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SCHAUDER BASES UNDER UNIFORM RENORMINGS

A. J. GUIRAO AND P. HÁJEK

Abstract. Let X be a separable superreflexive Banach space with a Schauder
basis. We prove the existence of an equivalent uniformly smooth (resp. uni-
formly rotund) renorming under which the given basis is monotone.

1. Introduction

Let us start by recalling a classical notion of Schauder basis {en}
∞
n=1 of a

Banach space X, i.e. a sequence in X such that for every x ∈ X there is a
unique sequence of coefficients {an}

∞
n=1, such that x =

∑
anen. A Schauder

basis gives rise to the canonical sequence of finite dimensional projections
Pn : X → X, Pn(

∑∞
i=1

aiei) =
∑n

i=1
aiei. A well-known and useful result on

Schauder bases claims that {‖Pn‖}n is a bounded sequence ([2]). The quantity
bc{ei} = supn‖Pn‖ is called the basis constant. We say that the Schauder basis
is monotone, if the value of its basis constant is 1. The boundedness result
has an equivalent reformulation in the language of renormings. Namely, a
separable Banach space with a Schauder basis can be equivalently renormed
so that the basis becomes monotone. The proof of this equivalence is very
easy, in fact the renorming is obtained via the formula |||x||| = supn‖Pn(x)‖.
Unfortunately, from the renorming point of view, |||·||| looses some subtler
geometrical properties of the original norm. The question on the existence
of ”good” renormings, still making the given basis monotone, has received
some attention in the past. For example, it is well-known that every separable
Banach has an LUR renorming, in fact the collection of all equivalent LUR
renormings is residual in the (metric) space of all equivalent renormings ([1]).
It is therefore quite natural to expect that for every separable Banach space
with a Schauder basis, there exists an equivalent LUR renorming making the
basis monotone. This is indeed the case, and the proof follows along the
lines of the original Kadec LUR renorming result (see [1]). Similar statements
(folklore) are true also for Gateaux or uniformly Gateaux smooth case. On the
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2 A. J. GUIRAO AND P. HÁJEK

other hand, quite surprisingly, the situation with Fréchet smooth renormings
is different. Recall that a separable Banach space has an equivalent Fréchet
smooth renorming if and only if it has a separable dual. In this case, the set of
Fréchet smooth renormings (whose dual norm is LUR) is again residual among
all equivalent renormings, yet we have the following theorem.

Theorem 1. Let X be a separable Banach space with a separable dual (in
particular having an equivalent Fréchet smooth renorming), and a Schauder
basis. Then X is reflexive iff for every Schauder basis of X there exists some
Fréchet smooth renorming of X making the basis monotone.

Proof. If X is reflexive, then X∗ is separable and every Schauder basis of
X is shrinking, so we can use the mentioned LUR result for the dual basis,
in order to obtain the Fréchet smooth case for X (see [1] for details on the
duality of renormings). On the other hand, by Proposition 8.34 of [2], if
{ei} is a monotone basis of (X, |||·|||), and |||·||| is Fréchet smooth, then {ei}
is a shrinking basis. Thus for spaces satisfying the second condition, every
Schauder basis is shrinking. This condition is equivalent to reflexivity by a
result of Zippin [5]. �

As an immediate consequence, in every non-reflexive Banach space with a
separable dual and a Schauder basis (such as c0), there exists another Schauder
basis which is not monotone under any Fréchet smooth renorming of X (in
spite of the rich supply of equivalent Fréchet smooth renormings for such a
space).

In the present note, we settle in the positive the case of uniformly Fréchet
smooth (UF) and uniformly rotund (UR) renormings, answering a question of
Godefroy (which appears also explicitly in [3]), communicated to us by Zizler.
We would like to thank Václav Zizler for suggesting the problem to us, as well
as for some useful remarks concerning this note.

1.1. Notation and basic definitions. We start by recalling some standard
notions and definitions to be used throughout this note. The standard refer-
ences for most of these notions are [2], or [1].

