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Abstract

The advances in genomic sequencing during the past few years have motivated the development of a fair number of
fast and reliable software for DNA/RNA sequencing on current high performance architectures. Most of these efforts
target multicore processors, a few only can also exploit graphics processing units (GPUs), and a much smaller set
will run in clusters equipped with any of these multi-threaded architecture technologies. Furthermore, the examples
that can be used on clusters today are all strongly coupled with a particular aligner.

In this paper we introduce an alignment framework that can be leveraged to coordinately run any “single-node”
aligner, taking advantage of the resources of a cluster, without having to modify any portion of the original software.
The key to our transparent migration lies in hiding the complexity associated with the multi-node execution (such
as, e.g., coordinating the processes running in the cluster nodes) inside the generic-aligner framework. Moreover,
following the design and operation in our MPI version of HPG Aligner RNA BWT, we organize the framework into two
stages in order to be able to execute different aligners in each one of them. With this configuration, for example, the
first stage can ideally apply a fast aligner to accelerate the process, while the second one can be tuned to act as a
refinement stage that further improves the global alignment process with little cost.
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1 Introduction In the last years, there has been a continuous flow of
research to develop fast and reliable software for genomic
sequencing on (“single-node”) computers equipped with
multi-threaded processors. Among efforts from others,
in Tarraga et al. (2014) we introduced a DNA-seq aligner
for multicore architectures; and in Martinez et al. (2013);
Martinez et al. (2015b) we adapted the DNA pipeline to
deal with the specifics of RNA-seq on multicore sockets.

Following a common principle of computer architecture,

New DNA sequencing technologies, also known as
next generation sequencing (NGS), have unleashed
an unprecedented revolution in biology. In particular,
high-throughput sequencers have turned transcriptome
sequencing into a matter of days, instead of years,
with other costs also in continuous decrease. Among
the numerous applications of NGS, DNA sequencing
(DNA-seq) is widely employed because of its important
clinical implications. Concretely, DNA-seq aims to unveil
the causes of rare diseases and, ultimately, to improve
medical care by inspecting the genome of individual
patients (Biesecker 2010). In addition, RNA sequencing
(RNA-seq) has become a key analysis tool for biological
and clinical research, replacing conventional expression
microarrays in most practical scenarios (Garber et al. 2011).
In more detail, RNA-seq is currently applied to quantify
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the expression of genes that are activated/repressed by a
disease, which helps to understand the etiology of a disease.
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all these aligners “make the common case fast’, applying
a simple yet inaccurate method in order to rapidly map
DNA/RNA fragments (reads), while relying on a costlier
but more accurate approach to tackle more difficult cases.

More recently, in Martinez et al. (2015a), we ported
one of our RNA-seq aligners to operate on clusters of
computer nodes equipped with multicore processors. In that
MPI version, the aligner is re-organized into a series of
computational stages, that each MPI rank (process) can
work on independently of processes running in other nodes.
At the end of each stage, the local information produced
up to that point is compiled into global structures and
broadcasted, to be leveraged by all processes in subsequent
stages. Proceeding in this asynchronous manner, the MPI
version of the RNA-seq aligner delivers fair scalability
when mapping a file of 80 million RNA reads on a cluster
with up to 12 nodes and almost 100 processor cores.
Moreover, the aggregation of global information on splice
junctions offers a sensitivity close to that of the original
single-node (multi-threaded) aligner.

The operation of our MPI aligner, with independent
stages interleaved with communication of local informa-
tion, is general and can also be applied to other single-
node aligners for DNA/RNA-seq. Following this idea, in
this paper we propose a “generic-aligner” framework for
DNA/RNA sequencing on clusters of multicore processors.
In doing so, we make the following specific contributions:

e The alignment framework offers a skeleton consisting
of two stages, which can accommodate a number
of existing aligners for either DNA/RNA-seq, taking
care, among others, of the distribution of the data, the
partitioning of the work, the exchanges of information
among the processes, and the compilation of the results
into standard output files.

e The aligners to execute at each stage of the
framework can be selected by the user among a varied
collection of single-node multi-threaded software. No
modification is required in the aligner code. The use
of different aligners at distinct stages, or the same
aligner with different options, yields a research tool
to improve the efficiency, scalability and/or sensitivity
of the global alignment process.

e We investigate the scalability of different DNA
and RNA aligners on a cluster of multi-threaded
processors. Furthermore, for RNA-seq we expose a
clear improvement of accuracy by refining the results
from an initial aligner with a second stage with a more
reliable mapper.

The rest of the paper is structured as follows. In
Section 2 we briefly introduce a few basic concepts
in genomic sequencing. In Section 3 we provide a
short survey of parallel software for genomic sequencing,
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and we describe the operation of our multi-threaded
HPG Aligner. In Section 4 we first revisit the MPI
version of HPG Aligner, to then present the “generic-
aligner” framework for DNA/RNA-seq. In Section 5 we
experimentally evaluate the scalability and sensitivity of
different combinations of aligners on Maverick, a cluster
from Texas Advanced Computing Center (TACC). Finally,
in Section 6 we summarize our work and the key insights
gained from this study.

2 Genome Sequencing

NGS technology is currently applied to sequence short
DNA/RNA reads, generally comprising between 50 to 400
nucleotides (nts), or longer with more recent sequencers.
These NGS tools produce data consisting of hundreds
of millions, or even billions of reads. The first step for
genome re-sequencing consists in mapping the reads onto a
reference genome, with the purpose of locating the genomic
coordinates of each read (Langmead et al. 2009). This
computational step is highly expensive and sensible to
errors. In particular, sensitivity is a serious concern due
to natural variations or error sequencing, which yields
frequent mismatches between the reads and the reference
genome, in general increasing the computational cost of the
mapping procedure (Li and Homer 2010).

