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Abstract  

The capability of fractal analytics of digital images for characterizing fresh sliced 

tissues from different nature (pork-loin and salmon) was tested. Characterization was 

focused to determinate the fat and water fraction of samples, and how affect the 

idiosyncrasy of tissues morphology in this aim. It was carried out extracting fractal 

information based on two pre-stablished parameters (fractal dimension and lacunarity) 

from different type of pre-processed images based on color scale and channel (grayscale 

and RGB). Thus, relationship of evolution of fractal parameters across tones with 

morphology of tissues was studied by means of the resulting spectra. All information 

was divided in two data blocks: the first one was the composition features (fat and water 

fraction) and the second one the fractal information generate from fractal parameters 

and image type combinations, which was treated as multivariable data matrix. Finally, 

the dependency of the two data blocks was tested using multivariate nonlinear 

regression assays. The results report a high dependency of fractal information to fat and 

water fraction for both pork-loin and salmon. The two fractal parameters and all image 

types reported satisfactory results excepting blue channel (B) for salmon, which present 

reduced dependency compared with the rest. Fractal analytics of images proved its 

capacity to be a simple and rapid non-destructive technique for characterizing the 

composition of tissues from different nature and complexity, which could complement 

processes of inspection with the aim of improve classification and selection operations 

within production chain. 

 

Keywords: fresh sliced tissues, inspection, fractal analytics, image, characterization, 

composition  



 

1. Introduction 

The necessity of yield increments in industrial processes in addition of sophistication 

for the implied operations within production chains, concretely for food industry, 

generates requirements of new developments which keep the system under control at the 

same time of the costs are reduced to minimum. When a concrete food sector requires 

exceptional control measures of hygienic parameters, such as which that produce fresh 

and raw materials (meat, fish, dairy, etc.), the development of fast and simple non-

destructive inspection techniques provide notable advantages to the entire production 

system.  

The main advantage is the increase of velocity in a given operation, and then a high rate 

of samples analysed could be reached per unit of time, allowing collect information 

from entire lots, sample by sample.  The fact of obtaining information in continuous 

way from each sample allows increase the accuracy in inspection operations, improving 

later automatic works as classification, slicing, packaging, labelling, storage, etc. In this 

sense, one of the most productive areas within the non-destructive fresh products 

control and monitoring has been the image analysis in several categories. Some of these 

categories are visible image in 2D, spectral imaging, X-ray imaging among others. 

Applications such as the classification of pork hams, assessing of beef carcasses 

tenderness, the freshness control of gilthead sea bream based on gill and eye color 

changes, the automatic fishbone detection, etc. (Dowlati et al., 2013; Ivorra, Verdu, 

Sánchez, Grau, & Barat, 2016; Jackman, Sun, & Elmasry, 2012; Konda Naganathan et 

al., 2015; Mery et al., 2011) have been reported previously, proving the potential of 

those group of technologies destined to this aim. Visible image analysis is one of the 



most accessible techniques, from which a wide number of studies has been reported 

having successful results in diverse research area in relation to the versatility and 

reduced cost possibilities. Into this technique is included fractal analysis of digital 

images. 

Fractal analysis is a group of calculate algorithms used to study and characterizing 

systems with high complexity and chaotic structures, with the aim of detect measurable 

patterns which could offer valuable information from a given sample. An example of 

those types of systems is the biological structures. Concretely biological systems have 

been largely studied using fractal analytics of digital images within biomedical and 

histological research areas, reporting useful applications for characterizing and 

diagnosis of organic structure features. Some of these applications have been applied to 

study neurophysiology systems, organ malformations or glucose fluctuation kinetics 

among others (Akar, Kara, Akdemir, & Kiriş, 2015; Kesić & Spasić, 2016; Weissman 

& Binah, 2014).  Thus, the application of this technique to food industry presents a real 

potential to be exploited. Some recent studies have been reported about the application 

of fractal analysis for characterising fresh food tissues from different nature and 

processing, both fresh meat and fish products. Influence of factors such the origin, 

freshness and processing of tissues are characterised and modelled successfully 

processing the fractal information. Some examples are the characterization of fatty 

infiltration in Iberian and White pork sirloins, color changes in the surface of fresh cut 

meat, the evaluation of the effects of frozen storage on the microstructure of tilapia (He, 