Definition 2. Let B be a bounded, closed, convex and centrally symmetric
subset of a linear space E whose interior contains the origin. Then, we will
say that B is a ball of E.

For every ball B of E, there exists a norm in E whose unit ball is precisely
B. This norm is defined by the gauge functional, also known as Minkowski
functional, and we will denote it, as it is usual in the literature, by g(B, ·). We
will also denote SB = {x ∈ X : g(B, x) = 1}.

Regarding differentiability, we can define, for every ball B of E, its modulus
of smoothness.
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Definition 3. Let B be a ball in a linear space E. Then, its modulus of
smoothness is the real function defined, for t > 0, by

ρ(B, t) := sup {ξ(B, x, y, t) : g(B, x) = g(B, y) = 1}

where

ξ(B, x, y, t) =
g(B, x + ty) + g(B, x − ty) − 2g(B, x)

2
.

A norm ‖ · ‖ in Banach space is said to be uniformly Fréchet differentiable,
shortly, UF, if its modulus of smoothness ρ satisfies the following condition:

lim
t→0

ρ(t)

t
= 0.

Therefore we can say that, a ball B of a Banach space X is UF, if and only
if the following condition holds:

lim
t→0

ρ(B, t)

t
= 0.

Then, it is clear that B will be UF if and only if its associated norm by the
gauge functional, g(B, ·), is UF.

For every ball B, and x ∈ E satisfying g(B, x) = 1, let us denote by H(B, x)
the union of all the support hyperplanes to B at x. It is also useful the
following modulus,

ρ(B, t) := sup {ξ(B, x, y, t) : g(B, x) = g(B, y) = 1 and y + x ∈ H(B, x)} .

It was shown by Figiel [4] that for each ball and for t > 0

ρ(B, t) ≤ 16ρ(B, t).

We will refer to this result as the Figiel lemma.

2. Preliminary Constructions

Let X be a Banach space endowed with a uniformly Fréchet differentiable
norm ‖ · ‖, and a Schauder basis {ei}

∞
i=1. Our aim is to show that there exists

an equivalent UF renorming of X which makes {ei} a monotone Schauder
basis of X. Therefore, we will suppose from now on that the basis constant
of the Schauder basis, bc{ei} is strictly greater than 1. Then, we can consider
the norm ‖x‖0 = sup{‖Pn(x)‖ : n ∈ N}, which is known to make the basis
{ei} monotone (but of course not UF, in general).

Let us denote by B and B0 the following balls :

B := {x ∈ X : ‖x‖ ≤ 1},

B0 := {x ∈ X : ‖x‖0 ≤ 1}.

It is clear that
‖ · ‖ ≤ ‖ · ‖0 ≤ bc{ei}‖ · ‖
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and therefore
B0 ⊂ B ⊂ bc{ei}B0.

Through this note k ≥ bc{ei} is fixed. It is clear that the last two expressions
are true replacing bc{ei} by k. For every natural number n, we will denote by
En the range of Pn , this is, PnX = En; by B′

n the image Pn

(
1

k
B
)

; and for
every y ∈ En,by B′

n(y) the set y + B′
n . In particular B′

n(0) = B′
n is a ball of

En whose centre is the origin. For any y ∈ En the set B′
n(y) is a translate of a

ball of En. We are going to define inductively a sequence {Bn}
∞
n=1 of balls of

En as follows. Put B1 := B0 ∩E1. Having defined Bn for n ≥ 1, we will define
the set Bn+1 as follows: First of all let us consider the set

Bn+1 := {y ∈ En+1 : Pn(B′
n+1(y)) ⊂ Bn, B′

n+1(y) ∩ B0 6= ∅}

and then we finally set

Bn+1 :=
⋃

y∈Bn+1

B′
n+1(y).

We can see, for example, the construction of B2 in figure 1.

B0 ∩ E2

B ∩ E2

B
′
2

B2

B0 ∩ E2

Figure 1

Lemma 4. The family of sets {Bn}n∈N is uniformly bounded in X, and for
every n, the set Bn has non-empty interior with respect to the topology of En.

