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Abstract In this paper, a novel integral equation formulation expressed in the spatial domain is
proposed for the analysis of rectangular waveguide step discontinuities. The important novelty of the
proposed formulation is that which allows to easily take into account the electrical influence of a given
number of arbitrarily shaped conducting and dielectric posts placed close to the waveguide discontinuity.
For the sake of simplicity, and without loss of generality, the presented integral equation has been
particularized and solved for inductive rectangular waveguide geometry. In this case, the integral equation
mixed-potentials kernel is written in terms of parallel plate Green’s functions with an additional ground
plane located on the waveguide step. Therefore, the unknowns of the problem are reduced to an equivalent
magnetic surface current on the step aperture and equivalent magnetic and electric surface currents on
the dielectric and conducting posts close to the discontinuity. The numerical solution of the final integral
equation is efficiently computed after the application of acceleration techniques for the slowly convergent
series representing the Green’s functions of the problem. The numerical method has been validated through
several simulation examples of practical microwave devices, including compact size band-pass cavity filters
and coupled dielectric resonators filters. The results have been compared to those provided by commercial
full-wave electromagnetic simulation software packages, showing in all cases a very good agreement, and
with substantially enhanced numerical efficiencies.

1. Introduction

An efficient analysis and electrical characterization of waveguide discontinuities (Marcuvitz, 1964) is a
paramount requirement for the electromagnetic characterization of passive components, and for the design
of a wide class of microwave devices such as filters, multiplexers, power dividers, and combiners (Mrvic et al.,
2016). Most of these devices are built as a concatenation of different waveguides and cavity sections, which
are connected through waveguide discontinuities. This is the main motivation that drives the microwave
engineering community to develop new techniques specially tailored for the analysis of waveguide disconti-
nuities. Some of these numerical methods are quite general such as Finite Elements (Salazar Palma et al., 1998)
or Finite Differences in Time Domain (FDTD) (Peterson et al., 1998a). Besides the characterization of waveguide
discontinuities, these general techniques cover the analysis of a wide range of different types of practi-
cal microwave structures, at the expense of losing computational efficiency. On the other hand, full-wave
techniques such as those based on modal methods or integral equations (Arcioni et al., 1997; Guglielmi &
Newport, 1990) are very fast and require lower computational costs. Among these techniques, those based
on mode-matching formulations have shown to be very efficient in the characterization of waveguide steps
(Catina et al., 2005; Mohsen & Kian, 2017). Nevertheless, the previous methods are limited to the analysis
of canonical geometries or has serious difficulties when dealing with arbitrarily shaped conducting and/or
dielectric bodies close to the waveguide discontinuity under study.

An alternative technique to these previous techniques is the integral equation formulated in the spatial
domain (Perez Soler et al., 2007; Quesada Pereira et al., 2006, 2011). The advantage of this technique is that
it can treat more general structures composed of complex-shaped metallic posts or homogeneous material
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bodies, once the relevant Green’s functions of the problem are efficiently computed in the spatial domain.
However, in these previous contributions waveguide steps and coupling windows are treated as general
metallic objects. This imposed an important limitation to the waveguide components that could be treated
with such formulations. In fact, the whole structure was limited to be confined into a single waveguide region,
containing inside the rest of metallic posts or homogeneous material bodies.

With the previous considerations in mind, a novel integral equation formulation for the analysis of waveg-
uide discontinuities is presented in this paper. The main contribution with respect to these previous works
is that the waveguide discontinuity is not treated as a general metallic object. Instead, the discontinuity is
treated as an aperture problem. The main advantage of this approach is that it introduces increased flexibil-
ity in the structures that can be treated. In fact, the formulation of the discontinuity as an aperture problem
allows the separation of the whole structure in two different simpler problems. Consequently, two different
waveguide regions, which can be arbitrarily configured, can be effectively connected to compose a very gen-
eral microwave device. Note that this ability to connect two different and very complex structures was not
possible with the two previously cited works.

The proposed numerical method represents a compromise between the aforementioned general and spe-
cialized analysis techniques. The proposed formulation is quite general, in the sense that it allows the
electromagnetic characterization of a wide range of complex waveguide discontinuities, that involve an arbi-
trary number of complex-shaped conducting and/or homogenous objects in their vicinity. However, the use
of specialized waveguide Green’s functions in the kernel of the integral equation is able to effectively reduce
the unknowns of the problem and keep high efficiency in the full-wave analysis of the structures under study.
The proposed integral equation formulation could be adapted to different kinds of waveguide discontinuities.
Nevertheless, for the sake of simplicity, in this work the formulation has been particularized to the study of
only rectangular waveguide inductive step discontinuities that are considered to be invariant over one dimen-
sion, leaving for a future research the analysis of the capacitive and two-dimensional cases. In this situation,
the original integral equation formulation written in terms of surface integrals is reduced to a contour inte-
gral equation formulation. Many works can be found in the technical literature dealing with contour integral
equations, such as Stumpf and Leone (2009), Wei et al. (2008), and Zhao et al. (2014), where power-ground
planes connected to electronic packages are efficiently analyzed. However, the kind of studied problems
and the integral equation implementation in this work are different. The integral equation formulation could
also be applied to the analysis of waveguide steps including arbitrarily shaped inhomogeneous dielectric
obstacles modeled by means of a Volume Integral Equation formulations (Hu et al., 2016).