The mapping stage is particularly difficult for RNA-seq.
The genes in eukariotes may be split into small regions
known as exons, which are separated by intron zones
composed of thousands of nucleotides. When the exons are
transcribed into the RNA, they are brought together to form
the transcripts in a splicing process. Special care is thus
needed when mapping reads from RNA transcripts onto
a reference genome, as some reads may contain a splice
junction and, therefore, involve exons which lay thousands
of nucleotides apart (gapped alignment).

3 High Performance Software for
DNA/RNA Alignment

There exists a considerable variety of software packages
for computational DNA- and RNA-seq, many of them
based on matching techniques and structures such as
the Burrows-Wheeler transform (BWT) (Burrows and
Wheeler 1994), the full-text index in minute space (FM-
index) (Ferragina and Manzini 2000), the suffix array
(SA) (Manber and Myers 1993), or the Smith-Waterman
algorithm (SWA) (Smith and Waterman 1981). In rough
details, BWT 1is a technique to rearrange a character
string into segments of similar characters. SA is a sorted
array (index) containing all possible suffixes of a string,
with memory requirements considerably higher than those
of BWT, but usually faster operation. FM-index is a
compressed full-text substring index based on BWT, which
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Table 1. Short list of DNA/RNA alignment software.

Aligner (last update) Target Open
Bfast (2011) Multicore Yes
Blat (2012) - Yes
Bowtie (2015) Multicore Yes
Bowtie2 (2015) Multicore Yes
BWA (2014) Multicore Yes
BWA Mem (2014) Multicore Yes
ﬁ Cushaw2-GPU (2013) Multicore/GPU Yes
Eo Cushaw3 (2014) Multicore Yes
< ContextMap2 (2015) Multicore Yes
<ZC GEM (2013) Multicore No
A Gnumap (2011) Multicore Yes
Halvade (2015) Multicore/Cluster  Yes
HPG Aligner DNA SA (2015) Multicore Yes
Soap (2007) Multicore Yes
Soap2 (2011) Multicore No
Soap3-dp (2011) Multicore/GPU Yes
HPG Aligner RNA BWT (2014) Multicore Yes
HPG Aligner RNA SA (2015) Multicore Yes
MapSplice (2011) Multicore Yes
£ Cluster HPG Aligner RNA BWT (2015) Multicore/Cluster ~ Yes
E" Olego (2015) Multicore Yes
< RNASEQR (2012) Multicore Yes
<ZC RUM (2015) Multicore/Cluster  Yes
~  SpliceMap (2010) Multicore Yes
STAR (2015) Multicore Yes
TopHat (2012) Multicore Yes
TopHat2 (2015) Multicore Yes

can be used to efficiently find the number of occurrences of
a pattern within the compressed text as well to as locate
the position of each occurrence. Finally, SWA quantifies
the similarity between (regions of) two strings, comparing
segments (i.e, substrings) of all possible lengths.

Table 1 provides a survey of recent high performance
aligners, including those targeted in our work, for multi-
threaded architectures. Among other aspects, the table
exposes that most of these software packages are designed
to exploit the hardware of a single-node system, usually a
server equipped with multicore processors and, possibly,
a GPU. Halvade, RUM and our MPI extension of HPG
Aligner can also exploit all the resources in a multi-node
cluster. Halvade relies on Hadoop MapReduce 2.0. During
the map phase, each task independently processes a chunk
of the input data and produces intermediate pairs. Next, all
these intermediate pairs are sorted in parallel accordingly to
their key. During the reduce phase, each task independently
processes a single key and its corresponding values. RUM
processes reads in three phases. First, it uses Bowtie to
map reads into the genome; next, it re-applies Bowtie to
map onto a transcriptome database; and finally it relies
on Blat to map onto the genome. The information from
the three mappings is finally merged into one mapping.
RUM can be run in parallel on a Sun Grid Engine-based
cluster. It splits the input in chunks so that each node
applies the previous procedure to its chunks, and finally
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merges the results produced by all the nodes. The use of
this software in other types of clusters requires the creation
of shell scripts or an extension of the RUM source code.
With respect to our MPI extension of HPG Aligner, it is
later described in Section 4.1. Compared with the generic-
aligner framework for clusters presented in this work, those
three cluster aligners are strongly coupled with/can only
apply their own mapping algorithm whereas our aligner
framework can run any single-node alignment software.

In order to illustrate the flexibility of our multi-node
sequencing framework for clusters, we selected Cushaw2-
GPU (Liu and Schmidt 2014), Cushaw3 (Liu et al.
2014), Bowtie2 (Langmead and Salzberg 2012), and HPG
Aligner DNA SA (Téarraga et al. 2014) for DNA-seq. The
three first aligners perform the mapping via the BWT or an
FM-index. Cushaw2-GPU accelerates the mapping process
via inter-task hybrid CPU-GPU parallelism and a tile-based
SWA for CUDA GPUs, while Cushaw3 and Bowtie2 run
on multicore processors. HPG Aligner DNA SA relies on
an SA array as well as a software pipeline organization of
the procedure tailored for multicore processors.