Proof. Let us fix n ∈ N and x ∈ Bn. Then there exist y, z ∈ En such that
x ∈ B′

n(y), z ∈ B0 ∩ B′
n(y) and Pn−1(B

′
n(y)) ⊂ Bn−1. It is clear that the

vectors x − y and z − y lie in B′
n. Therefore, there exist x′,z′ ∈ B, such that

Pn(x
′) = k(x − y) and Pn(z′) = k(z − y), and then

‖x − y‖ =
1

k
‖Pn(x′)‖ ≤

1

k
‖Pn‖‖x

′‖ ≤ 1,

‖z − y‖ =
1

k
‖Pn(z′)‖ ≤

1

k
‖Pn‖‖z

′‖ ≤ 1.

Since z ∈ B0 and B0 ⊂ B, we have ‖z‖ ≤ 1. Therefore ‖x‖ ≤ 3, this is
Bn ⊂ 3B ∩ En. The second part of this proof is a direct application of the
following lemma, since B ∩ En ⊂ Pn(B). �
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Lemma 5. For every natural number n, the set Bn is non-empty. Moreover

0 ∈
⋂

n≥1

Bn.

Proof. It is enough to show that 0 ∈ Bn for any n ∈ N. We will prove that
0 ∈ Bn if and only if B′

1 ⊂ B1, which will finish the proof, because it always
holds

B′
1 = P1

(
1

k
B

)
⊂ P1(B0) ⊂ B0 ∩ E1 = B1

since B0 is a monotone ball. We will show the required equivalence by induction
on n. For n = 2, 0 lies in B2 if and only if P1(B

′
2) ⊂ B1, since B′

2 always
intersects B0 (the intersection contains at least the origin). But

P1(B
′
2) = P1

(
P2

(
1

k
B

))
= B′

1,

which finishes the proof of this case. If the statement is true for n − 1 ≥ 2,
then 0 ∈ Bn if and only if Pn−1(B

′
n) ⊂ Bn−1, since the intersection between

B′
n and B0 is always non-empty (it contains the origin). Besides

Pn−1(B
′
n) = Pn−1

(
Pn

(
1

k
B

))
= Pn−1

(
1

k
B

)
= B′

n−1.

Therefore 0 ∈ Bn if and only if 0 ∈ Bn−1 which is equivalent to B′
1 ⊂ B1. �

The following lemma shows that the defined sets {Bn}n are balls in En, i.e.,
their gauge functionals are norms in En.

Lemma 6. For every natural number n, the set Bn is a ball of En.

Proof. By lemma 4 it is clear that for every n, the set Bn is bounded and
contains the origin as an interior point. For the remaining properties we will
use induction.

It is clear that B1 is closed, convex and centrally symmetric. Let us suppose
that Bn−1 do so for n − 1 ≥ 1.

a) We start proving that Bn is closed. Let us consider x ∈ Bn.Then there
exists a sequence {xm}m in Bn converging to x. For every m ∈ N there
exist ym and zm in En such that xm ∈ B′

n(ym), zm ∈ B0 ∩B′
n(ym) and

Pn−1(B
′
n(ym)) ⊂ Bn−1. We can suppose that both {ym} and {zm}

converge respectively to y and z in En, since Bn is bounded. We want
to show that y ∈ Bn.

Since zm ∈ B0 then z ∈ B0, and it is clear that

1

k
≥ lim

m→∞
‖zm − ym‖ = ‖z − y‖,

1

k
≥ lim

m→∞
‖xm − ym‖ = ‖x − y‖.
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These equations mean, respectively, that z ∈ B0 ∩ B′
n(y) and x ∈

B′
n(y). Moreover, if we take w ∈ B′

n(y), then wm := ym + (w − y) ∈
B′

n(ym) and {wm}m converges to w. Therefore, since Pn−1(wm) ∈ Bn−1

and by hypothesis Bn−1 is closed, Pn−1(w) ∈ Bn−1, this is x ∈ Bn.
b) Now we show that Bn is convex. Let us take x1 and x2 in Bn. For i ∈

{1, 2} there exist yi ∈ Bn such that xi ∈ B′
n(yi), and zi ∈ B0 ∩B′

n(yi).
Let us denote by y = (y1 +y2)/2, z = (z1 + z2)/2 and x = (x1 +x2)/2.
Since zi − yi ∈ B′

n for i ∈ {1, 2} and B′
n is convex, then

z =
z1 + z2

2
= y +

(z1 − y1) + (z2 − y2)

2
∈ B′

n(y).

