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Robust Compensation of Delay and Diffusive

Actuator Dynamics Without Distributed Feedback
Ricardo Sanz, Pedro Garcı́a and Miroslav Krstic

Abstract—This paper deals with robust observer-based output-
feedback stabilization of systems whose actuator dynamics can
be described in terms of partial differential equations (PDEs).
More specifically, delay dynamics (first-order hyperbolic PDE)
and diffusive dynamics (parabolic PDE) are considered. The
proposed controllers have a PDE observer-based structure. The
main novelty is that stabilization for an arbitrarily large delay
or diffusion domain length is achieved, while distributed integral
terms in the control law are avoided. The exponential stability
of the closed-loop in both cases is proved using Lyapunov
functionals, even in the presence of small uncertainties in the time
delay or the diffusion coefficient. The feasibility of this approach
is illustrated in simulations using a second-order plant with an
exponentially unstable mode.

I. INTRODUCTION

T IME-delay systems have received growing attention from

researchers over the past years as they are ubiquitous

in engineering applications such as rolling mills, chemical

reactors, oil or gas factories and networked control systems,

among others [1]. Large delays often lead to closed-loop

instability if they are not taken into account, and limit the

achievable performance of conventional controllers [2]. More

recently, the ability to manipulate flow properties has also

become a question of major technological importance, in

which convection (hyperbolic PDE dynamics) and/or diffusion

(parabolic PDE dynamics) occur [3]. Topics on compensating

infinite-dimensional actuator dynamics are introduced in [4].

Traditional predictor-based controllers for time-delay sys-

tems, as developed in [5], [6], [7], use control laws in the form

of integral equations, whose discretization may cause problems

in their practical implementation [8], [9]. The application of

new backstepping techniques developed for first-order hyper-

bolic PDEs has also led to equivalent results, when applied to

time-delay systems [10]. Modeling the delay phenomenon as

a transport PDE has been shown to provide a solid framework

with ample tools for analysis and design [11]. In this context,

input-delay systems are just a particular case of a broader class

of systems with infinite-dimensional actuator dynamics, which

have attracted attention recently, and whose stabilizing con-

trollers also involve distributed (sometimes double) integrals

of the actuator state [12], [13].

Stabilization of input-delayed systems without distributed

terms has been pursued in different directions. A successful
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approach consists of ignoring the distributed terms in the tradi-

tional predictor leading to a static feedback control law [14],

[15]. Another approach is based on designing observers to

estimate the predicted state, rather than explicitly computing it.

The problem is then translated to that of state observation via

a delayed output measurement. The latter has been recurrently

approached in the literature without the need for integral terms

[16], [17], [18]. However, it has been only recently that this

fact has been used to deal with input-delayed systems. This

idea was first devised in [19] and further extended with an

LMI-based design methodology in [20]. In the past few years,

this technique has been extended to systems with input/output

delays and time-varying delays [21], [22]. In these works,

a chain of sequential observers is used, in which each of

the components estimates a prediction of the state over an

interval, whose length equals a fraction of the delay, achieving

asymptotic stability for arbitrarily large delays as the number

of sequential predictors goes to infinity.

The present work extends the ideas introduced recently

in [23], where the predicted state (for the delay case) or

the “anti-diffused” state (for the diffusive case) are estimated

using suitable observers. Instead of using an infinite chain

of sequential observers, the infinite dimensionality in our

approach stems from the fact that the observer is given as a

PDE. The backstepping observer design techniques developed

in [10], [12] are exploited. Furthermore, uncertainties in the

delay or the diffusion coefficient are considered, which is a

departure from [23] and makes the analysis substantially more

complicated. Robustness to delay uncertainties in the PDE

framework has been previously investigated in [24], [25], [26].

Upper bounds on the uncertainties that guarantee exponential

stability of the closed-loop system are derived. In the nominal

case, stabilization is achieved for any arbitrarily large delay

or diffusion domain, even for unstable systems. Moreover, the

controller design as simple as that of a conventional observer-

based state feedback. The proposed methodology is illustrated

using a second-order system with an exponentially unstable

mode.

