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A B S T R A C T

Monitoring yogurt fermentation by the image analysis of diffraction patterns generated by the laser-milk in-
teraction was explored. Cow’s, goat’s and sheep’s milks were tested. Destructive physico-chemical analyses were
done after capturing images during the processes to study the relationships between data blocks. Information
from images was explored by applying a spectral phasor from which regions of interest were determined in each
image channel. The histograms of frequencies from each region were extracted, which showed evolution ac-
cording to textural modifications. Examining the image data by multivariate analyses allowed us to know that
the captured variance from the diffraction patterns affected both milk type and texture changes. When regression
studies were performed to model the physico-chemical parameters, satisfactory quantifications were obtained
(from R2= 0.82 to 0.99) for each milk type and for a hybrid model that included them all. This proved that the
studied patterns had a common fraction of variance during this processing, independently of milk type.

1. Introduction

The continuous improvement of industrial activities is horizontal
motivation that affects the most traditional and most recent processes.
Some improvement areas include reducing operation times, energy
costs and waste and, in this sense, the food industry does not differ
much from others. Improvements in production lines can be generally
made by substituting outdated equipment and technologies, making
modifications in equipment materials, etc. Modifying and adapting the
analysis and control techniques during processes can also lead to major
short-term improvements without incurring high economic and time
costs (Abdul Halim Lim, Antony, Garza-Reyes, & Arshed, 2015; Lim &
Antony, 2016). The most important aspect of this approach is that it
quickly collects vast amounts of data from process operations to in-
crease knowledge about it, and to then improve decision making about
any modifications required at any time. Most of the devices and tech-
niques used for this purpose operate non destructively (Chen, Zhang,
Zhao, & Ouyang, 2013; Ropodi, Ropodi, Panagou, & Nychas, 2016).
This implies collecting data without coming into contact with or
modifying samples. In the food industry, this research area represents
not only optimizing resources for processing, but also major advances in
quality/safety control terms from raw material reception to end product

storage (Arendse, Fawole, Magwaza, & Opara, 2017).
Some of the techniques accordingly applied are based on spectro-

scopic determinations (principally within infrared ranges), ultrasounds,
electronic tongues, image analyses, and some combinations of them all.
Some examples of industrial approach applications are classifying
chicken breast fillets (Barbin et al., 2015; Yang et al., 2018), rapidly
detecting defects in maize (Sendin, Manley, & Williams, 2017), pre-
dicting freshness in tilapia (Shi et al., 2018), continuously monitoring
bread dough fermentation (Verdú, Ivorra, Sánchez, Barat, & Grau,
2015), detecting wheat flour adulterations (Verdú et al., 2016), pre-
dicting banana properties (Xie, Chu, & He, 2017), determining the
antioxidant capacity of aromatically plants (Fuentes et al., 2017), etc.
The physico-chemical nature of the food matrix, as well as the specific
transformations that take place during processes, delimit the suitability
of each technique to measure a given analyte and to then condition
features of applications.

In the dairy industry, raw materials also present slight micro-
biological stability, multiphase composition and different available
origins, whose processing control and derived products are susceptible
to improvement by such techniques. Some recent reports with sa-
tisfactory results have detected melamine and additives in milk pow-
ders by hyperspectral imaging (Fu et al., 2014; Mabood et al., 2017),
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and additive components in powdered milk by NIR imaging (Huang,
Min, Duan, Wu, & Li, 2014), etc.