Therefore z ∈ B0 ∩ B′
n(y), since B0 is also convex. Analogously we

have x ∈ B′
n(y). In order to prove that x ∈ Bn we only need to see

that y ∈ Bn, so it is enough to show Pn−1(B
′
n(y)) ⊂ Bn−1. In fact, if

w ∈ B′
n(y), then w− y ∈ B′

n and for i ∈ {1, 2} we have yi + (w− y) ∈
B′

n(yi). Since yi ∈ Bn for i ∈ {1, 2}, then Pn−1(yi + (w − y)) ∈ Bn−1

for both i = 1, 2. Therefore

Pn−1(w) =
1

2

[
Pn−1

(
y1 + (w − y)

)
+ Pn−1

(
y2 + (w − y)

)]
∈ Bn−1,

since, by hypothesis, Bn−1 is convex.
c) Let x ∈ Bn. Then there exist y ∈ Bn such that x ∈ B′

n(y), and
z ∈ B0 ∩ B′

n(y). It is clear that z − y ∈ B′
n and, since B′

n is centrally
symmetric, y − z ∈ B′

n. Therefore −z = −y + (y − z) ∈ B′
n(−y).

But B0 is also centrally symmetric, and thus −z ∈ B0 ∩ B′
n(−y).

Analogously we can show that −x ∈ B′
n(−y).

On the other hand, if we take w ∈ B′
n(−y), then w + y ∈ B′

n,
and, since B′

n is centrally symmetric, −w − y ∈ B′
n. Therefore −w =

y + (−w − y) ∈ B′
n(y). Since Pn−1(B

′
n(y)) ⊂ Bn−1, and, by induction

hypothesis, Bn−1 is centrally symmetric, Pn−1(w) ∈ Bn−1. Hence, we
have shown that Pn−1(B

′
n(−y)) ⊂ Bn−1 and then −y ∈ Bn. Therefore

−x ∈ B′
n(−y) ⊂ Bn, this is, Bn is centrally symmetric. �

In order to show that {Bn}n consists of UF-smooth balls, we need two aux-
iliary lemmas.

Lemma 7. For any n ∈ N, the modulus of smoothness of B′
n and B are related

as follows:

ρ(B′
n, ·) ≤ ρ(B, ·).

Proof. Let us fix n ∈ N and t > 0. Let us also take x and y such that
g(B′

n, x) = g(B′
n, y) = 1. In particular, since x and y lie on SB′

n

, there exist
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x′, y′ ∈ SB such that Pn(x′) = kx and Pn(y′) = ky. Let us note that

g

(
B′

n, Pn

(
x′ ± ty′

kg(B, x′ ± ty′)

))
≤ 1

This inequality is equivalent to g(B′
n, x ± ty) ≤ g(B, x′ ± ty′). Therefore

ξ(B′
n, x, y, t) ≤ ξ(B, x′, y′, t) ≤ ρ(B, t),

and taking suprema over (x, y) ∈ SB′

n

× SB′

n

we have the required result. �

Lemma 8. Let A and B be two balls in a linear space E. Let x ∈ E such that
x + B ⊂ A. Then, for any z ∈ E the following inequality holds:

g(A, z) ≤ g(B, z − x) + |1 − g(B, z − x)| g(A, x).

Proof. Let us note that the vector

z̃ = x +
z − x

g(B, z − x)

lies in the set A, see figure 2. Then, it is clear that

1 ≥ g(A, z̃) = g

(
A,

z − x
(
1 − g(B, z − x)

)

g(B, z − x)

)
.