In addition, we chose Tophat2 (Kim et al
2013), MapSplice2 (Wang et al. 2010), HPG
Aligner RNA BWT (Martinez et al. 2013), STAR (Dobin
et al. 2013), and HPG Aligner RNA SA (Martinez et al.
2015b) for RNA-seq. Among these, the first three aligners
exploit the BWT while the last two rely on SA. All of
them commence by splitting the reads into short segments
(seeds), to then map these fragments onto reference
genome. In Tophat2, MapSplice2 and HPG Aligners RNA
(BWT and SA), the initial aligning stage is followed by a
re-mapping to identify split alignments in the presence of
small exons. All the cases selected for RNA-seq run on
multicore processors.

3.1  Multi-threaded HPG aligners

l

. .

Figure 1. Work-flow organization of HPG Aligner RNA BWT.
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Our family of high-performance aligners for multi-
threaded architectures are organized into a number of
consecutive workflows. For RNA-seq in particular, the first
workflow of HPG Aligner RNA BWT maps the reads
onto the reference genome, and separates those reads for
which a reliable mapping could not be found into two
groups, “single anchor reads” and ‘“hard clipping reads”,
to be processed by Workflows 2 and 3, respectively. The
first group contains those reads that were partially mapped,
while the remaining ones are placed in the second group.
This process is graphically illustrated in Figure 1.

HPG Aligner RNA BWT relies on a series of matching
data structures that store information about “meta-exons”
and splice junctions. These data are updated with
knowledge from those reads which were accurately mapped
during the process. The alignment structures are then
leveraged by subsequent workflows to speed up as well as
improve the accuracy of the mapping for difficult reads.

From the operation perspective, HPG Aligner RNA BWT
relies on the BWT to perform a fast initial alignment,
allowing up to one error or indel (insertion or deletion) per
read. If a read is successfully mapped, this stage creates
an alignment record and updates the meta-exon structure.
Those reads which could not be mapped are split into
several seeds, and the BWT is re-applied to map each
seed into the reference genome, resulting in a potentially
large collection of candidate regions. Finally, the SWA is
employed to align pending reads using certain candidate
regions as potential mapping targets. HPG Aligner RNA SA
basically differs from this in that an SA index, instead of the
BWT, is used for the initial mapping.

As argued, HPG Aligners RNA (BWT and SA) are
both divided into three consecutive workflows connected
via queues that act as data buffers and synchronize the
relative processing throughputs of the (threads running on
the) workflows. Each stage of the workflow “receives” a
collection of reads (or batch), tries to map its contents,
and “sends” the result to the next stage as a batch to
be processed there. Threads running in different (CPU)
cores process batches concurrently, leveraging the inter-
stage concurrency intrinsic to the operation.

On the other side, in case there exists a large number
of CPU cores, our scheme also exploits the concurrency
implicit to each one of the stages. Concretely, by running
more than one thread per stage, several batches can
be simultaneously processed in the same stage (intra-
stage concurrency). The purpose of exploiting intra-stage
concurrency is to accelerate/balance the processing speeds
of the different stages, as the throughput of each pipeline is
dictated by the performance of the slowest stage.
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4 Genomic Sequencing in Clusters

The motivation for our framework is the MPI version of the
HPG Aligner RNA BWT (Martinez et al. 2015a). We next
briefly describe that solution before presenting the generic-
aligner framework developed for this work.

4.1 HPG Aligner RNA BWT for clusters

The MPI extension of HPG Aligner RNA BWT is organized
as three consecutive workflows, with the same division of
work conceived for the single-node version; see Figure 1.

To commence, the reads are statically distributed among
the MPI ranks/processes that were spawned in order to
perform the task. (Hereafter, we will assume that there
is one process per cluster node.) For this purpose, one
process computes the initial/final reads of the file which
correspond to each node, and broadcasts this information to
the remaining processes/nodes. Upon receiving this, each
process reads its portion of the input file into the local
RAM. For the class of input files appearing in RNA-seq
(frequently stored in FASTQ format (Cock et al. 2010), and
usually with more than 50 million reads of 100-400 nts
each), in our experiments we found that this “multi-reader”
approach is often faster than a solution which reads and
distributes the contents of the input file from a single node;
see Martinez et al. (2015a).

Once the workload has been distributed, each MPI
rank independently executes the first workflow and stores
the output on local files. These results comprise the
unmapped reads, divided into single-anchor and hard
clipping read files, a meta-exon structure, and the detected
splice junctions; see Martinez et al. (2015a) for details.

In parallel with the execution of the first workflow, the
structures local to each process are merged, via message-
passing, into global structures in order to aid in the mapping
of elusive reads during the subsequent workflows. This
information is fused following an inter-node minimum-
spanning tree communication scheme, as illustrated in
Figure 2 for an example involving 10 nodes.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Broadcast

Figure 2. Message-passing fusion of the meta-exon and
detected splice junctions structures.
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The MPI ranks continue next with the second workflow,
independently processing their local “single anchor reads”
file; update their local versions of the meta-exon and
detected splice-junctions structures; and add those reads
which could not be correctly mapped to their local “hard-
clipping reads” file. A merging process of the meta-
exon and detected splice junctions structures proceeds
concurrently with this workflow.

Finally, the processes execute the third workflow,
operating on their local “hard-clipping reads” file; and the
local detected splice-junctions structures are merged and
subsequently written to a file on disk in BED format.*

4.2 Overview of the generic-aligner
framework

The generic-aligner framework is composed of two stages
connected via a temporary buffer that stores those reads
which could only be partially mapped or not mapped at
all during the first stage. The second stage aims to re-map
those “difficult” reads using information generated from the
first stage, and generally, a different mapper.

