In this case, the unique matrix

X ∈ Cn×n satisfying

XAX = X, XA = AdA, and AkX = AkA†, (3)

is called the DMP inverse of A and is denoted by Ad,†. Moreover, it was proved that Ad,† = AdAA†.

The authors introduced also another outer inverse associated to a square matrix, namely A†,d = A†AAd

called dual DMP inverse of A.

Recently, a new generalized inverse was given in [7]. In this case, the matrix

Ac,† := QAA
dPA, where QA = A†A, (4)

is called the CMP inverse of A.
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We recall that a matrix A ∈ Cn×n is EP if AA† = A†A. In [6] the authors introduced k-EP

matrices mimicking the idea of EP matrices, in this case for k > 1. A matrix A ∈ Cn×n of index k is

called k-EP matrix if AkA† = A†Ak, that is,

Ck,†
n =

{
A ∈ Cn×n : AkA† = A†Ak

}
.

Let A ∈ Cn×n. Throughout all the paper we will assume that Ind(A) = k ≥ 1. In this paper we

are going to study the class

Ck
n =

{
X ∈ Cn×n : AkX = XAk, XAX = X

}
and the stress will be put on a sort of inverse problems by considering the following classes of matrices:

Ck, †©
n =

{
A ∈ Cn×n : AkA †© = A †©Ak

}
,

Ck,d†
n =

{
A ∈ Cn×n : AkAd,† = Ad,†Ak

}
,

Ck,†d
n =

{
A ∈ Cn×n : AkA†,d = A†,dAk

}
,

Ck,c†
n =

{
A ∈ Cn×n : AkAc,† = Ac,†Ak

}
,

which lead us to new generalizations for EP matrices. The matrices in these last classes will be called

k-core EP, k-DMP, dual k-DMP and k-CMP matrices, respectively.

This paper is organized as follows. In Section 2, a necessary and sufficient condition characterizing

the class matrices A such that AkX = XAk, for X being an outer inverse of A, is given. Section 3

presents new representations of core EP inverse, DMP and dual DMP inverses, and CMP inverse of

a square matrix as an outer inverse with prescribed range and null space. For further investigations,

we also derive representations for the Drazin inverse, the Moore-Penrose inverse, the DMP inverse,

the dual DMP inverse, and the CMP inverse in terms of the core EP decomposition. In addition,

we state new characterizations of k-EP matrices by using the recent core EP decomposition given

by Wang in [10]. Similarly, we give characterizations of k-core EP matrices, k-DMP matrices, dual

k-DMP matrices, and k-CMP matrices. As a consequence, we derive that the class k-EP is (properly)

included in both k-DMP and dual k-DMP classes. Finally, Section 4 provides characterizations of

core EP matrices by means of a new set of matrix equations. This new set reduces from four to three

the number of equations given by Prasad and Mohana in [8] showing that the first equation in (2) is

redundant.
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2 The general class Ck
n

Related to power of matrices commuting with generalized inverses, for a given A ∈ Cn×n of index at

most 1, the problem of characterizing all matrices X ∈ Cn×n such that

AkXkAk = Ak and XkAkXk = Xk, for all k ∈ N (5)

was studied in Rao and Mitra’s book [13, p. 77]. Using the canonical form for index 1 matrices,

A = L

 C 0

0 0

L−1,
for C and L being nonsingular, the most general form of X’s satisfying both conditions in (5) is given

by

X = L

 C−1 J

F FCJ

L−1,
provided that F and J fulfill JF = 0. Notice that both conditions in (5) are true for χ-inverses and

ρ-inverses [13, pp. 73 and 77].

Let A ∈ Cn×n and assume that Ind(A) = k ≥ 1. According to Theorem 2.2 in [10], every matrix

A ∈ Cn×n with Ind(A) = k can be represented in the form

A = A1 +A2, A1 := U

 T S

0 0

U∗, A2 := U

 0 0

0 N

U∗, (6)

where T is nonsingular with t := rk(T ) = rk(Ak), N is nilpotent of index k, and U is unitary. The

representation of A given in (6) satisfies Ind(A1) ≤ 1, Ak
2 = 0, and A∗1A2 = A2A1 = 0 [10, Theorem

2.1]. Moreover, it is unique [10, Theorem 2.4] and is called the core EP decomposition of A. The

notation

T̃ =

k−1∑
j=0

T jSNk−1−j (7)

will be used in the forthcoming results.