Zhu, Shen, Lin, & Xiao, 2015; Quevedo et al., 2013; Serrano, Perán, Jiménez-Hornero, 

& Gutiérrez de Ravé, 2013), as the evaluation of antioxidants in juices, bruise in red 

bayberries, browning in avocado, acrylamide in biscuits, characterization of low-fat 

yogurts, etc. (Lu, Zheng, Hu, Lou, & Kong, 2011; Lu & Zheng, 2012; Quevedo, 



Ronceros, Garcia, Lopéz, & Pedreschi, 2011; Torres, Amigo Rubio, & Ipsen, 2012; 

Zheng et al., 2011). Although these studies have shown the effectiveness of fractals, the 

main use of fractal analytics has been as a tool to classifying and characterizing, from 

qualitatively point of view, the composition of some products. The development of non-

invasive tools focused to that aim, mainly with quantification capacity, is according to 

the tendency of recent food regulations, such as (UE) n.º 1169/2011 from European 

Parliament about food information supplied to consumers, which forces the food 

producer to include the nutritional labelling in the most of processed food products. 

Thus, the aim of this work was the evaluation of fractal analytics of digital images as a 

non-destructive inspecting tool of food fresh sliced tissues from different nature (pork-

loin and salmon) focused to the quantification of the composition in terms of fat and 

water fraction. 

 

2. Material and methods 

   

Figure 1. Experiment procedure scheme. Xw: water fractio; Xf: fat fraction; R, G and B: 

red, green and blue color image channels respectively; Fd: fractal dimension; L: 

lacunarity  
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2.1. Fresh-sliced samples preparation  

Two types of fresh-sliced tissues from different nature were used: pork-loin and salmon. 

Both represent different-origin comestibles tissues which are commonly sliced, 

packaged and labeled automatically to be sold. Twenty six slices of fresh pork-loin from 

five different lots and twenty slices of fresh salmon from four different lots were bought 

in a local provider. All slices presented dimensions within 1±0.5 cm of thickness and 

15±2.1 cm of length (Step 1 in Figure 1).  

 

2.2 Image capture 

Images were obtained using a standard device which could easily be implemented to on-

line inspection within production chain. Single image of each slice were obtained 

through a HD webcam C615 (Logitech) fixed on a rigid structure leaving 20 cm of 

samples, and a LED lamp IP20 5W as lighting system. The camera was communicated 

to a laptop equipped with the control software. On the scene of the camera capture, a 

black matte material was placed to reduce reflections at the camera. Camera took 

images of 3264×2448 pixels with fine quality in JPEG format (Step 2 in Figure 1).  

 

2.3 Compositional characterization of samples 

Composition in terms of moisture fraction (Xw) and fat fraction (Xf), of both types of 

samples, were analyzed. Moisture was determined by oven drying to constant weight at 

100 C (ISO Norm R-1442, 1979), and fat according to ISO Norm R-1443 (1973) using 



a FOSS Soxtec System 2055 Tecator. All parameters were expressed in wet basis and 

analyzed by triplicate for each slice (Step 3 in Figure 1).  

 

2.4. Image processing and fractal information extraction 

With the aim of obtain a multivariable data matrixes of fractal information, images were 

processed following Zheng et al. (2011) method with modifications (Step 4 and 5 in 

Figure 1). The basic procedures were as follows:  

1. Image of each sample was taken in RGB format and processed to several derived 

image types with the aim of simplifying information for processing. Formats 

were 8 bits greyscale and RGB splited color channels (red (R), green (G) and 

blue (B)). Then, 4 types of images were obtained from each sample. 

2. Each image was thresholded and binaryzed for a tone value between 0 and 255. 

Greyscale: from maximum black (0) to maximum white (255); R channel: from 

maximum black (0) to maximum red (255), G channel: from maximum black (0) 

to maximum green (255), B channel: from maximum black (0) to maximum blue 

(255).  