In this sector, yogurt processing has features that make improve-
ments to reduce operation times difficult because bacteriological and
biochemical activities are necessary. However, knowledge about fer-
mentation as regards liquid matrix status, phase changes and textural
properties could provide valuable information for new developments to
be applied to fermentation systems, product formulas and raw material
adaptations. The physico-chemical evolution produced during this
process makes obtaining continuous and rapid information about the
influence of several process variables on the isoelectric point of proteins
and gelification kinetics most interesting. Some examples of these
variables are the nature of milk, fermentation temperature, microbial
starters, texture modifiers, etc. Very few recent reports can be found
about non destructive techniques used to monitor yogurt processing.
Yogurt fermentation monitoring using electronic tongues (Wei, Zhang,
Wang, & Wang, 2017), acoustic impedance methods (Meng, Zhou, Ye, &
Liu, 2011) or a combination of NIR and electronic noses (Navrátil,
Cimander, & Mandenius, 2004), are some examples. In this research
area, our objective is to explore the possibility of monitoring the tex-
tural evolution of this food matrix in the fermentation phase of cow’s,
goat’s and sheep’s milks by computer vision, and by applying an image
analysis to acquire information from generated diffraction patterns that
result from the laser-milk interaction during the process.

2. Material and methods

2.1. Raw material and formula

Three different pasteurized milk types were used in this experiment,
cow’s, goat’s and sheep’s, which were obtained from local merchants.
Milks presented a proximal composition of 3% proteins, 1.5% fat and
4.6% carbohydrates for cow; 3% proteins, 1.5% fat and 4.6% carbo-
hydrates for goat and 5.2% proteins, 1.9% fat and 5.5% carbohydrates
for sheep. The other components were 1% (w/w) saccharose (Azucarera
Española), and the yogurt starter culture that contains Streptococcus

thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus (Chr. Hansen,
Horsholm, Denmark).

2.2. Yogurt production

The yogurt formula preparation procedure was based on that of
Comunian et al. (2017) with modifications: (1) heat treatment of milks
90 °C/30min; (2) adding sugar (1%); (3) cooling to 45 °C; (4) adding
the yogurt starter culture; (5) dividing the mix into single cylindrical
polystyrene packages of 125 g for the fermentation phase at 45 °C to
pH∼ 4.6. Two groups of samples from each milk lot were processed
under the same conditions: the first was for the image acquisition
procedures, and the second was to carry out destructive analyses. Four
fermentations from four different lots per milk type were used.

2.3. Texture and pH measurements

pH measurements were taken with a pHmeter BASIC 20+
(CRISON). The method to analyze the product’s texture evolution was
back strussion (Serra, Trujillo, Guamis, & Ferragut, 2009). A TA-TX2
texture analyzer (Stable Micro Systems, Surrey, UK), equipped with a
25-kilogram load cell, was used in this work. To avoid influencing the
matrix structure, samples were analyzed in original packages after
cooling to 4 °C using a probe with a disc (∅=35mm) at a constant
velocity from 1mms−1 to 50% of sample depth (80mm). The obtained
texture parameters were hardness (maximum positive peak), con-
sistence (area under positive curve/work), adhesive force (maximum
negative peak) and adhesiveness (area under negative curve/viscosity
index). Measurements were taken every 15min during the fermentation
process using three samples of the second lot.

2.4. Image procedures

2.4.1. Image acquisition
The system was based on capturing the diffraction pattern generated

onto the milk/yogurt surface because of the laser light that transmitted

Fig. 1. Scheme of the device to run the experiment, and an image of the real pattern captured during the experiment and its profile in grayscale terms (bottom part).
Green lines mark the different pattern zones.



1. Split image channels: images were split into their color channels
(Red, Green and Blue). This step improves isolating information as
well as rejecting noise from the original image. Thus three stacks of
images (one per channel) were generated from each fermentation
process.

2. Isolate the changing zones of the diffraction patterns: to reject the
image zones with no changes during the process, the average of the
three images at t0 was subtracted from the rest of the stack. The
result was an image group whose histogram features (frequency in
pixels of each color value) collected the extent of change compared
to t0. These images were called difference images (ID).

3. Analysis of changing zones’ evolution: it was necessary to detect the
regions of interest (ROI) from the previous isolated changing zones,
which had information according to the fermentation process. Then
it was necessary to reject those with noise. A spectral phasor was
applied for this step. A brief explanation of the basis of this appli-
cation is provided in Point 2.4.3.