The symbol A{2} stands for the set of all {2}-inverses of A and A{5} denotes the set of all matrices

commuting with A. Next result completely describes the set Ck
n.

Theorem 2.1. Let A ∈ Cn×n written as in (6) and k ≥ 1 be the index of A. Then X ∈ Ck
n if and

only if

X = U

 X1 T−k(X1T̃ − T̃X4)

0 X4

U∗,
where X1 ∈ T{2} ∩ T k{5} and X4 ∈ N{2}.
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Proof. From

A = U

 T S

0 N

U∗,
and using that A has index k and (7), it is clear that

Ak = U

 T k T̃

0 0

U∗.
We partition

X = U

 X1 X2

X3 X4

U∗,
accordingly to the sizes of the blocks of A. From AkX = XAk we obtain T kX1 + T̃X3 T kX2 + T̃X4

0 0

 =

 X1T
k X1T̃

X3T
k X3T̃


from where T kX1 = X1T

k, X3 = 0, and X2 = T−k(X1T̃ − T̃X4).

Now, using that XAX = X we arrive at X1TX1 = X1, X4NX4 = X4.

We observe that the equation

T−k(X1T̃ − T̃X4) = X1T
−kT (X1T̃ − T̃X4) +X1SX4 + T−k(X1T̃ − T̃X4)NX4

is always true due to T−kX1 = X1T
−k and because if we focus on the powers of the expression of T̃ ,

it is easy to show that T̃N − T T̃ = −T kS. The converse is evident.

The rest of the paper is devoted to investigate all the square matrices A of index k ≥ 1 satisfying

AkX = XAk for X ∈ {A†, A †©, Ad,†, A†,d, Ac,†}.

In [15], Wang and Chen introduced the weak group inverse of a matrix A ∈ Cn×n of index k as the

unique matrix X ∈ Cn×n satifying AX2 = X and AX = A †©A and it was denoted by X = Aw©. The

authors shown that if A is written in the core EP decomposition (6) then

Aw© = U

 T−1 T−2S

0 0

U∗. (8)

In spite of the weak group inverse Aw© is not an outer inverse of A, we can state the following result.

Lemma 2.2. Let A ∈ Cn×n with Ind(A) = k written as in (6). Then AkAw© = Aw©Ak if and only if∑k−2
j=0 T

jSNk−1−j = 0.

Proof. It is a simple computation that follows from (6), (8), and using the nonsingularity of T .
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3 Representations of core EP, DMP and dual DMP, and CMP

inverses

Let A ∈ Cn×n a matrix of rank r. Let T be a subspace of Cn of dimension s ≤ r, and let S be a

subspace of Cn of dimension n− s. It is well known that A has a {2}-inverse X such that R(X) = T

and N (X) = S if and only if AT ⊕ S = Cn, in which case X is unique and is denoted by A
(2)
T,S [1,

Theorem 14, p. 72]. Moreover, if B ∈ Cn×n satisfies R(B) = T , N (B) = S and A has an inverse A
(2)
T,S

then Ind(AB) ≤ 1 and Ind(BA) ≤ 1. Furthermore, we have A
(2)
T,S = (BA)#B and A

(2)
T,S = B(AB)#

[16, Theorem 2.1].

Recall that the Moore-Penrose inverse, the Drazin inverse, and the group inverse are {2}-inverses

of A with prescribed range and null space satisfying

A† = A
(2)
R(A∗),N (A∗), A# = A

(2)
R(A),N (A), and Ad = A

(2)

R(Ak),N (Ak)
. (9)

Also, it was proved in [11] that A#© = A
(2)
R(A),N (A∗) holds. For similar results extended to weighted

inverses we refer the reader to [12, 14].