3. The two parameters fractal dimension (Fd) and lacunarity (L) were calculated 

for each thresholded image. Both fractal parameters consider in essence the 

relationship between the scale of a shape (box) used to scan the image and the 

number of this shape necessaries to complete the image (i.e. two box grids scale, 

Figure 2B and 2C). Fractal dimension (Fd) is based on box counting scan, where 

several grids of decreasing size (box scale) are disposed over different positions 

of an image and the number of boxes that contain pixels is counted for each grid 

size. Left part of Figure 2B and 2C (in loin sample as example) shows two 



different box scales grids and the number of the box necessaries to complete all 

pixels from the thresholded image. Equation 1 represents Fd calculate: 

𝐹𝑑 = − lim
𝑛→0

𝑙𝑜𝑔𝑁𝜀

𝑙𝑜𝑔𝜀
        (1) 

where Fd is fractal dimension, Nε is the number of boxes containing pixels at a 

given box scale and ε is the box scale. Then, Fd is the slope of the regression 

line for the log-log plot of box scale and box count. Left part of Figure 2D shows 

as look this type of plot, where determination coefficient was tested and equation 

of regression was calculated to obtain that slope absolute value.  

In the other hand, Lacunarity (L) is based on quantifying the variation in pixel 

density at different box scale through lineal scanning across images. Right part 

of Figure 2B and 2C (in salmon sample as example) shows two different box 

scales grids and the start point and direction of the lineal scanning across entire 

thresholded image (black arrows). Scan was done from left to right, descending 

row by row once this was finished.  

Equation 2 represents L calculate at each box scale: 

𝐿𝜀 = (
𝜎

µ
)
2
          (2) 

where Lε is lacunarity at a given box scale, σ is standard deviation of pixels into 

boxes of that scale and µ is the average of pixels into boxes at that scale. Thus, L 

of entire is calculated as the average of values from all tested box sizes (right 

part of Figure 2D).  

Both parameters were calculated in 15 different positions of grid for each image 

for avoid the effect of sample position within area of capture. Each one of the 15 



result was taking as a single replica of each image. Data was obtained using 

FracLac for ImageJ created by Karperien (2013). 

Finally, four spectra of each fractal parameter were obtained for each sample, from 

which a multivariate data block was made.  

 

2.3 Quantifying of data block dependency 

Dependency of compositional data (fat and water fraction) and multivariable fractal data 

blocks (fractal parameters spectra from grayscale, R, G, B and RGB) was tested by the 

nonlinear regression method Support Vector Machines (SVM). SVM are a powerful 

supervised learning methodology based on the statistical learning theory, which are 

commonly used for multivariable data analyses (Boser, Guyon, & Vapnik, 1992). Water 

and fat fractions dependencies of both the two fractal parameters spectra (Fd and L) and 

type of image information were tested with this method. Results were evaluated in 

terms of calibration (Cal) and crossvalidation (CV) coefficients following (Ropodi, 

Panagou, & Nychas, 2016), which suggest this procedure when  the number of samples 

is either around or smaller than 40. Results were also evaluated by root mean square 

error (RMSE), which is a measure of the differences between values predicted by the 

model and the observed values that is being modelled. These individual differences are 

also called residuals, and the RMSE represent an aggregate of all them into a single 

measure.  

𝑅𝑀𝑆𝐸 = √
𝛴𝑖=1
𝑛 (𝑋𝑜,𝑖 − 𝑋𝑚,𝑖)2

𝑛
 



where Xo is observed values and Xm is modelled values at place i. Procedures were 

performed with PLS Toolbox, 6.3 (Eigenvector Research Inc., Wenatchee, Washington, 

USA), a toolbox extension in the Matlab 7.6 computational environment (The 

Mathworks, Natick, Massachusetts, USA). 

 

 

Figure 2. Scheme of fractal information obtaining. Left: Fractal dimendion (Fd); Right: 

Lacunarity (L). A: original taken images of a pork-loin and salmon samples; B: example 

of binary thresholded images with high box size grid. C: The same images with small 

box size grid. D: Performance plots and results of both fractal parameters; left: Fractal 

dimension is the slope of log Nε vs log ε plot (red square), where Nε is box count and ε 



is the box scale; right: Lacunarity values from the image scan across box scale. Black 

arrows indicate start position and directionality of scan.  