4. ROI changes quantification and information extraction: The quan-
tification of changes within the selected ROI was based on calcu-
lating the image histograms at each sampling time. This operation
allows the modifications for each color value (Cv) (from 1 to 255) to
be observed to record changes in not only the amount of light, but
also in intensity. Data collection was evaluated as a multivariate
matrix.

2.4.3. Spectral phasor
Spectral phasor is a method to transform each pixel intensity spec-

trum into a point on the phasor plot. As each pixel can have a specific
spectrum, the position on the phasor plot identifies its spectral shape
and peak position. So it is possible to isolate pixels with commonalities
during their evolution (the areas delimited by green lines in Fig. 2) and
to then detect ROIs. The phasor approach has been previously im-
plemented to analyze fluorescence lifetime (Digman, Caiolfa, Zamai, &
Gratton, 2008) and spectral images (Fereidouni, Bader, & Gerritsen,
2012). It is a fast, reliable and easy way to analyze images graphically
that requires only low computational power. In our case, the applica-
tion was to study the spectrum from each pixel which resulted from the
changes in the diffraction patterns that took place over time, and to
detect those according to texture evolution. The analysis using spectral
phasor was carried out with the ImageJ plugin available at http://
www.spechron.com/.

2.5. Statistical procedures

The image processing data were processed by applying multi-
variable statistical procedures to reduce data set dimensionality. To this
end, a multivariate unsupervised statistical PCA (principal component
analysis) was used to explore the effect of milk nature and fermentation
process on the collected information. This method was used to describe
and reduce the dimensionality of a large set of quantitative variables
(frequency of pixels at each color value of the image channels) of a few
new variables, called principal components (PCs), which are the result
of the linear combinations of the original variables. Support Vector
Machines-Regression (SVM-R) was used to evaluate the relationship
between the image data and the physico-chemical properties of milk/
yogurt during the process (pH, adhesiveness, adhesive force, con-
sistence and hardness). This method was followed to carry out non
linear regressions between both data sets, which were evaluated based
on calibration and cross-validation coefficients and root mean square
errors (RMSE). The used version was epsilon-support vector regression
(ε-SVM), a radial basis function as kernel (RBF kernel), and “venetian
blinds” as the cross-validation procedure. SVMs are a powerful su-
pervised learning methodology based on the statistical learning theory,
which are commonly used for multivariable data sets and the data
mining of spectral analyses (Boser, Vapnik, Guyon, & Laboratories,
1992). Procedures were performed with the PLS Toolbox, 6.3 (Eigen-
vector Research Inc., Wenatchee, Washington, USA), a toolbox exten-
sion in the Matlab 7.6 computational environment (The Mathworks,
Natick, Massachusetts, USA).

3. Results and discussion

3.1. Texture and pH kinetics during fermentation

The evolutions of the pH and texture parameters measured during
the fermentation process are shown in Fig. 2. The pH of milks at t0 was
similar. Decreasing pH incremented on the slope around 50min until
175min. All three milk types displayed the same behavior and reached
≤4.6 at 210min. Moreover, texture modifications were not detected
within the first 120min, from which time significant changes were
observed in the texture parameters for all three milks at different de-
grees. Indeed the texture properties of cow’s and sheep’s milks started
to change at the same time (120min), while goat’s milk did so a few
minutes later (around 160min). The process revealed two marked
periods: the 1st period, with no texture changes, and the 2nd period,
from an inflexion point on the texture parameters until the end of the
process. This behavior is the classic milk fermentation process evolution
due to milk acidification because of lactic acid production. During the
1st period, pH modification caused the unfolding of whey proteins and
the beginning of interactions with one another until pH came close to
the isoelectric point (5.2). During the 2nd period, gel forming and re-
arranging took place due to the precipitation and aggregation of casein
structures until pH 4.6 (Lee & Lucey, 2010).