Remark 3.1. We observe that if X is an outer inverse of A, then N (AX) ⊆ N (XAX) = N (X) ⊆

N (AX) and R(XA) ⊆ R(X) = R(XAX) ⊆ R(XA), i.e., N (X) = N (AX) and R(X) = R(XA).

That is, the inverse A
(2)
R(X),N (X) exists. Thus, Cn = AR(X)⊕N (X).

In the following result we give new representations of core EP inverses, DMP inverses and CMP

inverses. From now on, the symbol Ac stands for the product AAdA, which represents the core part

of the core-nilpotent decomposition of the matrix A, that is A(c) := AAdA.

Theorem 3.2. Let A ∈ Cn×n with Ind(A) = k. Then

(a) A †© = A
(2)

R(Ak),N ((Ak)∗)
;

(b) Ad,† = A
(2)

R(Ak),N (AkA†)
;

(c) Ac,† = A
(2)

R(A†Ak),N (AkA†)
;

(d) A†,d = A
(2)

R(A†Ak),N (Ak)
.

Proof. We first notice that, by definition, each of A †©, Ad,†, Ac,†, and A†,d are outer inverses of A.

(a) We recall that R(A †©) = R(Ak). From [4, Theorem 3.7] we know that N (AA †©) = N ((Ak)∗).

From Remark 3.1 we have N (A †©) = N ((Ak)∗). Hence, by [1, Theorem 14, pp. 72] we obtain (a).

(b) From [5, Theorem 2.12] we know that R(Ad,†A) = R(Ak) and N (AAd,†) = N (AdAA†). Since
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N (AdA) = N (Ak) it is clear that N (AdAA†) = N (AkA†). Now, From Remark 3.1 we have R(Ad,†) =

R(Ak) and N (Ad,†) = N (AkA†). In consequence, Remark 3.1 and [1, Theorem 14, p. 72] complete

the proof.

(c) From Remark 3.1 and the definition of Ac,† we have N (Ac,†) = N (AAc,†) = N (A(c)Ac,†). Since

Ac,† = A†A(c)A† = A†AAdAA† then

N (Ac,†) = N (AAdAA†) = N (AAd,†) = N (Ad,†) = N (AkA†),

where the last equality follows from (b). On the other hand, by definition ofAc,† and Remark 3.1 we also

haveR(Ac,†) = R(Ac,†A) = R(A†A(c)) = R(A†AAdA) = R(A†,dA) = R(A†,d), where the last equality

uses the fact that A†,d is a {2}-inverse of A. Now, as R(A†,d) = A†R(AAd) and R(AAd) = R(Ak),

we obtain R(Ac,†) = R(A†Ak). Finally, (c) follows from Remark 3.1 and [1, Theorem 14, pp. 72].

(d) As in the proof of (c) we have R(A†,d) = R(A†Ak). On the other hand, from Remark 3.1,

N (A†,d) = N (AA†,d) = N (AA†AAd) = N (AAd) = N (Ak). Therefore, we arrive at (d) by using

Remark 3.1 and [1, Theorem 14, p. 72].

Corollary 3.3. Let A ∈ Cn×n with Ind(A) = k. Then the following statements hold:

(a) Ac,† = A†,d if and only if N (AkA†) = N (Ak);

(b) Ac,† = Ad,† if and only if R(A†Ak) = R(Ak);

(c) A †© = Ad,† if and only if N (AkA†) = N ((Ak)∗).

(d) A †© = A†,d if and only if Ak is EP and R(Ak) is A†-invariant.

Theorem 3.4. Let A ∈ Cn×n with Ind(A) = k. Then

A †© = (PAkA)#PAk = PAk(APAk)#. (10)

Proof. Since PAk = Ak(Ak)† is an orthogonal projector on R(Ak), we have

R(A †©) = R(Ak) = R(PAk), (11)

From [10, Corollary 3.3] we obtain

N (PAk) = N (AA †©) ⊆ N (A †©AA †©) = N (A †©) ⊆ N (AA †©) = N (PAk). (12)

Consequently, (10) follows from (11), (12), Theorem 3.2, and [16, Theorem 2.1] with B = PAk .