Notation: The state of a PDE is represented by a function

u(x, t), where t is time and x is referred to as the spatial

variable. The 2-norm of a finite-dimensional vector X(t) is

denoted by |X(t)|. The spaces L2([a, b]) and H1([a, b]) are

used, defined, respectively, as the space of square-integrable

functions and the space of functions whose derivative is

square-integrable, in the interval [a, b]. If u ∈ L2, the

corresponding norm is simply denoted and computed by

‖u‖2 =
∫ b

a
|u(x, t)|2 dx, whereas if u ∈ H1, then the Sobolev

norm is defined by ‖u‖2H1
= ‖u‖2+‖ux‖

2. The minimum and

maximum eigenvalues of a symmetric positive definite matrix,
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Q > 0, are denoted by λ(Q) and λ(Q), respectively.

II. PRELIMINARIES

This paper deals with a class of systems whose actuator

dynamics can be described in terms of PDEs. The first type

of systems considered in this work are those described by

Ẋ(t) = AX(t) +Bu(∆D, t), (1)

ut(x, t) = ux(x, t), (2)

u(D0, t) = U(t), (3)

Y (t) = CX(t), (4)

where X ∈ R
n is the ODE state, A,B and C are matrices with

appropriate dimensions and u ∈ C1 is the PDE state, whose

spatial domain is given by

x ∈ [x,D0], x = min{0,∆D}.

The system (1)-(3) is equivalent to an LTI system with an input

delay of D = D0 −∆D units of time, where D0 ≥ 0 is the

assumed plant delay and ∆D is a bounded delay mismatch.

To see this, note that the solution of (2)-(3) is given by

u(x, t) = U(t− (D0 − x)), (5)

and thus u(∆D, t) = U(t − D). Clearly, it is assumed that

∆D ≤ D0 so that the total delay D ≥ 0 remains positive. If

the whole state is available and ∆D is known, the global

asymptotic stabilization to zero of (1)-(3) can be achieved by

the predictive feedback control law U(t) = KP (t), where

P (t) = eADX(t) +

∫ D0

∆D

eA(D0−y)Bu(y, t) dy, (6)

and the vector K is such that A + BK is Hurwitz. This

follows from the fact that the right-hand side of (6) equals

X(t+D), which can be seen using (5) and applying a change

of variables.

The second type of systems treated here are those described

by

Ẋ(t) = AX(t) +Bu(0, t), (7)

ut(x, t) = ǫuxx(x, t), (8)

ux(0, t) = 0, (9)

u(D, t) = U(t), (10)

Y (t) = CX(t). (11)

where D ≥ 0 is the spatial domain length, ǫ = ǫ0 + ∆ǫ
is the diffusion coefficient, in which ǫ0 6= 0 is known and

∆ǫ > −ǫ0 is a small additive uncertainty. In this case, the

actuator dynamics (8) is governed by a parabolic PDE, the so-

called heat equation. Therefore, the control action undergoes

a diffusive process before reaching the ODE.

The similarities between (1)-(3) and (7)-(10) go beyond the

obvious ones. It turns out that, if the whole state is available

and ǫ is known, a stabilizing control law for (7)-(10) is given

by U(t) = KΠ(t), where

Π(t) =M(D)X(t) +

∫ D

0

m(D − y)Bu(y, t) dy, (12)

the vector K is again to be chosen such that A + BK is

Hurwitz, and

m(s) =
1

ǫ

∫ s

0

M(ξ) dξ, (13)

M(ξ) =
[

I 0
]

e





0 A
ǫ

I 0



ξ [
I
0

]

, (14)

being I ∈ R
n×n the identity matrix. This result is a slightly

modified version of Theorem 1 in [12].

Remark 1. While P (t) in (6) is the “predicted” state D units

of time ahead, i.e., P (t) = X(t+D), we shall refer to Π(t)
in (12) as the “anti-diffused” state.