Each stage of the framework can execute any choice
among a number of mappers (see Section 3), leading to a
rich variety of combinations. For example, for RNA-seq,
the framework can apply Tophat2 during the first stage, and
next refine the unsatisfactory results (i.e, unmapped reads
or mapped reads but with a low confidence) with HPG
Aligner RNA SA.

In short, the framework performs the following tasks:

e spawns the number of MPI ranks indicated by the user;

e splits and distributes the reads among the MPI ranks;

e executes the aligner(s) selected by the user in the
cluster nodes at the appropriate execution time;

e if necessary, creates the appropriate connection buffers
to pass information from the first to the second stage;

e implements the communications among MPI ranks
including, if needed, the merge of intermediate results
and the final output; and

e synchronizes the termination.

Thus, the generic-aligner framework performs the same
tasks as the MPI version of HPG Aligner RNA BWT, with
a slightly different organization. However, we emphasize
that our new solution has the appealing advantage of being
mostly “agnostic” of the specific aligners that operate
within the framework. Compared with this, MPI HPG
Aligner RNA BWT (for RNA-seq), Halvade (for DNA-
seq) and RUM (for RNA-seq) cannot be decoupled from
a concrete aligner.

Although our previous parallelization of HPG Aligner
RNA BWT for clusters inspired the new generic-aligner
framework, the code for the latter was developed almost
from scratch, due to its different design principles.
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¥
Aligner §

Rank 2
Rank n

Node 1
Rank n+1]

Node 2

Node n

Figure 3. Operation of the generic-aligner framework (without
a second stage). The aligner underlying each MPI rank is
executed after its part of the input dataset has been written to
disk. The merge procedure in each MPI rank is executed after
the aligner in its rank has completed its task.

Concretely, the MPI extension of HPG Aligner RNA BWT
deals with the communication of the data structures that are
required or produced by each of the HPG Aligner RNA
BWT workflows and, therefore, is tightly integrated into
the mapper code, which was developed with this specific
purpose in mind. In other words, the MPI version is a
message-passing application for RNA alignment that relies
on MPI primitives for communication. Compared with this,
in the generic-aligner framework for DNA/RNA, processes
running in different nodes of a cluster also exchange data
via MPI. However, the mapping process is performed by
MPI ranks (see Figure 3), each of which invokes for
this purpose a single-node (sequential or multi-threaded)
aligner code, possibly developed by others (e.g., Bowtie 2,
STAR, MapSplice 2, etc.). The framework then is in charge
of collecting/combining the results from this individual
executions to produce a global result. In addition, there are
three other implementation differences:

e The MPI extension of HPG Aligner RNA BWT does
an initial logical partition of the work, and broadcasts
the initial and final reads assigned to each MPI rank.
Conversely, the generic-aligner framework physically
splits the work into separate files, one per MPI rank.

e Each MPI rank of the MPI extension of HPG
Aligner RNA BWT sends its local results to a global
writer process. Compared with this, the generic-
aligner framework collects and processes the output

*http://genome.ucsc.edu/FAQ/FAQformat .html#formatl
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information generated by the single-node mappers
invoked by each MPI rank.

e The MPI extension of HPG Aligner RNA BWT deals
with the type of data that the first stage from the same
aligner produces. Compared with this, the framework
has to be able to process the output from a variety of
aligners employed in the first stage, transforming these
data in order to produce the appropriate information to
pass to the second stage.

4.3 Details of the generic-aligner framework
interface and operation mode

The alignment framework is invoked by specifying the
following information:

e number of stages to execute (1 or 2);

e type of sequencing problem to solve (DNA or RNA);

e specific aligner(s) to use at each stage (and
configuration options);

e names of the input files containing the reference
genome and reads;

e directory for intermediate results; and

e name of the output path.

For example, the command:

mpirun -np n+l -hosts hostl,host2,...,hostn \
./hpg-multialigner rna \
-c "tophat2 -o %0 -p 16
——no—-convert-bam
index_bwt/homo_sapiens $I" \
-i index_hpg/ \
-f reads.fqg
-o final-output/ \
--tmp-path /tmp/output/
——second-phase

launches the alignment framework with n + 1 MPI ranks on
n nodes, to perform RNA sequencing using TopHat?2 in the
first stage (with the configuration parameters specified in
the string following the command name, “-o %0 ... 31"
for tophat2). The remaining parameters in the command
line specify that the reference genome is in index_hpg; the
input file containing the reads is in reads. £q; and the output
and temporary files are to be stored in final-output/ and
/tmp/output, respectively. In this case, the second stage is
activated (--second-phase) which, by default, invokes our
HPG Aligner RNA SA.

After this, n processes become “workers”, and will take
care of executing the aligner selected for the first stage,
while the remaining “writer” process will be in charge of
compiling the outputs from this stage. As the writer process
is mapped to the same node as one of the workers, only n
nodes are actually used. Among the workers, one queries
the size of the input read file, calculates the portion of
the dataset that will be mapped by each worker (including
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itself), and splits the dataset creating one file per worker,
containing the portion assigned to each.

Next, each worker reads the appropriate file into the local
RAM, and processes its contents (reads) via the selected
aligner, taking advantage of the hardware resources present
in the local node (multicore or GPU, depending on the
aligner). The partial results from the local alignment (that
is, per worker) are stored into a temporary buffer, allocated
in a shared or local hard drive, using the SAM format.

Once the execution of the alignment process selected for
the first stage is complete, the local results are merged into a
global file. For this purpose, each worker sends the contents
of its own SAM file to the writer, which combines this
information into a single global file.