Remark 3.5. When Ind(A) ≤ 1, from the representation given in (10), it is easy to verify that

A#© = A#PA [2, Theorem 1].
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Remark 3.6. It is easily verified that A †© = (A †©A)#A †© = A †©(AA †©)# by setting B = A †© in the

definition of A
(2)
T,S and by using Theorem 3.2 (a). Observe the similarity of formulae for A †© and A†

by noting that A† = (A∗A)†A∗ = A∗(AA∗)†.

Wang [10, Theorem 13] also gave a representation for the core EP inverse. More precisely, for a

matrix A represented as in (6), its core EP inverse is given by

A †© = U

 T−1 0

0 0

U∗. (13)

Now, we give a new representation for Drazin matrices by using the core EP decomposition.

Theorem 3.7. Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ad = U

 T−1 (T k+1)−1T̃

0 0

U∗. (14)

Proof. If we write A as in (6) and recall (7) then

Ak = U

 T k T̃

0 0

U∗. (15)

As Ak+1 = AkA = AAk, a straightforward computation shows that

Ak+1 = U

 T k+1 T kS + T̃N

0 0

U∗ = U

 T k+1 T T̃

0 0

U∗.
Then,

T kS + T̃N = T T̃ or equivalently (T k)−1T̃ = T−1S + (T k+1)−1T̃N. (16)

Let

X = U

 T−1 (T k+1)−1T̃

0 0

U∗.
Now, we shall prove that the matrix X satisfies the system XAX = X, AX = XA, and Ak+1X = Ak.

In fact,

Ak+1X = U

 T k+1 T T̃

0 0

 T−1 (T k+1)−1T̃

0 0

U∗ = U

 T k T̃

0 0

U∗ = Ak.

From (16) we get

AX = U

 T S

0 N

 T−1 (T k+1)−1T̃

0 0

U∗ = U

 It (T k)−1T̃

0 0

U∗
= U

 It T−1S + (T k+1)−1T̃N

0 0

U∗ = U

 T−1 (T k+1)−1T̃

0 0

 T S

0 N

U∗ = XA.
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Finally,

XAX = U

 T−1 (T k+1)−1T̃

0 0

 It (T k)−1T̃

0 0

U∗ = U

 T−1 (T k+1)−1T̃

0 0

U∗ = X.

Since the Drazin inverse is unique, we conclude that X = Ad holds.

Corollary 3.8. Let A ∈ Cn×n with Ind(A) = k. Then

A †© = AdPAk . (17)

Proof. Let A ∈ Cn×n be written as in (6). By [4, Lemma 2.5] we obtain

PAk = Ak(Ak)† = U

 It 0

0 0

U∗. (18)

On the other hand, by [10, Theorem 3.2] we have that

A †© = U

 T−1 0

0 0

U∗.
Hence, from Theorem 3.7 and (18) we obtain (17).

In [3], the authors found the Moore-Penrose inverse of a linear operator for which its matrix block

representation is block (upper) triangular with some diagonal block being nonsingular. The following

result provides a representation for the Moore Penrose inverse by using the core EP decomposition for

a general matrix. The importance of this result lies in the fact that it is valid with no extra restrictions

to be assumed which highlight the power of the core EP decomposition.

Theorem 3.9. Let A ∈ Cn×n be a matrix of index k written as in (6). Then

A† = U

 T ∗∆ −T ∗∆SN†

(In−t −N†N)S∗∆ N† − (In−t −N†N)S∗∆SN†

U∗, (19)

where ∆ = (TT ∗ + S(In−t −N†N)S∗)−1.

Proof. The proof follows immediately from [1, Ex. 25, p. 49] and [3, Lemma 6].

Define the matrix R V

W Z

 :=

 T ∗∆ −T ∗∆SN†

(In−t −N†N)S∗∆ N† − (In−t −N†N)S∗∆SN†

 , (20)

in order to consider the central block obtained in (19).