K

3

3 z − x

x

B

A

z�z̃ = x +
z−x

g(B,z−x)

- z−x
g(B,z−x)

Figure 2

Therefore,

g(B, z − x) ≥ g
(
A, z − x

(
1 − g(B, z − x)

))

≥ g(A, z) − g
(
A, x

(
1 − g(B, z − x)

))
.

Thus we finally obtain

g(A, z) ≤ g(B, z − x) + g
(
A, x

(
1 − g(B, z − x)

))

= g(B, z − x) + |1 − g(B, z − x)| g(A, x).

which concludes the proof. �
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Proposition 9. For every n ∈ N the modulus of smoothness of Bn satisfies

ρ(Bn, t) ≤ 32ρ(B, 3kt).

Proof. Let us fix n ∈ N, and t > 0. Let us also consider x and h points on SBn
.

By construction, there exists y ∈ Bn such that g(B′
n, x − y) = 1. Applying

lemma 8 to Bn, B′
n and the point y, we can assure that

g(Bn, x ± th) ≤ g(B′
n, x ± th − y) + [g(B′

n, x ± th − y) − 1]g(Bn, y)

under the hypothesis g(B′
n, x ± th − y) ≥ 1. Therefore,

ξ(Bn, x, h, t) ≤ ξ(B′
n, x − y, h, t) + g(Bn, y)ξ(B′

n, x − y, h, t)

=
(
1 + g(Bn, y)

)
ξ(B′

n, x − y, h, t) ≤ 2ξ(B′
n, x − y, h, t)

If we denote by ϑ = g(B′
n, h), we have

ξ(Bn, x, h, t) ≤ 2ξ(B′
n, x − y, h, t) = 2ξ(B′

n, x − y, ϑ−1h, ϑt) ≤ 2ρ(B′
n, ϑt).

Since 1

k
B ∩ En ⊂ B′

n, by the monotonicity of the gauge functional we have

ϑ = g(B′
n, h) ≤ g

(
1

k
B ∩ En, h

)
= kg (B ∩ En, h)

= kg (B, h) = k‖h‖.

But, since h ∈ Bn, using lemma 4, we obtain ‖h‖ ≤ 3.
Since the modulus of smoothness is a non-decreasing function, we finally

have

ξ(Bn, x, h, t) ≤ 2ρ(B′
n, ϑt) ≤ 2ρ(B′

n, 3kt) ≤ 2ρ(B, 3kt).

The last inequality follows directly from lemma 7. Taking suprema over x and
h satisfying g(B′

n, x ± th − y) ≥ 1 we obtain that

ρ(Bn, t) ≤ 2ρ(B, 3kt).

The proof finishes applying Figiel’s lemma. �

3. Uniformly Fréchet and Monotone Renorming

Now, we are ready to construct the new norm in X which will satisfy both
uniformly Fréchet differentiability and monotonicity. In order to get it let us
consider first some new sets. Let us fix m ∈ N and define

B̃m :=
⋂

n≥m

(Bn ∩ Em) =

(
⋂

n≥m

Bn

)
∩ Em.

We need to check if these new sets define, in fact, new norms in Em for each
natural m, respectively.
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Lemma 10. The family of sets {B̃m}m∈N is uniformly bounded in X, and for

every fixed m, the set B̃m, with respect to the topology of En, has non-empty
interior. Moreover

1

k
B ∩ Em ⊂ B̃m ⊂ 3B.

Proof. Using the proof of lemma 4 it is clear that

B̃m =
⋂

n≥m

(Bn ∩ Em) ⊂
⋂

n≥m

(
(3B ∩ En) ∩ Em

)
= 3B ∩ Em ⊂ 3B.

On the other hand, by lemma 5 we know that

B̃m =
⋂

n≥m

(Bn ∩ Em) ⊃
⋂

n≥m

((
1

k
B ∩ En

)
∩ Em

)
=

1

k
B ∩ Em.

�

Lemma 11. For any natural number m, the set B̃m is a ball in Em.