Starting from this point, the next steps differ, depending
on the type of sequencing problem (DNA or RNA) and
whether a second stage was requested or not.

DNA. In case the user selected a single stage, the
alignment procedure is complete and no further action
is necessary. Otherwise, those reads which remained
unmapped after the first stage are re-processed with the
aligner selected for the second stage. This refinement is
performed locally to each process (worker), and proceeds
following analogous steps to those applied during the
first stage: apply the selected aligner exploiting the local
resources, store the results in a temporary file, and send
them to be combined by the writer into the final output file.

RNA. After the first stage of RNA-seq, the (mapped
reads and) splice junctions identified by the aligner lay
in local files which need to be merged into a single file.
Unfortunately, different aligners specify splice junctions
using distinct formats at the end of this stage. In order
to produce a consistent result, our alignment framework
determines the splice junctions directly from the alignment
information in the local SAM files, storing the outcome into
separate local files using our own format. To complete the
execution of the first stage, these structures are merged, and
a single file containing all splice junctions is generated.

In case a second stage is due, a filtering process such
as that described for RNA is performed. Moreover, when
the second stage is to be done via our HPG Aligner, before
this process commences, the alignment framework creates
a global meta-exon structure to improve the mapping
sensitivity. For this purpose, each process creates its local
meta-exon and this information is exchanged to build a
global database.

4.4 Optimization of the generic-aligner
framework
In subsection 4.1 we referred that the MPI HPG

Aligner RNA BWT splits the input file among the MPI
worker ranks by i) computing and broadcasting the
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start/end position that will be read by each worker, and
ii) leveraging this information from each worker to read
its part of the shared input file. In addition, the MPI
aligner overlaps the execution of the mapping procedure
with the merge of the results generated by the workers.
These two features, retrieval of dataset from the original file
and overlapped merge/mapping, were easy to implement
because, in that case, there exists a strong coupling between
the MPI version of HPG Aligner RNA BWT and the
underlying aligner.

The generic alignment framework employs, by default,
a more cautious (aligner-agnostic) approach to tackle these
two issues in order to accommodate any aligner. First, there
is only one process in charge of splitting the input dataset
and creating separate files for each worker. Second, all
workers must complete their work and synchronize before
merging those results generated by a stage. As argued, this
approach presents the strong advantage that it works for any
aligner, as its operation mode mimics the way this generic
aligner expects its “environment” to behave. In particular,
the aligner reads an input, which corresponds to an actual
file, and dumps its output into a file with no concurrent
access from other processes.

Unfortunately, this flexible implementation of the
generic-aligner framework embeds two major drawbacks:
first, it introduces a serialization point due to the split and
creation of the original dataset into separate files (one per
worker), which involves a copy, and is performed by a
single process. Second, it creates a synchronization point
between the execution of the first (and second) stage(s)
and the fusion of this information. Thus, in case the
time required to split-and-copy the dataset and/or merge
the intermediate information is comparable to the cost of
the mapping procedure, the scalability of the alignment
framework will be compromised.

Although it is considerably more difficult than in the case
of the MPI HPG Aligner RNA BWT, the generic-aligner
framework can also integrate a “parallel” split (with O-copy
on disk) of the input file as well as a merge that proceeds
concurrently with the mapping. These two improvements
will fit most aligners, and can be optionally activated when
the actual cost of the mapping process is small, yielding
significant gains in such scenario.

Our current implementation enhances the alignment
framework with both optional features. From the interface
point of view, the command line option °
instructs the framework to “parallelize” the distribution
of the input file. Furthermore, the command line option
‘-—fast-merge’ forces an overlapped merge with the actual
processing. When these options are selected, the processing
scheme is reorganized as described in the following (see
also Figure 4).

——fifo-enable’
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Let us assume the user activates both options. Each MPI
rank then creates a reader thread to handle the parallel file
distribution, plus a merger thread to attain a concurrent
execution of the merge stage(s).

To distribute the retrieval of the input file, one of the MPI
ranks computes the start/end positions that correspond to
each worker and broadcasts this information. The reader
thread in each worker then creates a FIFO file (also known
as a named pipe) in its local RAM, and streams its part of
the input, from the original file, into the local FIFO file.
Upon invocation, the name of the FIFO file is also passed to
the aligner executable (via its command line), which simply
retrieves its input from there. Proceeding in this manner,
the input file is read concurrently by the reader threads,
running at the MPI ranks, which split the dataset at the same
time. Furthermore, using this procedure, there is no need to
modify the source code of the aligners.

As part of the merge process, the merger thread at each
MPI rank waits until a local output file is created. As soon as
this event is detected, the merger commences to read blocks
from there. When this thread has retrieved enough data to
fill a buffer, it sends this information to the global writer
running in MPI rank n 4 1. The merger proceeds in this
manner till the mapping process in its local MPI rank has
been completed, and the information on the corresponding
output files has been streamed to the global writer.

=

Reader } Reader { Reader }
FIFO FIFO FIFO
Aligner § Aligner § nnn

Rank1 |
Rank 2
Rank n

SAM
(EEEEE)
i
|
Figure 4. Operation of the generic-aligner framework (without

a second stage), and with “parallel” retrieval of the input file
and concurrent merge of the local results with the mapping
process. The aligner underlying each MPI rank is executed as
soon as the FIFO in its rank has been created. The merger

thread on each MPI rank is started as soon as the output files
of the aligner in its rank are created.

Node 1
Rank n+1]

Node 2

Node n
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Table 2. Command lines used to execute each aligner.