Next, we establish a new geometrical characterization for k-EP matrices by using the core EP

decomposition. We recall that A is k-EP if and only if A ∈ Ck,†
n .
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Theorem 3.10. Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ Ck,†
n if and only

if the following conditions simultaneously hold:

(i) N (N) ⊆ N (S) (or equivalently S(In−t −N†N) = 0),

(ii) N (N∗) ⊆ N (T̃ ) (or equivalently T̃ (In−t −NN†) = 0).

Proof. Let A ∈ Cn×m be written as in (6) and consider the expression for A† given in (19). Assuming

that A is k-EP, from (15) and (20) we have RT k RT̃

WT k WT̃

 =

 T kR+ T̃W T kV + T̃Z

0 0

 .
Since T is nonsigular, W = 0. Also, since ∆ is nonsingular, we have (In−t−N†N)S∗ = 0 or equivalently

S(In−t − N†N) = 0 holds. Observe that this last equality holds if and only if N (N) = N (N†N) =

R(In−t−N†N) ⊆ N (S). So, from Theorem 3.9, we obtain ∆ = (T ∗)−1T−1 and consequently R = T−1,

V = −T−1SN†, Z = N†, and RT̃ = T kV + T̃Z. Thus, T−1T̃ = −T k−1SN† + T̃N† or equivalently

T̃ = −T kSN† + T T̃N†. According to (16) we have T̃ = −T kSN† + (T̃N + T kS)N† = T̃NN†, which

implies T̃ (In−t −NN†) = 0. Equivalently, N (N∗) = N (N†) = N (NN†) = R(In−t −NN†) ⊆ N (T̃ ).

Conversely, we suppose that S(In−t−N†N) = 0 and T̃ (In−t−NN†) = 0 hold. Since (In−t−N†N)S∗ =

0, from Theorem 3.9 we deduce that ∆ = (T ∗)−1T−1 and so

A† = U

 T−1 −T−1SN†

0 N†

U∗.
From (16), it follows that −T k−1SN† + T̃N† = −T−1T kSN† + T−1T T̃N† = T−1(T T̃ − T kS)N† =

T−1T̃NN† = T−1T̃ . Therefore,

AkA† = U

 T k T̃

0 0

 T−1 −T−1SN†

0 N†

U∗ = U

 T k−1 −T k−1SN† + T̃N†

0 0

U∗
= U

 T k−1 T−1T̃

0 0

U∗ = U

 T−1 −T−1SN†

0 N†

 T k T̃

0 0

U∗ = A†Ak.

,

i.e., A is a k-EP matrix.

In order to obtain similar results for the sets Ck,d†
n and Ck,†d

n we need representations for Ad,† and

A†,d given by means of core EP factorization of A.

Theorem 3.11. Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ad,† = U

 T−1 (T k+1)−1T̃NN†

0 0

U∗ (21)
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and

A†,d = U

 T ∗∆ T ∗∆T−kT̃

(In−t −N†N)S∗∆ (In−t −N†N)S∗∆T−kT̃

U∗, (22)

where ∆ is defined as in Theorem 3.9.

Proof. From (6), (19), and using the expression of ∆, we have

AA† = U

 [TT ∗ + S(In−t −N†N)S∗]∆ −TT ∗∆SN† + S[N† − (In−t −N†N)S∗∆SN†]

N(In−t −N†N)S∗∆ NN† −N(In−t −N†N)S∗∆SN†

U∗
= U

 [TT ∗ + S(In−t −N†N)S∗]∆ −[TT ∗ + S(In−t −N†N)S∗]∆SN† + SN†

0 NN†

U∗
= U

 It 0

0 NN†

U∗,
and

A†A = U

 T ∗∆T T ∗∆S(In−t −N†N)

(In−t −N†N)S∗∆T N†N + (In−t −N†N)S∗∆S(In−t −N†N)

U∗. (23)

Now, since Ad,† = AdAA† and A†,d = A†AAd, we have that (21) and (22) follow by using (14) and

simple computations.