 

 

 

3. Results and discussion 

 

Figure 3. Example of evolution of fractal parameters Fractal dimension (Fd) and 

Lacunarity (L) across greyscale for a sample of pork-loin. Left axis represent Fractal 

dimension and right axis Lacunarity. Bottom zone correspond to obtained thresholded 

images follow graytones. Range between discontinued lines marks tones with images 

presenting maximum complex shape.    
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The relationship between fractal information variation and complexity of taken images 

was tested with the aim of observing the evidence of the influence by tissues 

components morphology. It is assumed that fractal information into spectra is meanly 

dependent of complexity of analyzed shapes because frequency of pixels in a given 

tone, but in this case it was ensured that a high charge of that the collected complexity 

into images came from the combination of the different components of sliced samples 

(fat and muscle tissues). Evolution of both fractal parameters across tones from each 

type of image were performed. Figure 3 shows the evolution of both fractal parameters 

across grayscale of a sample of pork-loin as example. Spectra denote a non-constant 

evolution across tones, forming peaks principally around tones 30-40. This behavior 

indicated a real variation following the tone, where inversed tendency between Fd and L 

was observed, although the main peak was produced in the same zone. Those peaks 

were function of type of image, observing variations compared to R, G and B spectra 

(Figure 5). Moreover, although both parameters were based in different calculate 

procedure, they reported equivalent information of complexity in this case.  

In despite of proving the variability of fractal parameters, it was necessary attach the 

real processed images from which that dataset was obtained because an easy 

interpretation of spectra evolutions. Bottom zone of Figure 3 shows the evolution of 

processed images in grayscale of the pork-loin example. From tone 0 (black) it was 

observed an increment of complexity in images because a high number of pixels 

(frequency) in those tones, producing the maximum complexity just where fractal 

parameters generated the above commented peaks, from which complexity was reduced 

following the reduction of pixel number as it can be observed visually.  Effectively, the 

shapes described by pixels in each tone correspond principally to variability in fat and 



muscle tissues distributions taking as reference the original image one, therefore the 

most of complexity collected by images is due to this fact.  

 

3.2 Results of data blocks dependency.  

The relationship between tissues characteristics and fractal information was observed, 

however for a further characterization of samples, this variability needed being related 

to the amount of each tissue, fatty and lean, and then with the composition. Figure 4 

shows an exploratory scatterplot representing Fd (left) and L (right) vs fat fraction (Xf) 

and water fraction (Xw) for all samples at tone 35 of grayscale, which was taken as 

average of the range tone within maximum complexity range across spectra (Figure 3). 

It can see how fractal parameters covariate with both Xf and Xw in inverse way, 

describing two distributions with marked tendencies but clear differences between pork-

loin and salmon.   

 

 

Figure 4. 3D scatterplot of Fd (left) and L (right) at tone 35 of grayscale (Z axis) vs. fat 

and water fraction (Xf and Xw respectively) from all samples of pork-loin (green dots) 
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and salmon (orange dots). Letters P and S marks an example of pork-loin and salmon 

samples respectively with a same amount of Xf but different fractal values. 

Fd increased with fat fraction and decreased with water fraction. L present de inverse 

behavior such has been observed in the spectra of Figure 3. This phenomenon depends 

to the features of mathematical approach of both parameters. Although both had 

differences it was observed a high complementarity.  

 

Distributions presented some differences in regard to type of sample. Sample types 

seemed have differences in their distributions, because salmon presented higher Fd 

values and lower L than pork-loin at a given fat fraction (points S and P in Figure 4). 

This feature could be explained because the differences in tissues morphology however, 

observing only one tone of grayscale was not enough to assume this fact. Thus, 

complete Fd spectra for grayscale, R, G and B channels from a sample of salmon and 

pork-loin with the same fat fraction (0.17±0.8) (points P and S at Figure 4) were plotted 

with the aim of exploring these behavior (Figure 5). Figure 5 shows the Fd spectra from 

salmon (orange) and pork-loin (green) in all image type. The first one was grayscale 

(Figure 5-A), which collects whole color variation transformed into grey tones. Spectra 

presented a maximum around tone 30-40 for the two types of sample. Until that zone, 

pork-loin present higher values than salmon according to scatterplot of Figure 4, 

however salmon presented higher values from tone 50 until the last one. That means the 

most part of scale. It was interpreted as salmon images presented higher complexity 

across light tones than pork-loin, which had instead high values at dark tones. This 

result was according to the fact that much of color of pork-loin was formed by intense 

red tonalities.  