Mapper Command Line
Bowtie 2 bowtie2 -x indexB2/hs -p 16 -S ./out/align.sam data.fq
<Z‘1 Cushaw2-GPU cushaw2-gpu -r indexC2/hs.fa -f data.fqg -t 16 -o ./out/align.sam
A Cushaw3 cushaw3 align -r indexC3/hs.fa -f data.fq -t 16 -o ./out/align.sam
HPG Aligner DNA SA hpg-aligner dna -i indexSA/ -f data.fq --cpu-threads 16 -o ./out/
HPG Aligner RNA BWT hpg-aligner rna -i indexBWT/ -f data.fqg --cpu-threads 16 -o ./out/
HPG Aligner RNA SA hpg-aligner rna -i indexSA/ -f data.fq —--cpu-threads 16 -o ./out/
<ZC MapSplice 2 mapsplice.py -c¢ indexM/ -x indexM/hs -1 data.fqg -p 16 -o ./out/
~ STAR STAR --genomeDir indexST/ --readFilesIn data.fqg —--runThreadN 16
-—outFileNamePrefix ./out/
Tophat 2 tophat2 -p 16 —--no-convert-bam —--no-sort-bam -o ./out/ iT/hs data.fqg

5 Scalability and sensitivity

In this section we describe the setup for the experimenta-
tion, and evaluate the performance and sensitivity of the
alignment framework under different configurations.

5.1 Experimental setup

The following experiments were performed using the
cluster Maverick at TACC. Each cluster node integrates
two 10-core Intel Xeon E5-2680 v2 “Ivy Bridge” CPUs,
256 GB of RAM, and an NVIDIA Tesla K40 “Atlas”
GPU with 12 GB G-RAM connected via PCI-e Gen 2.
The cluster interconnect employs Mellanox FDR Infiniband
technology, and the same network allows the compute
nodes to gain access to a 20 PB Lustre parallel file system.

The generic-aligner framework code, which is
available at https://github.com/opencb/hpg-aligner, branch
develop—multi-fifo-output, was compiled with
GNU gcc version 4.4.7, using the package default compile
options. The MPI version used was MVAPICH?2 2.0b.

The experimental evaluation of the generic-aligner
framework for DNA was performed using a single-end
dataset consisting of 40 million reads of 100 nts, generated
with the dwgsim simulator from the SAMtools (Li et al.
2009). The mutation rate was set to 0.1%, with 10% of these
being indels (option ‘-r 0.1”). We will refer to this dataset
as D40M. The experimental evaluation of the alignment
framework for RNA was performed using three single-
end datasets, two of them consisting of 10 million reads
and the remaining one with 80 million reads, with reads
of 100 nts in all cases. These were generated with the
beers simulator (Grant et al. 2011). The mutation rate was
set to 0.1% for one of the 10-million datasets (R10M0.1)
and the 80-million one (R80MO.1); this rate was raised
to 2% for the second 10-million dataset (R10M2.0). The
indel frequency was fixed to the default value (0.05%) for
all three datasets. These datasets can be downloaded from
http://lorca.act.uji.es/dataset/2016_ijhpca/.

When our HPG Aligner (BWT or SA) is applied in the
second stage of the framework, its execution parameters
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Table 3. Execution time (in seconds) of the multi-threaded
aligners, using a single node of Maverick, applied to D4 0M and
R10MO.1.

Target Mapper Time
Bowtie 2 732

Cushaw2-GPU 926

DNADAOM ) haws 2146
HPG Aligner DNA SA 367

HPG Aligner RNA BWT 65

HPG Aligner RNA SA 66

RNA/rR10MO.1  MapSplice 2 1470
STAR 60

Tophat 2 1715

are fixed as follows: the minimum and maximum intron
dimensions were set to 40 and 500,000 nts, respectively;
the minimum CAL size to 20 nts; and the configuration
for the (EMBOSS) SWA to its default values (match: 5,
mismatch: —4, gap open: 10, and gap extend: 0.5).

The experiments with the small datasets were repeated
a number of times (around 10), revealing little variability
in the results. The large experiments were also executed
in a smaller/slower cluster confirming the small variations
between repeated executions. Unfortunately, these cases
were too expensive to be repeatedly executed on a
production facility.

5.2 Execution time and parallel performance

In order to assess the performance of the generic-aligner
framework, we first evaluate the selected multi-threaded
aligners, listed in Table 2, using 16 threads on a single node
of Maverick. (In a separate experiment, we determined that
16 was the optimal number of threads for most aligners.)
The specific command line parameters for this experiment
are reported in the same table.

The results in Table 3 show that the execution time
of the DNA aligners ranges from 367 to 2,146 seconds,
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and the cost of the RNA aligners varies between 60 and
1,715 seconds. While we note here the large differences
between STAR/HPG Aligner and the remaining software,
we emphasize that this initial evaluation does not intend
to compare the performance of these single-node multi-
threaded aligners. In particular, the results will surely
change if a different dataset is used, or in case the aligner
parameters are fine-tuned for a particular dataset. Instead,
we emphasize that the purpose of this evaluation is to ensure
a fair analysis of the alignment framework. Concretely,
our experiments are conceived to expose whether our
framework is able to reduce the execution time of a generic
aligner, by efficiently exploiting the resources in a cluster,
while preserving the sensitivity (accuracy) of the single-
node mapping process.