As a consequence, we derive a representation for CMP inverses.

Corollary 3.12. Let A ∈ Cn×n be a matrix of index k written as in (6). Then

Ac,† = U

 T ∗∆ T ∗∆(T k)−1T̃NN†

(In−t −N†N)S∗∆ (In−t −N†N)S∗∆(T k)−1T̃NN†

U∗, (24)

where ∆ is defined as in Theorem 3.9.

Proof. We observe that Ac,† = A†AAd,†. Now, (24) follows by a simple computation from (21) and

(23).

The following result provides a necessary and sufficient condition for a matrix to be k-DMP by

using the core EP decomposition. As a consequence, it follows that the class Ck,†
n is a subset of Ck,d†

n .

Theorem 3.13. Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ Ck,d†
n if and only

if N (N∗) ⊆ N (T̃ ).

Proof. We suppose that A ∈ Ck,d†
n . By using (15) and (21) it is easy to see that Ad,†Ak = AkAd,† if

and only if T̃ (In−t −NN†) = 0, which is equivalent to N (N∗) ⊆ N (T̃ ).

11



Now, we establish another characterization for k-DMP matrices.

Theorem 3.14. Let A ∈ Cn×n be a matrix of index k. Then the following statements are equivalent:

(a) A is a k-DMP matrix;

(b) Ad,† = Ad;

(c) Ac,† = A†,d.

Proof. (a) ⇐⇒ (b) From (14) and (21) we have that Ad,† = Ad if and only if T̃ (In−t − NN†) = 0,

which is equivalent to the fact that A is a k-DMP matrix by Theorem 3.13.

(b)⇒ (c) Suppose that Ad,† = Ad holds. Then Ac,† = A†A(AdAA†) = A†AAd,† = A†AAd = A†,d.

(c) ⇒ (b) Assume that Ac,† = A†,d is true. By Corollary 3.3 (a) we obtain N (AkA†) = N (Ak).

According to Theorem 3.2 (b) and (9) we have Ad,† = A
(2)

R(Ak),N (Ak)
= Ad.

Remark 3.15. The class Ck,†
n is a proper subset of Ck,d†

n . For example, if we take

A =


1 0 1 −1

0 1 1 −1

0 0 0 1

0 0 0 0

 ,

we have that Ind(A) = 2,

A† =


2/3 −1/3 1/3 0

−1/3 2/3 1/3 0

1/3 1/3 2/3 0

0 0 1 0

 and Ad =


1 0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

 .

It is easy to see that A2Ad,† = Ad,†A2, but A2A† 6= A†A2.

It can be derived from the following result that the class Ck,†
n is a subset of Ck,†d

n .

Theorem 3.16. Let A ∈ Cn×n be a matrix of index k written as in (6). Then A ∈ Ck,†d
n if and only

if N (N) ⊆ N (S).

Proof. Assume that A ∈ Ck,†d
n is satisfied. By using (15) and (22) it is easy to see that A†,dAk = AkA†,d

if and only if the following conditions simultaneously hold:

(i) T ∗∆T k = T kT ∗∆ + T̃ (In−t −N†N)S∗∆,

12



(ii) (In−t −N†N)S∗∆T k = 0,

(iii) T ∗∆T̃ = T kT ∗∆T−kT̃ + T̃ (In−t −N†N)S∗∆T−kT̃ ,

(iv) (In−t −N†N)S∗∆T̃ = 0.

Hence, (ii) implies that S(In−t −N†N) = 0 since T and ∆ are nonsingular. So, N (N) ⊆ N (S).

Conversely, we have S(In−t−N†N) = 0. Now, it is easy to check that conditions (i)-(iv) are valid.

Our next result establishes another characterization for dual k-DMP matrices.

Theorem 3.17. Let A ∈ Cn×n be a matrix of index k. Then the following statements are equivalent:

(a) A is a dual k-DMP matrix;

(b) A†,d = Ad;

(c) Ac,† = Ad,†.