A handicap of the control laws (6) and (12) lies in the

fact that they are actually integral equations, since the control

action appears explicitly on the left-hand side and under an

integral sign on the right-hand side. Therefore, the discretiza-

tion of the integral term for its implementation can lead

to instability [9]. Furthermore, the whole state needs to be

accessible, which is often not the case in practice. In what

follows, an output-based control strategy is introduced, by

means of which exponential stabilization is achieved. The key

idea behind the proposed control laws is to design observers

to estimate the predicted state P (t) for a system with delay

actuator dynamics, or the “anti-diffused” state Π(t), for a

system with diffusive actuator dynamics. To this end, it is

assumed that the pair (A,B) is controllable and the pair

(A,C) is observable.

III. DELAY ACTUATOR DYNAMICS

Theorem 1 below introduces an observer-based controller

for (1)-(4) and guarantees the closed-loop exponential stability.

First, the closed-loop equations (31)-(36) are obtained, which

are composed of two systems (the state and the observer

error, as it usual in observer-based controllers). Because of

the uncertainty, these are coupled to a third one, given by

(37)-(39). A suitable (invertible) backstepping transformation

is proposed to map these systems into target systems whose

stability is proved via Lyapunov analysis. Exponential stability

of the target system is established by (55). After that, the

stability of the original systems is proved using the inverse

transformations.

Theorem 1. Consider the closed-loop system composed of

(1)-(4) and the observer-based controller

˙̂
P (t) = AP̂ (t) +BU(t) + eAD0L

(

Y (t)− v̂(0, t)
)

, (15)

v̂t(x, t) = v̂x(x, t) + CeAxL
(

Y (t)− v̂(0, t)
)

, (16)

v̂(D0, t) = CP̂ (t), (17)

U(t) = KP̂ (t), (18)

where K and L are such that A + BK and A − LC are

Hurwitz. Then, there exists a δ > 0 such that for all |∆D| ≤ δ,

i.e., for all D ∈ [D0 − δ,D0 + δ], the zero solution of the

(X,u, P̂ , v̂)-system is exponentially stable, that is, there exist

positive constants R and ρ such that for all initial conditions
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(X0, u0, P̂0, v̂0) ∈ R
n × L2(x,D0)× R

n ×H1(x,D0), the

following holds:

Υ(t) ≤ RΥ(0)e−ρt,

where

Υ(t) = |X(t)|2 + ‖u(t)‖2L2[x,D0]
+ |P̂ (t)|2 + ‖v̂(t)‖2H1[x,D0]

.

Proof. Let us define a distributed output prediction by

v(x, t) = CeA(x−∆D)X(t) + C

∫ x

∆D

eA(x−y)Bu(y, t) dy.

(19)

Computing the time derivative of (6) and the spatial and

temporal derivatives of (19), and using (1)-(4), one arrives

at the following ODE-PDE cascade system

Ṗ (t) = AP (t) +BU(t), (20)

vt(x, t) = vx(x, t), (21)

v(D0, t) = CP (t), (22)

Y (t) = v(∆D, t), (23)

where an integration by parts in the variable y and the fact

that A and eAx commute for all x was used in (20)-(21); and

(22)-(23) follow simply by evaluating (19) at x = D0 and

x = ∆D, respectively. The original input-delay system (1)-

(4) has been then mapped into the virtual system (20)-(23), in

which the delay is affecting the output. Let us introduce the

error variables

P̃ (t) , P (t)− P̂ (t), (24)

ṽ(x, t) , v(x, t) − v̂(x, t). (25)

Differentiating (24)-(25), using (15)-(17) and (20)-(23), and

adding and subtracting v(0, t), the observer error system can

be written as

˙̃P (t) = AP̃ (t)− eAD0Lṽ(0, t)− eAD0LI(t), (26)

ṽt(x, t) = ṽx(x, t)− CeAxLṽ(0, t)− CeAxLI(t), (27)