Differences in textural properties were evidenced, which agree with
the results reported in other studies (Gursel et al., 2016). Cow’s and
sheep’s milks presented similar results for the hardness and consistence
values, while the adhesive force and adhesiveness values were higher
for sheep’s milk. Goat’s milk presented the most different behavior in all
the parameters because it presented slight texture changes despite the
same pH changes taking place. It is known that the main effect on these
features is normally due to differences in the properties of each protein
type (Gursel et al., 2016). Gaddour, Najari, & Abdennebi (2013) report
that goat’s milk yogurt presents poor consistence, hardness and stability
compared to the yogurt made from cow’s and sheep’s milks. According
to those reports, the amount of casein micelles and size, and the higher
non protein nitrogen content, in goat’s than in cow’s and sheep milks
are all responsible for these differences. However these differences in
protein properties could also explain the higher adhesiveness value

from the lower sample area. The camera (HD cam Logitech C615, CCD, 
8 megapixels, Logitech International S.A., Switzerland) was placed 
vertically in an incubator chamber (KBF720, Binder, Tuttlingen, 
Germany) 15 cm over the sample surface, which was placed in the
middle of the capture field. The laser pointer (650 nm, 50 mW, 3 mm ᴓ) 
was perpendicularly arranged 20 cm under sample packaging, and was 
emitted to the bottom-center area (Fig. 1). Three RGB images 
(3264 × 2448 pixels in the JPEG format) were taken from a single 
sample every 15 min during each fermentation process. The laser was 
coordinated with a camera to turn on/off for 1 s per image to avoid 
influencing sample matrix evolution. Images from four different lots of 
each milk type were collected.

2.4.2. Image processing
The images obtained during the process showed a typical diffraction 

pattern, where a maximum intensity peak was generated in the middle, 
commonly called an Airy disk, along with concentric rings, whose size 
increased after their intensity reduced. These rings are known as con-
structive and destructive interferences. An example of an image and its 
intensity profile on the grayscale are included in Fig. 1. Information 
from images was obtained using the free software ImageJ following 
these phases:
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observed for sheep’s milk. These behavior patterns were taken as a basis
to perform image data processing.

3.2. Evaluating image data

After preparing the images as previously explained, a spectral
phasor was applied to obtain the phasor plots of each fermentation
process. Since the objective was to determine what image zones col-
lected information about the process (ROIs), the clouds generated in-
side the phasor plots were analyzed and compared among the milk
types (the areas delimited by the green lines in Fig. 2). Fig. 3 illustrates
an example of the results for a cow’s milk lot. The morphologies of the
clouds for each image channel were similar for all three milk types,
where commonality was the presence of a large amount of pixels placed
relatively far from the center of the plot to form kernels. A considerable
pixels fraction dispersed toward the central plot zone. These results
allowed the scatter pattern zones to be differentiated, with common
evolution observed during the fermentation time from the zones with a
non relationship, which could be rejected as noise. The kernel colors
inside the image represented the amount of pixels in a given plot zone
(similar evolution over time). The established scale went from red (less)
to magenta (high). Clouds were explored based on visualizing the pixel
kernels in the original images, and representing their evolution with
time in intensity terms. The clouds of each channel were divided into
three blocks, and the kernel dimensions with more pixels (magenta)
(Fig. 2) were taken as a reference. The results showed how channels R
and G mainly collected the evolution of the ring that corresponded to
the first constructive interference (Fig. 3R, block 1) and the Airy disc
(Fig. 3G, block 1) of the observed scatter pattern, respectively, while B

collected both zones. In both cases, blocks 1 collected the image area
that represented the kernels with the most pixels in each channel. It is
noteworthy that the center of the Airy disc was missing in all cases
because this zone was the most saturated area in light terms. As this
area did not undergo any changes, its information was not available
because higher perturbations in the milk matrix were required to
modify it.