Proof. By the previous lemma, these sets are bounded and have the origin as
an interior point. It remains to show that these sets are closed, convex and
centrally symmetric. However, these three properties are evident, because each

B̃m is the intersection of sets that are closed, convex and centrally symmetric.
�

Proposition 12. For any natural number m, the modulus of smoothness of

B̃m satisfies

ρ(B̃m, t) ≤ 32ρ(B, 3kt).

Proof. For a fixed m ∈ N, we consider n ≥ m and take x ∈ Bn+1 ∩ Em. Since
Pn(x) ∈ Bn, we have that x = Pm(x) = Pn(x) ∈ Bn. This is, the sequence
{Bn ∩ Em}n≥m is decreasing. Therefore it converges in the Hausdorff metric

of Em to its intersection, this is, to B̃m. It is then well-known, and standard
to prove, that

(3.1) lim
n→∞

g(Bn ∩ Em, ·) = g(B̃m, ·),

where the limit is understood as uniform convergence on bounded sets in Em.
Let us take x and y such that g(B̃m, x) = g(B̃m, y) = 1. We have

ξ(Bn, x, y, t) = g(Bn, x)ξ

(
Bn,

x

g(Bn, x)
,

y

g(Bn, y)
, t

g(Bn, y)

g(Bn, x)

)

≤ g(Bn, x)ρ

(
Bn, t

g(Bn, y)

g(Bn, x)

)
.
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Then by proposition 9

ξ(Bn, x, y, t) ≤ g(Bn, x)32ρ

(
B, 3kt

g(Bn, y)

g(Bn, x)

)
,

and taking limits, using equation (3.1) and the continuity of ρ(B, ·), we have

ξ(B̃m, x, y, t) ≤ 32ρ (B, 3kt) .

Taking suprema over x and y we obtain ρ(B̃m, t) ≤ 32ρ(B, 3kt) as we wanted
to show. �

Finally, let us define the set

B̃ :=
⋃

m∈N

B̃m

‖·‖

.

Lemma 13. For any natural number m, the following conditions hold:

(i) For every n > m, B̃n ∩ Em = B̃m.

(ii) B̃n ⊂ B̃m + span{ej : m < j ≤ n}.

(iii) B̃m = B̃ ∩ Em.

Proof. (i) Since the sequence {Br ∩ Em}r≥m is decreasing, then

B̃n ∩ Em =
⋂

r≥n

(Br ∩ En) ∩ Em =
⋂

r≥n

(Br ∩ Em) =
⋂

r≥m

(Br ∩ Em) = B̃m.

(ii) It is enough to show that B̃n ⊂ B̃n−1 +span{en}. Let us take x ∈ B̃n.
Then x ∈ Br ∩ En for every r ≥ n. Let us consider r ≥ n − 1. Then
x ∈ Br+1 ∩ En and therefore x lies in (Br + span{er+1}) ∩ En. This
implies that Pn−1(x) ∈ Br ∩ En−1. Since r ≥ n − 1 is arbitrary, we

have that Pn−1(x) lies in B̃n−1, this is, x ∈ B̃n−1 + span{en}.

(iii) Clearly B̃m ⊂ B̃ ∩ Em. On the other hand, let us take x ∈ B̃ ∩ Em.
Then, there exists a sequence {xn}n which converges to x and such

that xn ∈ B̃mn
for certain values mn ∈ N. Without loss of generality,

we can reduce our proof to two cases:
• If mn ≤ m for every n ∈ N, then by the first item of this lemma,

xn ∈ B̃m and, since B̃m is closed, x ∈ B̃m.
• If mn > m for every n ∈ N, by the second item of this lemma we

have Pm(xn) ∈ B̃m. But, since x ∈ Em, we have that {Pm(xn)}n

converges to x, and therefore x ∈ B̃m. �

The following proposition summarizes the main properties of B̃. Condition
(i) claims that it is an equivalent ball in X, (ii) implies that the basis {ei} is

monotone with respect to the associated norm of B̃, and (iii) gives an estimate
of the modulus of uniform smoothness.
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Proposition 14. B̃ is a ball of X, which satisfies the following conditions:

(i) B̃ ⊂ 3B ⊂ 3kB̃.