Proof. (a) ⇒ (b) Assume that A is a dual k-DMP matrix. By Theorem 3.16, S(In−t − N†N) = 0.

Therefore,

A† = U

 T−1 −T−1SN†

0 N†


by (19). Now, from (14) we obtain A†,d = Ad.

(b)⇒ (a) Let A† ∈ Cn×n be written as in (19). Since A†,d = Ad, from (14) and (22) we get

U

 T ∗∆ T ∗∆T−kT̃

(In−t −N†N)S∗∆ (In−t −N†N)S∗∆T−kT̃

U∗ = U

 T−1 (T k+1)−1T̃

0 0

U∗.
Hence (In−t −N†N)S∗ = 0, since ∆ is nonsigular. Therefore S(In−t −N†N) = 0 and Theorem 3.16

completes the proof.

(b)⇒ (c) Since A†,d = Ad, we get Ac,† = (A†AAd)AA† = A†,dAA† = AdAA† = Ad,†.

(c) ⇒ (b) Assume that Ac,† = Ad,† holds. By Corollary 3.3 (b) we obtain R(A†Ak) = R(Ak).

According to Theorem 3.2 (d) and (9) we have A†,d = A
(2)

R(Ak),N (Ak)
= Ad.

In [7, Theorems 3.3, 3.5, and 3.6], it was proved that A is k-EP if and only if Ac,† = Ad if and only

if Ad,† = A†,d. Moreover, if A is a k-EP matrix, by Theorems 3.10 to 3.17 we have that A is a dual

k-DMP matrix and, moreover, A†,d = Ad and Ac,† = Ad,†. Thus, we have the following result.

Corollary 3.18. Let A ∈ Cn×n be a matrix of index k. Then A is k-EP matrix if and only if

Ac,† = Ad,† = A†,d = Ad.
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Remark 3.19. The class Ck,†
n is a proper subset of Ck,†d

n . For example, if we take

A =


1 0 1 2

0 1 1 2

0 0 2 4

0 0 −1 −2

 ,

we have that Ind(A) = 2,

A† =


1 0 −2/5 1/5

0 1 −2/5 1/5

0 0 2/25 −1/25

0 0 4/25 −2/25

 , and Ad =


1 0 1 2

0 1 1 2

0 0 0 0

0 0 0 0

 .

It is easy to see that A2A†,d = A†,dA2, but A2A† 6= A†A2.

The following interesting result is a characterization for k-EP matrices and it can be easily derived

from Theorems 3.10, 3.13, and 3.16.

Theorem 3.20. Ck,†
n = Ck,d†

n ∩ Ck,†d
n .

Now, we give another characterization for k-EP matrices by using the CMP inverse.

Theorem 3.21. The classes of matrices k-EP and k-CMP are coincide.

Proof. Since Ac,† = QAA
dPA, we observe that AkQA = PAA

k = Ak. Then, AkAc,† = AkQAA
dPA =

AkAdAA† = Ak+1AdA† = AkA†. Also, we have Ac,†Ak = QAA
dPAA

k = A†AAdAk = A†Ak+1Ad =

A†Ak. Therefore, AkAc,† = Ac,†Ak if and only if AkA† = A†Ak, i.e., Ck,†
n = Ck,c†

n .

4 New characterizations for core EP inverses and extensions

According to [9], it is well known that X = A#© is equivalent to AXA = A, AX2 = X, and (AX)∗ =

AX. By exploiting the condition AX2 = X, we shall obtain a new necessary and sufficient condition

for a matrix to be the core EP inverse. Moreover, motivated by [8, Lemma 3.3] we prove that the

core EP inverse of a square matrix can be characterized by two new sets of three equations each one.

Before that, we present two auxiliary lemmas.

Lemma 4.1. Let A,X ∈ Cn×n with Ind(A) = k such that AX2 = X. Then R(X) ⊆ R(Ak)

(and, consequently, N ((Ak)∗) ⊆ N (X∗)). If, in addition, XAk+1 = Ak then R(X) = R(Ak) (and,

consequently, N (X∗) = N ((Ak)∗) and X is a {2}-inverse of A.
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Proof. Since AX2 = X, by induction it then follows that

X = AX2 = AXX = A(AX2)X = A2XX2 = A2(AX2)X2 = · · · = Ak(AX2)Xk.