This work is organized as follows. First, the general type of problem (an inductive step discontinuity with
arbitrarily shaped conducting and homogenous material posts on each side) to be solved in this paper, is
described. Then, the procedure employed for obtaining a system of integral equations that characterizes the
structure under analysis is outlined. This procedure is based on dividing the original structure into different
equivalent problems after the application of the Surface Equivalent Principle, and then enforcing appropriate
boundary conditions. Details on the Green’s functions, used in the kernel of the formulated integral equations,
are provided in a specific subsection. After that, some comments on how the resulting integral equation is
efficiently solved by the Method of Moments (MoM) are included. Next, special attention will be paid to the
particular expressions for computing the scattering parameters of a given structure using this integral novel
equation formulation. After the theoretical aspects have been carefully discussed, some validation examples
are presented in order to check the utility and computational efficiency of the proposed integral equation.
Finally, some conclusions are provided and future research work on this topic is also proposed.

2. Integral Equation Formulation

In this section, the novel integral equation formulation used for the analysis of rectangular waveguide dis-
continuities is summarized. For the sake of simplicity, the integral equation is particularized for the study
of inductive step discontinuities, considering the geometry of the problem to be invariant along the y axis,
whose widths are a1 and a2, as shown in Figure 1. Due to the inductive nature of the considered structure, the
excitation, the electromagnetic fields, and unknowns do not change along one dimension, in our particular
case the y axis, reducing a 3-D problem to a 2-D one. Despite this simplification, the implemented technique
can be used for the design of practical inductive waveguide components, commonly used in satellite applica-
tions (Cameron et al., 2007). Although the integral equation formulation could be applied to more general step
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Figure 1. Original problem, invariant along the y axis, showing an inductive step discontinuity between two rectangular
waveguides with different widths (a1, a2). An arbitrarily shaped conducting and dielectric post ((𝜖d1

, 𝜇d1
) in waveguide

1, and (𝜖d2
, 𝜇d2

) in waveguide 2) are placed inside each rectangular waveguide.

geometry, this fact allows a simpler and faster numerical solution of the problem. An unlimited number of arbi-
trarily shaped conducting and/or homogeneous material bodies could be considered inside each waveguide.
Nevertheless, without loss of generality, the equations will be written for a sample configuration with only
a homogeneous object and a conducting post placed on each side of the discontinuity, as represented
in Figure 1.

In this waveguide structure it is assumed that the excitation will be the fundamental mode (TE10) of the input
rectangular waveguide 1, filled with a homogeneous and isotropic medium 1 (𝜖1, 𝜇1), and traveling along
the z axis toward the discontinuity. As shown in Figure 1, this mode impinges on a homogenous body with
constitutive parameters (𝜖d1

, 𝜇d1
), a perfect electric-conducting body (𝜎 = ∞) and the waveguide step discon-

tinuity. Through the aperture formed by this inductive discontinuity, the electromagnetic fields are coupled
to the output waveguide, where another homogeneous material body (𝜖d2

, 𝜇d2
) and a perfect electric con-

ductor post are placed inside. In this last case, the output waveguide is filled with homogeneous constitutive
parameters (𝜖2, 𝜇2).

In order to study the electrical response of the structure shown in Figure 1, we propose to employ an efficient
integral equation formulation. The first step for writing this integral equation will be to split the aforemen-
tioned original problem into two coupled equivalent ones. The first equivalent problem corresponds to the
input waveguide 1, as can be seen in Figure 2.

For this problem, the conducting post is replaced by an induced surface electric current density, namely, J⃗C1
,

whereas surface equivalent electric and magnetic current densities, J⃗d1
and M⃗d1

, substitute the homogeneous
material body placed inside this input waveguide. In both cases, the inner region of the arbitrarily shaped
bodies is filled with the constitutive parameters corresponding to medium 1 (𝜖1, 𝜇1), while the electromag-
netic fields are assumed to be null inside those regions (E⃗ = 0, H⃗ = 0). Moreover, an infinite ground plane
located at the discontinuity between waveguides, namely, at z = 0 from now on, is used in order to sepa-
rate the two equivalent problems. At this ground plane, in the aperture formed by the step discontinuity, an
equivalent surface magnetic current density M⃗ap is employed to couple the integral equations formulated for
each waveguide region. It is very important to note that the excitation of the original problem, which is the
fundamental TE(1)

10 mode in waveguide1, is no longer valid for the equivalent problem corresponding to the
input waveguide. This is because the nullity of the tangential component of the electric field to the ground
plane at the interface z = 0 will not be automatically fulfilled.

Therefore, the excitation is modified by the addition of its electrical image E⃗i
imag with respect to the infinite

ground plane at z = 0. This image will be a TE10 mode traveling backward to the input port, but with an
opposite sign. This last wave, together with the original excitation, could be considered as a standing wave
(E⃗i

eq, H⃗i
eq) inside the input waveguide problem. Finally, the electrical influence of the rectangular waveguide

side walls will be taken into account in the kernel of the proposed integral equation formulation, by means of
the well-known parallel plate Green’s functions with width a1.