(ii) For every x ∈ B̃ and for every natural number n, Pn(x) ∈ B̃.

(iii) ρ(B̃, t) ≤ 32ρ(B, 3kt).

Proof. By lemma 13 (iii), the sequence {B̃m}m is increasing. Therefore B̃ is

clearly convex and centrally symmetric. It follows from the definition of B̃

that it is closed in X. In order to prove that B̃ is a ball we just need to show
that it contains the origin as an interior point, which is a consequence of item
(i). Therefore we only need to show (i),(ii) and (iii).

(i) By lemma 10 we have that B̃m ⊂ 3B for every m ∈ N, therefore it

is clear that B̃ ⊂ 3B. On the other hand, let us take x such that
‖x‖ < 1/k. Since the sequence {Pm(x)}m converges to x, there exists
m0, such that if m ≥ m0 then ‖Pm(x)‖ ≤ 1/k. Since, by lemma 10,

B ∩ Em ⊂ kB̃m, we have Pm(x) ∈ B̃m for every m ≥ m0, and then

Pm(x) ∈ B̃ for every m ≥ m0. Therefore x lies in B̃. Then sB ⊂ B̃

for any s < 1/k. Taking closures B ⊂ kB̃.

(ii) Let us take x ∈ B̃ and m ∈ N. Let us also take {xn} ⊂ B̃ in such a

way xn ∈ B̃mn
. Without loss of generality, we can reduce our proof to

two cases:
• If mn ≤ m for every n ∈ N, then, by lemma 13 (i), xn ∈ B̃m, and

then Pm(x) = x lies in B̃m ⊂ B̃.

• If mn > m for every n ∈ N, then, by lemma 13 (ii), Pm(xn) ∈ B̃m,

thus Pm(x) lies in B̃m ⊂ B̃.

(iii) From the previous results it is clear that the restriction of g(B̃, .) to

Em coincides with g(B̃m, ·). Let us fix t > 0 and consider x and y such

that g(B̃, x) = g(B̃, y) = 1. Let us denote xm = Pm(x), ym = Pm(y),

θm = g(B̃m, xm) and ϑm = g(B̃m, ym). Then, by proposition 12,

ξ(B̃, xm, ym, t) = ξ(B̃m, xm, ym, t) = θmξ

(
B̃m,

xm

θm

,
ym

ϑm

, t
ϑm

θm

)

≤ θmρ

(
B̃m, t

ϑm

θm

)
≤ θm32ρ

(
B, 3kt

ϑm

θm

)
.

Therefore

ξ(B̃, x, y, t) = lim
m→∞

ξ(B̃, xm, ym, t) ≤ lim
m→∞

θm32ρ

(
B, 3kt

ϑm

θm

)

= 32ρ(B, 3kt).

Taking suprema over x and y leads to the required conclusion. �
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As a simple corollary of this proposition we obtain the main results of our
note.

Theorem 15. Let X be a Banach space with a Schauder basis {ei}
∞
i=1 and

a UF-norm ‖ · ‖. Then there exists an equivalent UF renorming |||·||| such
that {ei} is a monotone Schauder basis of (X, |||·|||). Moreover, the moduli of
uniform smoothness of ‖ · ‖ and |||·||| are equivalent (in the sense of [4]).

Dualizing, we have the following result.

Theorem 16. Let X be a separable superreflexive Banach space with a Schauder
basis. Then there exists an equivalent UR renorming under which the basis is
monotone.

Proof. As X is superreflexive, by a well-known result of Enflo [6], there exist
a UR-norm ‖ · ‖ on X. Since the basis is also shrinking, (X∗, ‖ · ‖) is UF and
{e∗i } is its Schauder basis. We can apply Theorem 15 to X∗, to obtain an
equivalent UF-norm in X∗ such that the basis {e∗i } is monotone. By duality,
this means that X∗∗ = X has an equivalent UR-norm making the basis {ei}
monotone. �
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