Although greyscale collects information from color features, spectra from each RGB 

channels could report more concrete information to characterizing samples. Figure 5B, 

C and D shows the spectra from R, G and B channels respectively.  Spectra in R scale 

showed better the differences at dark tones of red, where pork-loin appeared with values 

of Fd quite higher than salmon. This behavior was inversed around tone 50, where 

salmon present high complexity at light tones again, as well as was observed in 

grayscale. G scale presented marked differences for salmon at light tones. In the same 

way for B scale, salmon had high values at light tones; however pork-loin presented the 

maximums values across the most of spectrum towards dark tones. Predominant colors 

of salmon was orange tones, which is formed by combinations of red and green tones 

principally, that explains the high values in light tones of G and an important part of R 

spectrum. On the other hand, the accentuated complexity of pork-loin in regard to dark 

tones of R and B channels is also explained because blue and red tones combination 

produced intense red-magenta colors, typical on this type of meat tissues. Overview, 

although all RGB channels presented variability in function of type of tissue, R appeared 

to collect the most influent information comparing with grayscale, reporting finally a 

high complexity for the salmon morphology across a high number of tones even having 

the same fat fraction.  

 



  

Figure 5. Spectra of Fd across grayscale, R, G and B channels from samples of pork-

loin (green) and salmon (orange) with the same fat fraction. Raw spectra from each of 

15 positions of grid into the each image were included. A: Fd spectra of grescale; B: Fd 

spectra of red scale; C: Fd spectra of green scale; D: Fd scale of blue scale. 
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Reported the capacity of fractal information to characterizing tissues from different 

nature, in regard to the relationship with composition and also morphology, the last step 

was to study and quantify the dependency of fractal information to fat and water 

fraction with the aim of developing a plausible quantifier application. Study was done 

taking as multivariable data block the spectra of Fd and L from each image type and 

channel: grayscale, R, G and B, and in addition RGB as an single block. The results of 

the nonlinear regressions carried out for each data block combination were collected 

into Table 1.  

Results reported elevated coefficients for the most of combination data blocks for both 

calibration and cross-validation. Differences between Xf and Xw was not observed, both 

parameters presented high coefficients in regard to the two fractal parameters. About 

type of image and channel, all had coefficients up to 0.95, excepting the case of channel 

B for salmon, which presented 0.85 as maximum and 0.63 as minimum. Separated color 

channels showed a slight reduction in coefficients in general, trending to reach high 

values for grayscale and RGB. This results were according to previous works, where 

tissues morphologies of pork muscles from different origin were successfully 

characterized and classified using fractal information (Mendoza et al., 2009; Serrano et 

al., 2013).  

 

Table 1. Fractal information and composition data blocks dependency study. 



   

Fd: fractal dimension; L: lacunarity; Xw: water fraction; Xf: fat traction; R2 Cal: calibration coefficient; RMSEC: root 

mean square error of calibration; R2 CV: cross-validation coefficient; RMSECV: root mean square error of cross-

validation; R: red channel of images; G: red channel of images; B: red channel of images; RGB: complete color 

information of image. 

 

In order to evaluate the influence of the number of tones of the spectrum used in the 

prediction accuracy, with the aim to reducing the volume of processed data, the study 

was again done from one tone, such as in common image segmenting procedure, to 

complete spectrum. Data employed for each calculation was obtained isolating the 

fractal information from tones with the highest fractality (peaks on fractal spectra) from 

grayscale and RGB, and the improvement of the coefficients with the gradual inclusion 

of the contiguous tones was evaluated (10 contiguous tones were included in each step). 

Figure 6 shows the example of the evolution of Rcal and Rval between Fd and Xf 

following the progressive inclusion of tones in dependency analysis, both for grayscale 

(Figure 6A and C) and RGB (Figure 6B and D). Results describe how the inclusion of 

tones improved notably the coefficients and reduce the root mean square error (RMSE). 