When the spectra of each block from the clouds were plotted
alongside complete cloud evolution with time (Fig. 2, bottom), the
excellent contribution of block 1 was observed in both channels R and
G. This meant that most of the information fraction inside a complete
cloud was collected by the maximum intensity zones of the scatter
pattern profile (Airy disc and the first constructive interference ring),
collected in image channels R and G. These image zones were those that
mainly varied. Although the rest of the image contained part of total
variability, it was assumed as noise and was then rejected.

Both R and G presented similar curves, where inflexion points were
observed between 100 and 150min. This behavior could inform about
the differentiation of the two previously observed periods during tex-
ture evolution (Fig. 2). In this case however, the evolution during the
1st period was also observed, which presented constant behavior re-
garding the texture analysis parameters. Thus it would appear that the
changes that occurred during this time were also recorded by the de-
vice. Moreover, channel B displayed behavior, but with no recognizable
pattern. It had no specific temporal evolution zone and presented
chaotic intensity changes from the entire image.

After detecting the areas from ID that fitted fermentation evolution,
only channels R and G were considered. Those areas considered noise
were removed from all the stacks. Information from the ROIs of

Fig. 2. Kinetics of the pH and texture parameters from the back strussion analysis. A: hardness; B: adhesive force; C: consistence; D: adhesiveness. Circumferences
mark the average pH from the three milk types. Dotted lines denote the texture parameters for each milk type: Cow ●; Goat: ▲; Sheep: ■. Water marks mean 2nd
period. The arrows in D mean maximum adhesiveness for goat, cow and sheep. Bars indicate standard deviation.



channels R and G was collected as explained above. In order to facilitate
the visualization of the raw data evolution from the images in terms of
the modification of the histogram shape and what color ranges were
mainly affected, 3D representations had to be used (based on pixel
frequency, color value and time). Fig. 4 shows this representation of a
lot example of each milk type. It shows how each color value had its
own kinetics with time. Early changes toward minimum values were
observed, while maximum values presented most of the changes that
occurred during the 2nd fermentation period, when texture changes
were recorded. Both channels presented this feature, although channel
R was higher. Increasing pixel frequency for a given color value meant
that the differences between the pictures of t0 and tn increased; that is,
the modification in the light transmittance of the milk matrix was
progressive, and then in the diffraction patterns. This effect can be
explained with the combination of reduced lactose, lactic acid rising,
larger microorganism number, etc. However, protein status was the
major influence first on texture and structure properties, and then on
the light-matrix interaction. Thus the reduced changes observed in
Fig. 2 for goat fitted the slight changes noted during the 2nd period
observed in both channels of Fig. 4.

The evolution that took place during the 1st period could be at-
tributed to the protein unfolding processes before the isoelectric point.
pH generated changes in these protein structures, which were still too
slight to modify texture, but were enough to disrupt the diffraction
pattern, principally the dark values that represented most sensitivity as
it required fewer light modifications being altered. Moreover, the 2nd
period modifications were recorded with all the color values because
both gel forming and rearranging were able to disrupt up until the

lightest zones of the diffraction patterns. The observed variability fitted
the principles that some well-known laboratory methods are based on
to take emulsion stability and particle size distribution measurements.
These principles have been established by quantifying the light scat-
tering and diffraction features of different kinds of matrices and ma-
terials (Agimelen, Mulholland, & Sefcik, 2017; Santos, Calero, Trujillo-
Cayado, Garcia, & Muñoz, 2017).

When the generated data matrices were explored by the PCA to
reduce dimensionality, differentiation was observed between periods
for all the milk types. Fig. 4 depicts the PCA spaces generated per milk
type. The results show how periods were separated across PC1 in all
cases. The widest separation was for cow’s and sheep’s milks at the
same time as the differences in point dispersion in each period cluster.
Once again, the narrowest separation was given for goat’s milk com-
pared to the other milk types but, in this case, the dispersion between
periods was similar.