A second equivalent problem is now formulated for the region corresponding to the output waveguide (see
Figure 3), following a similar procedure to that one of the input waveguides. In this case, the homogenous
body (𝜖d2

, 𝜇d2
) is replaced by surface equivalent electric J⃗d2

and magnetic M⃗d2
currents, whereas the conductor
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Figure 2. Equivalent problem 1 corresponding to the input rectangular waveguide 1.

is modeled by the induced surface electric current J⃗C2
on its contour. As before, the inner region of the homo-

geneous and conducting bodies is filled with the medium of waveguide 2 (𝜖2, 𝜇2), since the electromagnetic
fields are null inside (E⃗ = 0, H⃗ = 0). The integral equation excitation does not explicitly appear in this second
equivalent problem, since the excitation mode is launched in waveguide1. Both equivalent problems are cou-
pled to each other by means of the surface equivalent magnetic current M⃗ap defined on the discontinuity
aperture. Finally, the imposition of the boundary conditions at the walls of the output waveguide is achieved
by using in the kernel of the integral equation the parallel plate Green’s functions with width a2 (see Figure 3).

Figure 3. Equivalent problem 2 corresponding to the output rectangular waveguide 2.
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Figure 4. Inner equivalent problem 3 corresponding
to the arbitrarily shaped dielectric post inside waveguide 1.

The electromagnetic characterization of the homogenous material objects inside the
input and output waveguides, after the application of the Surface Equivalence Principle
(Balanis, 1989), requires an additional internal equivalent problem for both of them.
In Figure 4 this internal equivalent problem is depicted, corresponding to the mate-
rial body inside the input waveguide. In this problem, the whole space surrounding
the homogenous body is replaced by an unbounded medium of constitutive param-
eters equal to those filling the inner part of the object (𝜖d1

, 𝜇d1
). In the external

region, the electromagnetic fields are assumed to be null for this equivalent problem
(E⃗ = 0, H⃗ = 0). Finally, enforcing the continuity of the electric and magnetic fields, tan-
gent to the homogeneous body contour, this internal equivalent problem is coupled
to the previously described ones. A similar procedure will be followed for the internal
equivalent problem of the homogenous post inside the output waveguide.

Once the different equivalent problems used for the electromagnetic analysis of the given sample structure
have been described, the next step is to write the whole system of coupled integral equations that will allow
to compute the electrical response, after that their solution will be found by the application of the well-known
MoM. Three integral equations are written for the equivalent problem corresponding to each input and output
rectangular waveguide. One of them is an Electric Field Integral Equation that enforces the nullity of the total
tangential electric field on the surface SC1

and SC2
of the arbitrarily shaped conducting posts. The homoge-

nous material bodies after the application of the Surface Equivalence Principle require two additional coupled
integral equations, enforcing the continuity of the tangential electric and magnetic fields components across
their contours Sd1

and Sd2
(also called PMCHWT choice, Poggio & Miller, 1973). Finally, the two waveguide

equivalent problems are coupled by means of an additional integral equation that imposes the continuity of
the magnetic field components, which are tangent to the aperture surface Sap on the step discontinuity. Tak-
ing into account these considerations, the full system of integral equations for the analysis of the structure
depicted in Figure 1 can be written as

n̂C1
×
(

E⃗i
eq + E⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap)
)

= 0, On SC1

n̂d1
×
(

E⃗i
eq + E⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap)
)

= n̂d1
× E⃗s

int1
(−J⃗d1

,−M⃗d1
), On Sd1

n̂d1
×
(

H⃗i
eq + H⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap)
)

= n̂d1
× H⃗s

int1
(−J⃗d1

,−M⃗d1
), On Sd1

(1)

for the equivalent problem inside the input waveguide,

n̂ap1
×
(

H⃗i
eq + H⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap)
)

= n̂ap2
× H⃗s

PPW2
(J⃗C2

, J⃗d2
, M⃗d2

, M⃗ap), On Sap (2)

for connecting the two waveguide problems through the aperture, and

n̂C2
× E⃗s

PPW2
(J⃗C2

, J⃗d2
, M⃗d2

, M⃗ap) = 0, On SC2

n̂d2
× E⃗s

PPW2
(J⃗C2

, J⃗d2
, M⃗d2

, M⃗ap) = n̂d2
× E⃗s

int2
(−J⃗d2

,−M⃗d2
), On Sd2

n̂d2
× H⃗s

PPW2
(J⃗C2

, J⃗d2
, M⃗d2

, M⃗ap) = n̂d2
× H⃗s

int2
(−J⃗d2

,−M⃗d2
), On Sd2

(3)

for the equivalent problem inside the output waveguide.