Figure 5 reports the speed-ups attained with the
framework configured to execute the first stage only, using
the selected DNA aligners and up to 12 nodes (with
16 threads per node). Figures 6 and 7 offer the results
for an analogous experiment with the RNA aligners and
the R10M0.1 and R80MO.1 datasets, respectivelly. In all
executions in this section, the aligners were invoked from
the framework with the command line parameters listed
in Table 2. Moreover, unless otherwise stated, the parallel
read of the input dataset and the concurrent merge were not
enabled (see subsection 4.4).

10

T
Cushaw3 —x—
Cushaw2-GPU —+—
Bowtie2 —¥—
8 - HPG Aligner DNA SA q

Speed-up

#Nodes

Figure 5. Speed-up for the first stage of the generic-aligner
framework invoked to apply the DNA aligners to D40M.

Let us focus on the results reported for the RNA-seq
problem in Figure 6. (The trends shown in the figure for
DNA-seq and the motivation are similar.) The results when
the framework executes the RNA-aligners show a moderate
speed-up for MapSplice 2 and Tophat 2, but scarcely any for
STAR and the HPG Aligner variants. In order to determine
whether this was a problem of scale, we ran the framework
with STAR and HPG Aligner on R80MO0 . 1. Unfortunately,
Figure 7 reveals that, even with this much larger dataset, the
speed-ups were nearly nonexistent.

Prepared using sagej.cls

10

T
MapSplice2 —x—
Tophat2 —+—
HPG Aligner RNA BWT
8 - HPG Aligner RNA SA b
STAR —%—

Speed-up

#Nodes

Figure 6. Speed-up for the first stage of the generic-aligner
framework invoked to apply the RNA aligners to R10MO . 1.
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Figure 7. Speed-up for the first stage of the generic-aligner
framework invoked to apply the RNA aligners to R80MO . 1.

To gain some insight on why these aligners present such
a poor scalability, when embedded into the framework, we
conducted a finer-grain time analysis of HPG Aligner RNA
BWT. The break down of costs considered four phases:
split-and-copy of the input dataset into one file per worker,
load of the index, mapping, and merge of the results. In
addition, the experiment was run on one and 12 nodes.
Table 4 reveals that the mapping time was reduced from
478.38 s on one node to 37.36 s on 12 nodes, which in turn
raised the cost of splitting the input and merging the results
to become over 66% of the total execution time for the 12-
node execution. This clearly indicates that these two phases
must be improved if any significant speed-up is to be gained
when the faster aligners are invoked from the framework.

This is indeed the purpose of the enhancements described
in subsection 4.4. Concretely, the framework offers options
to optimize the input file distribution as well as to merge the
results while they are generated, mimicking the behaviour
of MPI HPG Aligner RNA BWT.

The speed-ups obtained by the framework, with the two
aforementioned options active, using STAR and the HPG
Aligner variants, are given in Figure 8. The plot there shows
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Table 4. Execution time (in seconds) for the first stage of the generic-aligner framework invoked to apply HPG Aligner RNA BWT
to R80MO . 1, using one and 12 nodes. The numbers inside parenthesis indicate the percentage of the total cost.

#Nodes  Split input Index load Mapping Merge results  Total time
1 - 1495 (3%) 478.38 (97%) - 493.33
12 55.2537.4%) 12.67 (8.6%) 37.36(25.3%) 42.41(28.7%) 147.69

a significant increase of the speed-ups for the enhanced
framework compared with the meager results in Figure 7
(disabled optimizations). Interestingly, the framework with
these options activated for HPG Aligner RNA BWT and
the MPI HPG Aligner RNA BWT itself now offer similar
scalability patterns. This is a positive sign as it indicates
that the framework delivers a performance that is close to
that obtained with a strongly-coupled solution.

After these changes, we believe that the bottleneck was
shifted to the index load phase, which we found comparable
in cost to the processing time when HPG Aligner RNA SA
and STAR are applied in the first stage of the framework,
using 12 nodes, with the optimizations enabled.
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Figure 8. Speed-up for the first stage of the generic-aligner
framework, with optimized input file distribution and overlapped
merge, invoked to apply the RNA aligners to R80MO . 1.

5.3 Sensitivity

We next discuss the accuracy of the alignment framework.
A potential concern when performing the mapping on a
cluster system is that, by distributing the work among
several nodes/processes, a certain degree of sensitivity may
be lost, because the nodes work independently of each
other, with local information, during most of the time. The
merge process at the end of the first stage aims to tackle
this issue by compiling the local information learned from
each stage and broadcasting that to all nodes. On the other
hand, we can expect that the combination/invocation of
two different aligners (or the same aligner with different
options) from the framework may improve the sensitivity
and/or reduce the cost of the process.
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Table 5 shows the sensitivity and execution time of
the generic-alignment framework, applied to a DNA-seq
problem, on one and four nodes. (The sensitivity did not
differ significantly for a larger number of nodes.) These
results show that, for all the invoked DNA aligners, the
percentage of mapped and correct reads is maintained when
executed on four nodes, but the execution time is reduced.
A second stage is pointless in this case, as virtually all the
reads are reported as mapped by the first one.

Table 6 shows the sensitivity of the alignment
framework, applied to an RNA-seq problem, on one and
four nodes. The following four RNA aligners were invoked
in the first stage: HPG Aligner RNA BWT, MapSplice 2,
STAR, and TopHat 2; and HPG Aligner RNA BWT,
MapSplice 2, and STAR were next applied to complete the
process in the second stage. For this particular experiment,
we employed the R10M2.0 dataset. The reason to target
this case was to “enforce” a lower number of successful
mappings during the first stage, in order to highlight the
effects of the refinement (second) stage.