Thus, R(X) ⊆ R(Ak) and then N ((Ak)∗) ⊆ N (X∗).

Now, we assume that XAk+1 = Ak is also fulfilled. It is clear that now R(X) = R(Ak) and then

N ((Ak)∗) = N (X∗). On the other hand, since R(X) ⊆ R(Ak) can be equivalently expressed as

PAkX = X, we conclude that XAX = XAPAkX = XAk+1(Ak)†X = PAkX = X.

In the following lemma, we prove that the equation XAk+1 = Ak in (2) is redundant and then it

can be dropped out as we establish in Theorem 4.3.

Lemma 4.2. Let A ∈ Cn×n with Ind(A) = k. Then the following statements are equivalent:

(a) XAk+1 = Ak and R(X) ⊆ R(Ak);

(b) XAX = X and R(X) = R(Ak).

Proof. (a)⇒ (b) It is a direct consequence from the proof of Lemma 4.1.

(b)⇒ (a) Notice that R(Ak) ⊆ R(X) can be equivalently expressed as PXA
k = Ak. Postmultiplying

the equation XAX = X on the right-hand by X†Ak leads to XAPXA
k = PXA

k. So, XAk+1 = Ak.

Theorem 4.3. Let A,X ∈ Cn×n with Ind(A) = k. Then the following statements are equivalent:

(a) X is the core EP of A;

(b) XAk+1 = Ak, AX2 = X, and (AX)∗ = AX;

(c) XAX = X, (AX)∗ = AX, and R(X) = R(Ak).

Proof. (a) ⇒ (b) We suppose that X is the core EP of A. From [10, Theorem 2.2 and 3.2], it is not

hard to see that AX2 = X. Therefore (b) holds from (2).

(b)⇒ (a) We assume that (b) is true. By Lemma 4.1 we have XAX = X and R(X) = R(Ak). Thus,

(2) leads to (a).

(a) ⇐⇒ (c) The proof follows as a direct application of (2) and Lemma 4.2.

We close this paper by providing some extensions valid for k-core EP matrices. In [2, Theorem 3]

the following equivalences were proved for at most index 1 matrices:

A is EP ⇐⇒ AA#© = A#©A ⇐⇒ A#© = A#. (25)

We will give a generalization of this assertion for k-core EP matrices.
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Theorem 4.4. Let A ∈ Cn×n be a matrix of index k written as in (6). Then the following statements

are equivalent:

(a) A is a k-core EP matrix;

(b) T̃ = 0;

(c) A †© = Ad.

Moreover, in this case, A is a k-DMP matrix and Ad,† = A †© = Ad.

Proof. Let A ∈ Cn×n be written as in (6). By (13)-(15) it is obvious that A is a k-core EP matrix,

i.e., A †©Ak = AkA †©, if and only if T̃ = 0 if and only if A †© = Ad.

Now, item (b) implies T̃ (In−t − NN†) = 0. Next, Theorem 3.13 implies that A is a k-DMP matrix.

Finally, from (13), (14) and (21) we have Ad,† = A †© = Ad.

We observe that if Ind(A) ≤ 1, then A †© = A#© and Ad = A#, and in consequence the above

theorem generalizes the result in (25). Moreover, Theorem 4.4 describes the inclusion of the class

Ck, †©
n into the class Ck,d†

n for k > 1.

Remark 4.5. Notice that the class Ck, †©
n is a proper subset of Ck,d†

n . For example, if we take

A =


1 −1 1 0

0 0 0 0

0 1 0 0

0 0 1 0

 ,

we have that Ind(A) = 3,

A† =


1 0 1 −1

0 0 1 0

0 0 0 1

0 0 0 0

 , Ad =


1 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 and A †© =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

It is easy to see that A3Ad,† = Ad,†A3, but A3A †© 6= A †©A3.
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