In equations (1)–(3), the terms E⃗s
PPW1

, H⃗s
PPW1

, E⃗s
PPW2

, and H⃗s
PPW2

represent the scattered electric and magnetic
fields inside the input and output waveguides 1 and 2. The subindex PPW indicates that the scattered fields
will be evaluated by means of auxiliary potentials, expressed in terms of the parallel plate Green’s functions
corresponding to each rectangular waveguide. On the other hand, E⃗s

int1
, H⃗s

int1
, E⃗s

int2
and H⃗s

int2
are the scattered

electric and magnetic fields inside the homogenous material objects, placed respectively in the input and
output waveguides. These scattered fields are computed after the application of the Surface Equivalence Prin-
ciple by means of auxiliary potentials, whose kernel is the free space Green’s functions of unbounded media
with constitutive parameters (𝜖d1

, 𝜇d1
) and (𝜖d2

, 𝜇d2
), respectively. The remaining fields E⃗i

eq and H⃗i
eq are, respec-

tively, the electric and magnetic standing waves that model the integral equation excitation produced by the
input rectangular waveguide fundamental mode TE(1)

10 .
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The electric and magnetic fields in the integral equation formulation are written in the spatial domain using
a mixed-potentials form, following these mathematical expressions,

E⃗s
PPWq

(xq, z) = −j𝜔A⃗PPWq

(
J⃗Cq

(x′q, z′)
)
− j𝜔A⃗PPWq

(
J⃗dq

(x′q, z′)
)

− 1
𝜖q
∇ × F⃗PPWq

(
M⃗dq

(x′q, z′)
)
− 1

𝜖q
∇ × F⃗PPWq

(
M⃗ap(x′q, z′)

)
H⃗s

PPWq
(xq, z) = 1

𝜇q
∇ × A⃗PPWq

(
J⃗Cq

(x′q, z′)
)
+ 1

𝜇q
∇ × A⃗PPWq

(
J⃗dq

(x′q, z′)
)

− j𝜔F⃗PPWq

(
M⃗dq

(x′q, z′)
)
− ∇ΦmPPWq

(
M⃗dq

(x′q, z′)
)

− j𝜔F⃗PPWq

(
M⃗ap(x′q, z′)

)
− ∇ΦmPPWq

(
M⃗ap(x′q, z′)

)
E⃗s

intq
(xq, z) = −j𝜔A⃗intq

(
− J⃗dq

(x′q, z′)
)
− 1

𝜖dq

∇ × F⃗intq

(
− M⃗dq

(x′q, z′)
)

H⃗s
intq

(xq, z) = 1
𝜇dq

∇ × A⃗intq

(
− J⃗dq

(x′q, z′)
)

− j𝜔F⃗intq

(
− M⃗dq

(x′q, z′)
)
− ∇Φmintq

(
− M⃗dq

(x′q, z′)
)

(4)

The different potential functions can be written in terms of the Green’s functions corresponding to the
equivalent problems, as indicated next

A⃗PPWq

(
J⃗(x′q, z′)

)
= ∫S

GAPPWq
(xq, x′q, z, z′) ⋅ J⃗(x′q, z′)dC′ (5)

Equation (5) is the magnetic vector potential evaluated at observation coordinates (xq, z) (on Sap, SCq
, or Sdq

).

The source is an equivalent electric surface current J⃗(x′q, z′) distributed on SCq
or Sdq

, corresponding to the
conducting or homogenous objects (primed spatial variables are used to denote the position of the source).
It is important to note that the integral equation formulation has been written for a general problem that
involves surface integrals. However, in our particular case, due to the inductive symmetry of the proposed
examples, which are invariant along the y axis, the surface integrals are reduced to contour integrals. The
kernel of the associated integral equation is formed with the magnetic vector potential dyadic Green’s func-

tion GAPPWq
(xq, x′q, z, z′) of a parallel plate waveguide terminated on a ground plane at z = 0. In all terms, the

subindex q represents which rectangular waveguide is considered (q = 1 for input waveguide, and q = 2 for
output waveguide).

Following a similar notation, we can write the electric vector potential produced by magnetic currents
as follows,

F⃗PPWq

(
M⃗(x′q, z′)

)
= ∫S

GFPPWq
(xq, x′q, z, z′) ⋅ M⃗(x′q, z′)dC′ (6)

The kernel of the corresponding integral equation is the electric vector potential dyadic Green’s function

GFPPWq
(xq, x′q, z, z′) of a parallel plate waveguide that ended in a short circuit at z = 0. In this expres-

sion, the source M⃗(x′q, z′) is the equivalent magnetic current source density on the step aperture or on the
homogeneous material posts contour.

Finally, the magnetic scalar potential produced by magnetic charges can also be computed using the
magnetic scalar potential Green’s function GWPPWq

(xq, x′q, z, z′), as

ΦmPPWq

(
M⃗(x′q, z′)

)
= ∫S

GWPPWq
(xq, x′q, z, z′)

∇ ⋅ M⃗(x′q, z′)
−j𝜔

dC′ . (7)

In this case the Green’s function is also computed inside a parallel plate region terminated in the ground plane
placed at z = 0. The continuity equation has been used in equation (7) in order to write the magnetic charge
density as a function of the surface magnetic current density M⃗(x′q, z′).
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Table 1
Parallel Plate Green’s Functions Components Needed in the
Analysis of the Inductive Step Problem Studied in This Paper

− 𝜉q gn fn

Gyy
APPWo

𝜇q sin(kxq
xq) sin(kxq

x′q)

Gxx
FPPWo

𝜀q sin(kxq
xq) sin(kxq

x′q)

Gzz
FPPWo

𝜀q cos(kxq
xq) cos(kxq

x′q)

GWPPWo
1/𝜇q cos(kxq

xq) cos(kxq
x′q)

Note. Since electric and/or magnetic sources are employed to
represent material bodies, the conducting posts, and the dis-
continuity aperture, we need both types of Green’s functions.