The common behavior noted above for the texture evolution periods
observed in each milk type data matrix evidenced that the light-milk
interactions that took place throughout the process could be recorded
during the diffraction patterns images study. In theory, the most widely
collected variance could be explained by reorganizations in the milk
matrix. However, the effect of milk nature on this common fact was
studied because of the differences observed during the physico-che-
mical characterization. For this purpose, three PCA were performed
with all the milk types at a time, but based on different process periods:
the first one was done with the entire process data, the second with the
data from the 1st period, and the third with the data from the 2nd
period. Fig. 5(A and B) shows the results of the first PCA, where the

Fig. 3. An example of the spectral phasor analysis to determine the ROIs of a cow’s milk lot. Phasor plots for image channels R (red), G (green) and B (blue). The areas
delimited by the green dotted rectangles collected different pixel blocks. The bottom numbered images of the phasor plots show the areas of the images that
corresponded to each pixel block, and all of them together (1+ 2+3). The graphics at the bottom represent the evolution of the intensity of each pixel block (black
points: block 1; black points-dotted line: block 2; circumferences: block 3) and the complete pixel cloud (red points-dotted red line: all of them).



kinetics of each milk in terms of the PCA scores from the PC1 (61.2% of
variance) and PC2 (19.2% of variance) across time are represented.
Both PC scores showed evolution with time, but the variance captured
by PC1 displayed the most parallelism with that observed previously
with the textural parameters (Fig. 2). Major differences in milk beha-
vior from 120min were once again observed, but they could be also
differentiated in this case during the first period. This means that the
variance captured by PC1 contains not only the variability caused by
textural changes during process, but it was also produced because of
milk type. This fact was proved when each period was studied singly in
the second and third PCA. Fig. 5C shows the second PCA, done with
data from the 1st period, where all the points were arranged as a re-
latively high dispersion spontaneously, although the three milk clusters
were perfectly differentiated. Obviously, the observed dispersion con-
tained the effect of pH during this period. However, the three milk types
at t 15 min, when pH had still not significantly lowered, could be dif-
ferentiated in the center of the plot (red arrows), the zone from which
the points evolved in different directions according to milk type. Dis-
persion reduced when the same study was performed during the 2nd
period (third PCA), but the same relative positions were maintained

(Fig. 5D). This PCA space showed more defined clusters because dif-
ferences in milk types increased when texture changes occurred. This
clustering happened despite textural changes, whose variance appeared
to be collected across PC2. In line with this, cow’s and sheep’s milks
appeared with a similar magnitude for the scores in PC2, while goat’s
obtained the lowest ones. This result is in accordance with the results of
the above-cited physico-chemical analyses, where large differences
between sheep’s/cow’s with goat’s milk were obtained. Thus PC2 could
collect the variance fraction that corresponded to texture evolution,
while PC1 could collect the variance fraction provided by the native
differences among all milk types. In any case, we must take into account
that part of the variance collected by the diffraction patterns was due to
the nature of milk. This result is important for subsequent modeling
studies because it could affect the variance produced by the matrix
changes with time, and would not thus be common for them all, which
could condition the development of a common monitoring model.

Our results evidenced that the device captured the variance pro-
duced during the entire fermentation process. This variance could be
divided into that provided by milk type and the texture evolution of
them all. The acquired information fitted the behavior observed during

Fig. 4. Detail of the raw image data kinetics. Representation of the raw data from the histograms extracted from the selected ROIs of image channels R (left: external
ring/first constructive interference) and G (internal disc/Airy disc) at each time during the fermentation process. Cow ●; Goat: ▲; Sheep: ■. 1st period: dark series;
2nd period: clear series. PCA plots (right) represent the shown raw data as a reduced dimensionality to explore differences between periods.



fermentation in textural terms. Milk type and the changes generated in
the matrix led to recognizable diffraction patterns that could be used to
characterize and model the process.