That effect was common for pork-loin (Figure 6A and B) and salmon (Figure 6C and 

D). Moreover, RGB presented less differences between coefficients obtained using only 

one tone and all tones, compared to grayscale. This effect was produced because the fact 

grayscale R G B RGB grayscale R G B RGB

Rcal 0.99 0.97 0.94 0.95 0.99 0.99 0.98 0.98 0.85 0.99

RMSEcal 5E-04 6E-04 8E-04 6E-04 6E-04 5E-04 8E-04 7E-04 9E-03 6E-04

Rval 0.96 0.95 0.91 0.92 0.98 0.95 0.95 0.92 0.75 0.95

RMSEcv 3E-03 1E-03 3E-03 1E-03 1E-03 4E-03 3E-03 2E-03 9E-02 1E-03

Rcal 0.98 0.98 0.97 0.95 0.98 0.98 0.98 0.98 0.63 0.99

RMSEcal 4E-04 4E-04 7E-04 6E-04 5E-04 4E-04 8E-04 6E-04 1E-01 5E-04

Rval 0.95 0.95 0.95 0.93 0.95 0.94 0.94 0.94 0.60 0.94

RMSEcv 2E-03 1E-03 2E-03 5E-04 4E-03 3E-03 3E-03 1E-03 1E-03 1E-03

Rcal 0.98 0.97 0.95 0.95 0.98 0.98 0.98 0.98 0.74 0.98

RMSEcal 5E-04 5E-04 8E-04 6E-04 6E-04 5E-04 8E-04 7E-04 9E-02 6E-04

Rval 0.94 0.94 0.95 0.95 0.94 0.93 0.935 0.94 0.65 0.935

RMSEcv 2E-03 1E-03 3E-03 8E-03 5E-03 4E-03 3E-03 2E-03 9E-01 5E-03

Rcal 0.98 0.98 0.96 0.95 0.98 0.98 0.98 0.98 0.78 0.98

RMSEcal 4E-04 3E-04 7E-04 5E-04 5E-04 4E-04 7E-04 6E-04 9E-02 5E-04

Rval 0.93 0.93 0.94 0.94 0.93 0.92 0.92 0.93 0.63 0.92

RMSEcv 2E-03 2E-03 2E-03 2E-03 4E-03 3E-03 2E-03 5E-03 9E-01 4E-03
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that RGB starts with three tones from R, G, and B spectra peaks (one by channel), while 

grayscale had only one. These observations revealed that although the tone of spectra 

that form the peak collected the maximum information of sample morphology, the rest 

of tones represented fundamental information to explain in a high level, the variability 

produced by morphology of studied tissues.  

 

 

Figure 6. Evolution of regression coefficients between Fd (from grayscale and RGB 

data blocks) and Xf with number of tones included in study. Circumference: calibration; 

Dot: cross-validation; Black line: R2; Dotted line: RMSE; A: Salmon grayscale; B: 

Salmon RGB; C: Pork-loin grayscale; D: Pork-loin RGB. 
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Therefore, the inclusion of information from complete color variability (grayscale and 

RGB) into study appeared to generate better results than each separate color channel (R, 

G and B), although it was a fact that the predominance of red tones, typical in these 

samples, allowed obtaining high coefficients for R isolated channel. It is known that Xf 

and Xw have a strong inverse relationship into the tissues systems as the studied here 

(Grau, Albarracín, Trinidad Pérez, Antequera, & Barat, 2011), then this feature also 

contributed to obtain those elevated coefficients and proves that this type of sliced 

products are susceptible to be inspected based on this type of non-destructive tools. As 

conclusion, fractal information based on both different parameters (Fd and L) and image 

types denoted high dependency from tissues features and natural morphology and then 

with their composition in terms of fat and water fraction. 

 

Conclusions 

The capacity of fractal analytics on digital images had satisfactory results for 

characterizing the two different analyzed tissues. Fractal information collected the 

variability generated because the differences produced by the composition in terms of 

fat and water fraction for both pork-loin and salmon. In the same way, variability 

between pork-loin and salmon was also characterized because the differences in tissues 

morphology, mainly fat distribution within system, even in samples without differences 

in fat fraction. In regard to the two tested fractal parameters, both Fractal dimension and 

Lacunarity presented high dependency to fat and water fraction evolution, being both 

enough capable for characterize these properties of samples.  

The type of image did not seem considerable differences in results, concluding as 

feasible to use whatever of their collect information. It was demonstrated that the 



inclusion of tones reduce errors, being able to obtain high coefficients when all tones 

information was used. Overview, fractal analytics of images represent a simple, rapid 

and accessible non-destructive technique for characterizing the composition of tissues 

from different nature and complexity, which could complement processes of inspection 

with the aim of improve classification and selection operations within production chain.  
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