For the inner equivalent problem of the homogenous material objects, the poten-
tial functions A⃗intq

(
J⃗(x′q, z′)

)
, F⃗intq

(
M⃗(x′q, z′)

)
, and Φmintq

(
M⃗(x′q, z′)

)
are written

as A⃗PPWq

(
J⃗(x′q, z′)

)
, F⃗PPWq

(
M⃗(x′q, z′)

)
, and ΦmPPWq

(
M⃗(x′q, z′)

)
in equations (5)–(7).

Nevertheless, in this situation, this equivalent problem corresponds to an unbounded
homogenous medium with constitutive parameters 𝜖dq

and 𝜇dq
(permittivity and

permeability of the homogeneous material body inside the rectangular waveguide
q). Therefore, the kernel of the associated integral equation is written in terms of
simple two-dimensional free space Green’s functions in the corresponding medium

(Peterson et al., 1998b). This means replacing GAPPWq
(xq, x′q, z, z′), GFPPWq

(xq, x′q, z, z′),
and GWPPWq

(xq, x′q, z, z′), by GAintq
(𝜌q, 𝜌

′
q), GFintq

(𝜌q, 𝜌
′
q), and GWintq

(𝜌q, 𝜌
′
q), respectively.

The expressions of these Green’s functions are detailed in the next section.

2.1. Green’s Functions of the Equivalent Problems
In this section, the Green’s functions needed for the evaluation of the different poten-
tials of the derived integral equation formulation, are collected. First, the components

of the dyadic parallel plate Green’s function potentials, required for the solution of the system of integral
equations, under the assumption that the geometry of the problem has inductive geometry, are described.
Moreover, the magnetic scalar potential Green’s function for the external equivalent problem in the input and
output waveguides is also introduced. Second, the described parallel plate Green’s functions are combined
with a space image in order to take into account the infinite ground plane that split the original problem into
the two different waveguide regions. At the end of the section, the two-dimensional free space Green’s func-
tions used for the equivalent problem inside the homogeneous material posts are also given, for the sake of
completeness.

Although the integral equation is written in the spatial domain, the parallel plate Green’s functions can be
formulated either in the spectral or in the spatial domains (Capolino et al., 2005). In the spectral domain, the
following series of modal functions are obtained for the parallel plate Green’s functions with width aq

GPPWo
(xq, x′q, z, z′) =

𝜉q

2aq

∞∑
n=0

en fn(kxq
x′q) gn(kxq

xq)
e−jkzq

(z−z′)

jkzq

kzq
=
√

k2
q − k2

xq
, kxq

= n𝜋
aq

(8)

where the term en =
{

1 n = 0
2 n ≠ 0

, fn and gn are trigonometric functions, and 𝜉q is a constant that depends

on the constitutive parameters of the waveguide medium. Also, kzq
is the longitudinal wave number that

depends on the medium that fills the corresponding waveguide through kq = 𝜔
√
𝜀q𝜇q. In Table 1 we list all

Green’s functions components needed in the analysis of dielectric and/or magnetic posts.

After taking into account the influence of the perfect electric conductor ground plane at z = 0 by image
theory, the final expressions for the external equivalent problems Green’s function components in waveguide
regions 1 and 2 can be written as follows:

Gyy
APPWq

(xq, x′q, z, z′) = Gyy
APPWo

(xq, x′q, z, z′) − Gyy
APPWo

(xq, x′q, z,−z′)

Gxx
FPPWq

(xq, x′q, z, z′) = Gxx
FPPWo

(xq, x′q, z, z′) + Gxx
FPPWo

(xq, x′q, z,−z′)

Gzz
FPPWq

(xq, x′q, z, z′) = Gzz
FPPWo

(xq, x′q, z, z′) − Gzz
FPPWo

(xq, x′q, z,−z′)

GWPPWq
(xq, x′q, z, z′) = GWPPWo

(xq, x′q, z, z′) + GWPPWo
(xq, x′q, z,−z′)

(9)

The Green’s functions for the internal equivalent problem inside the homogenous material objects are those
corresponding to a free space two-dimensional problem filled with the constitutive parameters (𝜖dq

, 𝜇dq
).
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Hence, these Green’s functions are written in terms of second-kind zero-order Hankel functions as (Peterson
et al., 1998b),

Gint(𝜌q, 𝜌
′
q) =

𝜉q

4j
H(2)

0

(
kdq

|𝜌q − 𝜌′q|) (10)

being kdq
= 𝜔

√
𝜀dq

𝜇dq
, and 𝜉 = 𝜇dq

for GAintq
, 𝜉q = 𝜀dq

for GFintq
, and 𝜉 = 1∕𝜇dq

for GWintq
. Also, |𝜌q − 𝜌′q| =√

(xq − x′q)2 + (z − z′)2 is the distance between source (x′q, z′) and observation points (xq, z) in the inner

equivalent problem (see Figure 4).