Table 6a displays the accuracy rates obtained from a
single-node execution with and without the second stage
in place. The outcome from this experiment exposes the
benefits of applying the refinement stage, showing gains,
most of them important, in the percentage of correct
reads for all the combinations. The slight decrease in the
percentage of mapped reads when refining the initial results
from STAR occurs because this particular aligner reports a
number of reads as successfully mapped, but with a very
low confidence. The framework re-visits (rescues) these
low-confidence mapped reads, and decides whether they
are actually mapped depending on the criteria defined by
the aligner applied in the second stage. This particular case
unveils that the criteria integrated in HPG Aligner RNA
BWT and in MapSplice 2 to declare a successful mapping
are more restrictive than that employed by STAR.

Table 6b offers the outcome from the analogous
experiment using four nodes, showing similar result to
those already discussed in the single-node evaluation: when
the refinement stage is applied, the rates of correct reads
are increased in all cases. The decrease in the percentage of
mapped reads when STAR is applied during the first stage is
again due to the reevaluation by HPG Aligner RNA BWT
and MapSplice 2 of those reads mapped with a very low
confidence.
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Table 5. Sensitivity and execution time (in seconds) of the generic-aligner framework invoked to apply the DNA aligners to

D4 0M, with one and four nodes.

One node Four nodes
Mapper 9%Mapped  %Correct Time %Mapped %Correct Time
Bowtie 2 99.12 94.65 732 99.12 94.65 258
Cushaw2-GPU 99.94 90.09 926 99.94 90.09 293
Cushaw3 100.00 92.69 2146 100.00 92.69 647
HPG Aligner DNA SA 99.91 98.74 367 99.91 98.74 175

Table 6. Sensitivity of the generic-aligner framework invoked to apply the RNA aligners to R10M2 . 0, with and without a second

stage via HPG Aligner RNA BWT, MapSplice 2, and STAR.

a) Single-node

multi-thread

Without second phase

With second phase

HPG Aligner MapSplice 2 STAR
Mapper 9oMapped  %Correct %Mapped %Correct %Mapped %Correct %Mapped %Correct
HPG Aligner 99.00 93.25 — — 99.72 93.68 99.70 93.70
MapSplice 2 98.50 92.05 99.42 94.05 — — 99.40 93.50
STAR 98.86 82.38 98.64 88.62 98.59 87.69 — —
TopHat 2 63.86 63.26 99.07 95.35 98.86 91.53 99.01 89.18

b) 4 nodes multi-thread

Without second phase With second phase

HPG Aligner MapSplice 2 STAR
Mapper 9%Mapped  %Correct %Mapped “%Correct %Mapped %Correct %Mapped %Correct
HPG Aligner 98.97 93.12 — — 99.71 93.56 99.70 93.61
MapSplice 2 98.45 90.74 99.38 93.37 — — 99.35 92.70
STAR 98.86 82.38 98.64 88.68 98.56 87.08 — —
TopHat 2 63.69 63.01 99.06 95.26 98.79 89.18 99.01 89.00

Comparing the results obtained with one and four
nodes, in Table 6a and b respectively, the percentage
of mapped/correct reads is almost the same for both
configurations.

As for the increase of execution time due to the
introduction of the second stage, Table 7 displays the
execution time obtained from single-node and 4-node
executions with and without the second stage via HPG
Aligner RNA BWT. In this case, the increase of time
due to the usage of HPG Aligner RNA BWT as a
second stage is perfectly acceptable both in the single-
node and in the 4-node scenarios. Furthermore, the speed-
ups attained by the 4-node execution are significant for
MapSplice 2 and TopHat 2, although much lower for
STAR. The reason is that, for this particular experiment, the
optimized file distribution and overlapped merge were not
enabled, producing an increase in the execution time of the
alignment framework that is especially visible for STAR.
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6 Conclusions

We have presented a generic-aligner framework to
accelerate DNA-seq and RNA-seq analysis on clusters. Our
solution actually implements an execution skeleton which
can accommodate a number of existing aligners in any of
its two stages. In this design, the framework takes care of
the multi-node aspects of the execution (partitioning and
distributing work and data, synchronizing the processes
running at each node, collecting the intermediate and final
results, etc.). The selected aligners, on the other hand,
potentially exploit the hardware resources internal to each
node (e.g., multicore processors and/or GPUs), unaware of
the collaborative work being performed. The framework has
been successfully validated by running it with a number of
single-node multi-threaded state-of-the-art aligners, which
did not require any modification of their code.

The experiments with our alignment framework show
that this approach can be efficiently applied to enhance
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Table 7. Execution time (in seconds) of the generic-aligner framework invoked to apply the RNA aligners to R10M2 .0, on a
single-node multi-thread and on 4 nodes multi-thread, with and without a second stage via HPG Aligner RNA BWT.

Single-node multi-thread

4 nodes multi-thread

Mapper One phase Two phases One phase Two phases
MapSplice 2 1299 1343 436 451
STAR 79 165 69 87
TopHat 2 2163 2275 856 892

the sensitivity of the mapping process by accommodating
a second stage that refines those reads which could not
be aligned with high confidence by the aligner applied
in the first stage. Furthermore, by activating optimization
techniques similar to those available in our MPI HPG
Aligner RNA BWT, we demonstrate that the framework
can match the performance of a strongly-coupled parallel
solution. Finally, the experimentation shows that the
parallel operation of the framework on several nodes does
not impair the sensitivity, and reduces the execution time.
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