3.3. Joint analysis of the physico-chemical and image parameters

Previous qualitative studies have provided knowledge about the
properties of the information collected during experiments. However,
the quantification of the relationships in the physico-chemical-image
data was necessary to determine monitoring capability by generating
models. The results of modeling with SVM-R are found in Table 1. The
modeling study was done for the 1st period, the 2nd period and the
complete process (Cp) for pH, but only for the 2nd period for the tex-
ture parameters. These studies were done for each milk type and for all
the milk types together in a hybrid model (Hm). This approach allowed
us to determine if the collected information had enough common var-
iance loaded to develop hybrid models beyond the differences detected
in milk types (Fig. 5).

The coefficients of calibration (R2 Cal) and cross-validation (R2 CV)
obtained high values, which all fell within the 0.87–0.99 interval,
which means that no differences among milk types were observed. The
errors calculated for both calibration (RMSEC) and cross-validation
(RMSECV) were also similar. These parameters were satisfactory for
hybrid modeling (Hm), where the coefficients were good despite col-
lecting all milk type samples.

The results showed the capability of recording the evolution of

samples from t0 during the 1st and 2nd periods, despite no textural
changes being detected during the 1st period. This can be concluded
because of the good correlation with pH evolution during Cp, which
means that the registration capability of the biochemical modifications
occurred both before and after protein gelation (Fig. 6A). As mentioned
above, milk type represented a significant variance fraction in the data,
but the fraction of variance provided by the common biochemical
phenomenology during the process sufficed to provide good results
when hybrid modeling was tested.

This effect was applicable to the texture parameters, where the
models provided a good relationship of the image data with all the
texture parameter values, independently of milk type. This is observed
in Fig. 6B and C. Goat consistency and adhesiveness are placed across
the minimum values of both plots because of their reduced texture
variation during fermentation. However, cow’s and sheep’s milk types
are arranged across the entire model, and adhesiveness clearly shows
this fact. The arrows in Fig. 6C mark the maximum value for goat’s (A),
cow’s (B) and sheep’s (C) milks observed in Fig. 2D, and delimit the
scope of the points across the plot. Thus from 0 to A, there are points
from the three milk types, from B to C there are points from cow’s and
sheep’s milks, while only the points from sheep’s milk are placed from C
to maximum adhesiveness.

4. Conclusions

The results of our study show the capability of the used device to

Fig. 5. Study of the milk type effect on the collected data. A and B: Kinetics of the fermentation process in terms of scores from PC1 and PC2 (respectively) of the PCA
space generated with the image data of the entire process. C: the PCA space for the image data from the 1st period of the fermentation process; D: the PCA space for
the image data from the 2nd period of the fermentation process. Cow ●; Goat: ▲; Sheep: ■. 1st period: filled points; 2nd period: empty points. Red arrows into A
mark the samples at t= 15min.



obtain information about the food matrix in the fermentation phase of
yogurt non destructively. The obtained information was isolated from
the images after eliminating the zones with no correlation as noise and
then finding ROIs according to the measured physico-chemical para-
meters. Accordingly, the spectral phasor proved an efficient tool to
detect ROIs and to reject any other images with irrelevant information.
The variance collected by the observed diffraction patterns contributed
to both milk type and physico-chemical evolution, which allowed to
differentiate between both milk and yogurt types, and the distinct fer-
mentation periods. Despite these differences between milk types, the
quantitative modeling of food matrix evolution after and before the
isoelectric point of proteins was possible for pH, hardness, consistence,
adhesive force, and adhesiveness for each one. Hybrid modeling was
also possible with all milk types, which proved that the studied patterns
had a common fraction of variance during this processing, in-
dependently of milk type. According to these results, future research
can involve optimizing collected information by reducing noise during

image capture procedures to improve precision, and to test the effect of
new yogurt formulas, including additives such as texture modifiers,
different probiotic strains, dietetic fiber, etc. The effect of package types
and material must also be studied by testing different morphologies and
the effect of lids.
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