As can be seen in the relations between the electromagnetic fields and auxiliary potentials, given in
equation (4), several differential operators are applied to the potential functions. These operators require the
evaluation of spatial derivatives of the presented Green’s functions. For the sake of space, the expressions of
these Green’s functions derivatives have not been included in this section, but they can be easily derived with
the provided information.

2.2. Integral Equation Solution by the MoM
The system of integral equations outlined in section 2 is solved by the well-known MoM. In our particular
implementation we have selected a Galerkin’s approach with the same set of subsectional basis and testing
functions (Harrington, 1968). An important simplification when dealing with inductive waveguide problems is
that the unknown currents are distributed on the contours of the objects. Then, simple triangular subsectional
basis and test functions, defined on the contours of the objects, give a robust implementation.

It is very important to note that, in order to achieve an efficient numerical implementation of the MoM solu-
tion, one has to compute the parallel plate Green’s functions and their spatial derivatives in a fast way, since
they are the key elements of the integral equation kernel. These Green’s functions are represented, either in
the spectral or in the spatial domains, as slowly convergent infinite series. In order to accelerate the evalua-
tion of these series, different summation techniques proposed in the scientific literature can be applied, such
as the Ewald Method (Capolino et al., 2005), the Kummer Transformation (Quesada Pereira et al., 2007), or
other variations (Fructos et al., 2008). Nevertheless, this paper is not focused on the study of these acceler-
ation procedures, but on the formulation of the integral equation for the analysis of rectangular waveguide
discontinuities. In any case, we have chosen the Kummer Transformation as the acceleration technique for
computing the parallel plate Green’s functions, obtaining a good numerical performance. An efficient and
optimal computational implementation of this integral equation yields to a very competitive alternative with
respect to the use of commercial software tools such as HFSS, CST, or other numerical methods based on finite
elements (Salazar Palma et al., 1998) or FDTD techniques (Peterson et al., 1998a). The main benefits of the pro-
posed integral equation technique compared to other alternatives, are the limitation of the unknowns of the
problem to the step discontinuity and to the contour of the arbitrarily shaped conducting and/or homoge-
nous material objects inside the input/output rectangular waveguides. In fact, as shown in this paper, the rest
of the problem and boundary conditions are taken into account by the formulated Green’s functions.

2.3. Evaluation of the Scattering Parameters
Once the system of integral equations is solved by MoM, the last step is a postprocessing stage, employed to
extract useful data from the numerical analysis of the structure under study. Interesting electrical parameters
are the power response through the scattering parameters, or the evaluation of the electromagnetic fields in
the whole structure. In this subsection we pay attention to the special procedure followed to compute the
scattering parameters, being the computation of the electromagnetic fields useful to implement advanced
design techniques, or for the study of power handling capabilities of the devices, which are out of the scope
of this paper.

For the evaluation of the reflection coefficient (S11), corresponding to the input waveguide fundamental mode
TE (1)

10 , one has to compute the ratio between the reflected and incident electric field E⃗i at port 1. It is very
important to note that in the equivalent problem 1, the total reflected electric field is computed as the addi-
tion of two different contributions, namely, the electric field scattered by the surface equivalent electric and
magnetic currents E⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap), and the image of the exciting electric field (E⃗i
imag), traveling back-

ward (see Figure 2). Moreover, since we are mainly interested in computing the power response with respect
to the fundamental rectangular waveguide mode, one has to compute the line integral, along the port 1 cross
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Figure 5. Step discontinuity with 0 mm offset. Dimensions in mm are a1 = 22.86, a2 = 16, constitutive parameters are
𝜖1 = 𝜖2 = 𝜖0, 𝜇1 = 𝜇2 = 𝜇0.

section (Sp1, see Figure 2), of the reflected electric field projected onto the normalized vector modal function
e⃗ (1)

10 corresponding to the input rectangular waveguide mode TE (1)
10 , as shown next

S11 =
∫Sp1

(
E⃗s

PPW1
(J⃗C1

, J⃗d1
, M⃗d1

, M⃗ap) + E⃗i
imag

)
⋅ e⃗ (1)

10 dx

∫Sp1
E⃗i ⋅ e⃗ (1)

10 dx
. (11)

In this expression, it is important to note the presence of the excitation image term (E⃗i
imag) as part of the

reflected field. We have verified that the results are incorrect if this image term is omitted from this expression.

On the other hand, the computation of the transmission coefficient (S21) with respect to the output
waveguide fundamental mode, is evaluated as the ratio between the scattered electric field at port2
E⃗s

PPW2
(J⃗C2

, J⃗d2
, M⃗d2

, M⃗ap), and the excitation incident electric field E⃗i at port 1.

Since the computation of the scattering parameter S21 is carried out with respect to the fundamental mode
(TE10) of the input and output waveguides, one has to evaluate the line integral of the previous electric fields
projected onto the normalized vector modal functions e⃗ (2)

10 and e⃗ (1)
10 , along port 2 (Sp2, see Figure 3) and port 1

(Sp1, see Figure 2) cross sections, respectively. The final mathematical expression for the calculation of the S21

parameter is

S21 =
∫Sp2

E⃗s
PPW2

(J⃗C2
, J⃗d2

, M⃗d2
, M⃗ap) ⋅ e⃗ (2)

10 dx

∫Sp1
E⃗i ⋅ e⃗ (1)

10 dx
. (12)

Equations (11) and (12) can be easily modified if one needs to compute the multimodal response of the struc-
ture including other higher-order modes. The only changes will be that corresponding to the projections onto
the normalized vector modal functions, now representing a given higher-order mode in the input e⃗ (1)

mn and
output e⃗ (2)

mn waveguides, and the excitation of the problem. In this case, this excitation is not the fundamental
mode and corresponds to a higher-order one and its image with respect to the perfect conductor condition
at z = 0.

3. Results and Validation

In this section, different simulation examples are presented in order to validate the proposed integral equation
formulation, and to show its usefulness and efficiency when compared to commercial software tools or other
alternative numerical techniques. All the simulations have been performed in a computer with an Intel(R)
Core(TM) i7-6700 CPU with clock frequency 3.4 GHz and RAM 32 GB.
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Figure 6. Step discontinuity with 8 mm offset. Dimensions in mm are a1 = 22.86, a2 = 16, constitutive parameters are
𝜖1 = 𝜖2 = 𝜖0, 𝜇1 = 𝜇2 = 𝜇0.

The first example is the analysis of a simple step discontinuity between two different empty waveguides
filled with vacuum 𝜖1 = 𝜖2 = 𝜖0 and 𝜇1 = 𝜇2 = 𝜇0. The input waveguide is a standard WR-90 (a1 =
22.86 mm × b = 10.16 mm), while the output waveguide has been chosen to have a2 = 16 mm wide, with
height b = 10.16 mm. The evaluation of the scattering parameters of the structure has been carried out for
two different offsets, 0 mm and 8 mm (definition of the offset according to Figure 1).

The integral equation has been solved with only 15 basis functions for the expansion of the equivalent mag-
netic current surface density on the discontinuity, in both cases. Less than 30 terms are enough to achieve con-
vergence for the evaluation of the parallel plate Green’s functions series and their derivatives under the worst
case scenario. For this structure, the simulation time was less than 0.05 s per frequency point. The simulation
results have been compared to those provided by the HFSS finite elements full-wave commercial software,
showing a very good agreement for the two different offsets (see Figures 5 and 6). The analysis has been
carried out within a frequency range from 8 GHz to 16 GHz. Three different frequency regions can be differ-
entiated in the results graph. In the first one, from 8 GHz to 9.375 GHz, the output waveguide is under cutoff,
showing high return losses. The second region, from 9.375 GHz to 13.12 GHz, corresponds to the monomode
propagation range in both waveguides. Finally, within the highest frequency range, from 13.12 GHz to
16 GHz, two modes are propagating in the input waveguide. Hence, a fraction of the fundamental mode
excitation power is exchanged at the discontinuity, and is coupled to the second propagating mode in the
input waveguide. As can be seen, this behavior is perfectly predicted by the expressions used to compute

Figure 7. Second-order compact filter.
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Figure 8. Response of a second-order band-pass filter with a fully metallic configuration. The dimensions in mm of the
fully metallic filter are a1 = 22.86, a0 = 11.46, w = 2, d1 = 20, and O1 = 12.6.

the scattering parameters [see equations (11) and(12)]. These expressions allow for the evaluation of the scat-
tering parameters with respect to a given propagating mode used as reference, which in our case is taken as
the fundamental one.

The next design is a second-order band-pass filter, that consists of two cavities coupled by an iris, and con-
figured with a given offset between the input and output waveguide sections (see Figure 7). Two different
realizations of the filter have been considered. First, the band-pass filter has been designed with only empty
cavities filled with vacuum. These cavities are formed by an input/output conducting inductive window iris,
and the aperture corresponding to the step discontinuity. Only 65 basis functions have been used for mod-
eling the irises (28 each one) and the discontinuity (9). The Green’s functions have been computed with less
than 30 terms. For this fully metallic configuration, the computation time per frequency point was less than
0.08 s. The second design is similar to the previous one, but placing two dielectric circular posts at the center
of each cavity. As expected, the effect of the dielectric posts reduces the effective size of the cavities, if the
filter response is kept with the same passband and bandwidth as the original one, which is used as reference.
This is a classical procedure for designing compact size filters, at the expense of increasing the final insertion

Figure 9. Response of a second-order band-pass filter having dielectric circular posts at the center of the cavities.
The dimensions in mm of the compact size filter with lossless dielectric posts (𝜖r = 3.95) are a1 = 22.86, a0 = 11.46,
w = 2, d1 = 10.6, r1 = 3, and O1 = 12.7.
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Figure 10. Geometry of a fourth-order filter with two transmission zeros composed of two coupled dielectric resonators
and a step discontinuity.

losses due to the additional losses introduced by the dielectric materials. For this second design, 120 addi-
tional basis functions have been employed for the expansion of the electric and magnetic equivalent currents
on the dielectric post contours, being the total number of unknowns is 185. In this second case, the simulation
time, 0.65 s per frequency point, is higher due to the increased number of unknowns and additional Green’s
functions components that have to be computed.

The response of the second-order filter has been computed with the novel integral equation formulation
in the frequency range from 8 GHz to 11 GHz (see Figures 8 and 9), for both configurations (fully metallic
and with dielectric posts). The obtained simulation results have been compared to those computed by the
commercial software HFSS, showing a very good agreement for both designs. This last validation confirms that
the proposed integral equation can be used in order to analyze complex structures, including combinations
of arbitrarily shaped metallic posts and homogenous material bodies.

The last example is a band-pass filter composed of only dielectric elliptical posts and a step discontinuity
(see Figure 10). In this case, the dimensions and the dielectric permittivity are adjusted in order to obtain a
higher fractional bandwidth (up to 10%–12%) with respect to the previously presented design. This charac-
teristic is due to the presence of four pole resonances and two transmission zeros that could be properly com-
bined to achieve a broad band-pass response with high selectivity. Since the goal of this paper is only to show

Figure 11. Response of a fourth-order filter composed of only dielectric posts (𝜖r = 9) and a step discontinuity with only
complex transmission zeros and two real poles. The dimensions of this design in mm are a1 = 22.86, d1 = 5,
c1 = c2 = a1∕2 = 11.43, r1 = 4, r2 = 3.75, and O1 = 7.5.
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Figure 12. Response of fourth-order filter composed of only dielectric posts (𝜖r = 9) and a step discontinuity (four poles
and two transmission zeros in the real frequency axis). The dimensions of this design in mm are a1 = 22.86, d1 = 4.05,
c1 = 11.53, c2 = 11.33, r1 = 4, r2 = 3.5, and O1 = 8.39.

the versatility and efficiency of the proposed integral equation formulation, and therefore it is not focused on
filter design and optimization techniques, just two preliminary configurations are considered and analyzed.

The first filter implementation gives a response where only two poles are in the real frequency axis, while the
transmission zeros are complex, as can be seen in the results of Figure 11.

The second filter design results in a response where the four poles are in the real frequency axis, and two trans-
mission zeros are also real, thus improving the selectivity close to the upper cutoff frequency (see Figure 12).
To obtain these responses, a high dielectric relative permittivity value (𝜖r = 9) has been assigned to the ellip-
tical posts. The main benefit of this last kind of filter realization is a compact size, and the possibility to realize
high order and selective responses with reduced number of filter elements. As a drawback, the optimization
and design procedures are difficult, due to the strong couplings of the different elements of the filter structure.
In any case, it is important to observe the very good agreement obtained in Figures 11and 12 with respect
to the commercial software HFSS, thus further validating the integral equation formulation presented in this
paper. In this simulation, only 129 basis functions have been employed for expansion of the unknowns corre-
sponding to the dielectric posts (60 each one) and the step aperture (9). Once more, only 30 terms are needed
at most for computing the accelerated Green’s functions. The computation time has been 0.38 s for frequency
point, which is very convenient for further design procedures.

Although, the presented examples are limited to rectangular, circular, and elliptical geometries for the obsta-
cles, any other kind of shape could be considered due to the particular numerical solution of the proposed
integral equation by the MoM. Consequently, any complex geometry that can be discretized with linear
segments can be treated with the proposed numerical implementation.

4. Conclusions and Future Work

In this paper, a novel spatial domain integral formulation that allows a full-wave characterization of step dis-
continuities between different rectangular waveguides has been presented. The proposed formulation takes
easily into account the presence of a given number of arbitrarily shaped conducting and/or homogenous
material posts in the vicinity of the step. The kernel of the final system of integral equations is written in
terms of the input/output parallel plate Green’s functions, in addition to a spatial image with respect to a
ground plane located at the discontinuity. The solution of the resulting integral equation is efficiently carried
out by means of the MoM, after the application of specific acceleration techniques for computing the infinite
series used to formulate the Green’s functions of the problem. The numerical technique is very competitive
in relation to current commercial software packages or other alternative methods such as finite elements or
FDTD, since the unknowns of the equivalent problem are reduced to the discontinuity aperture and the arbi-
trarily shaped post contours. Different practical simulation examples have been presented in order to show
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the validity, efficiency, and usefulness of the novel integral equation. A simple step discontinuity between
two rectangular waveguides considering two different offsets, and a second-order filter composed of two
rectangular cavities coupled by a step have been discussed. This latter example has been analyzed with two
different configurations, one of them considering empty cavities and the other one taking into account the
presence of dielectric circular posts that reduce the global size of the filter. The last studied structure was
a step discontinuity with two coupled elliptic dielectric resonators placed on each side. It has been shown
that a fourth-order response, including also two transmission zeros, could be obtained after an optimization
procedure. In all cases, the agreement between the proposed technique and commercial software tools has
been very good, and with good computational performances. In this manner, we have shown the usefulness,
accuracy, and versatility of the integral equation formulation proposed in this paper.

Although, the integral equation formulation can be particularized for two-dimensional or capacitive rectan-
gular waveguide discontinuities, this work has been focused on the simpler study of inductive steps, leaving
its extension to the other possible configurations as a future research work.
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