ṽ(D0, t) = CP̃ (t). (28)

where I(t) = v(∆D, t) − v(0, t) =
∫∆D

0 vx(x, t) dx, which

follows from the Newton-Leibniz formula. Now, let us intro-

duce the mappings (X,u) 7→ (X,w) and (P̃ , ṽ) 7→ (P̃ , w̃),
defined by the backstepping transformations

w(x, t) = u(x, t)−KeA(x−∆D)X(t)

−

∫ x

∆D

KeA(x−y)Bu(y, t) dy, (29)

w̃(x, t) = ṽ(x, t) − CeA(x−D0)P̃ (t). (30)

Using (18) and the transformations (29)-(30), the systems (1)-

(3), (26)-(28) are mapped into

Ẋ(t) = (A+BK)X(t) +Bw(∆D, t), (31)

wt(x, t) = wx(x, t), (32)

w(D0, t) = −KP̃ (t), (33)

˙̃P (t) = (A− eAD0LCe−AD0)P̃ (t)− eAD0Lw̃(0, t)

− eAD0LI(t), (34)

w̃t(x, t) = w̃x(x, t), (35)

w̃(D0, t) = 0, (36)

respectively, where (32) followed from an integration by parts,

(34) used (30) with x = 0, and (35) used the fact that A and

eAx commute for all x. Also, using (18) and (24), the system

(20)-(22) can be written as

Ṗ (t) = (A+BK)P (t)−BKP̃ (t), (37)

vt(x, t) = vx(x, t), (38)

v(D0, t) = CP (t). (39)

Gathering previous expressions and after some straightfor-

ward manipulations, the overall transformation (X,u, P̂ , v̂) 7→
(X,w, P̃ , w̃, P, v) can be written as

w(x, t) = u(x, t)−KeA(x−∆D)X(t)

−

∫ x

∆D

KeA(x−y)Bu(y, t) dy, (40)

P̃ (t) = eADX(t) +

∫ D0

∆D

eA(D0−y)Bu(y, t) dy

− P̂ (t), (41)

w̃(x, t) = CeA(x−D0)P̂ (t)− v̂(x, t)

− C

∫ D0

x

eA(x−y)Bu(y, t) dy, (42)

P (t) = eADX(t) +

∫ D0

∆D

eA(D0−y)Bu(y, t) dy, (43)

v(x, t) = CeA(x−∆D)X(t) + C

∫ x

∆D

eA(x−y)Bu(y, t) dy.

(44)

The inverse transformation is given by

u(x, t) = w(x, t) +Ke(A+BK)(x−∆D)X(t)

+

∫ x

∆D

Ke(A+BK)(x−y)Bw(y, t) dy, (45)

P̂ (t) = P (t)− P̃ (t), (46)

v̂(x, t) = v(x, t) − w̃(x, t) − CeA(x−D0)P̃ (t). (47)

where the fact that (45) is the inverse of (40) is proved in

Appendix A.

In order to assess stability, let us choose the Lyapunov

functional

V (t) = V1(t) + V2(t) + V3(t), (48)

where

V1(t) = X(t)TS1X(t) +
a1
2

∫ D0

∆D

exw(x, t)2 dx

+
a1
4

∫ ∆D

x

exw(x, t)2 dx,

V2(t) = b0P (t)
TS1P (t) +

b1
2

∫ D0

x

exv(x, t)2 dx

+
b2
2

∫ D0

x

exv2x(x, t) dx,
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V3(t) = c0P̃ (t)
TT TS2T P̃ (t) +

c1
2

∫ D0

0

exw̃(x, t)2 dx

+
c1
4

∫ 0

x

exw̃2(x, t) dx +

∫ D0

x

exw̃2
x(x, t) dx,

the constants ai, bi, ci > 0 are specified in the subsequent

analysis, T = e−AD0 is defined for the sake of brevity, and

S1 = ST
1 > 0, S2 = ST

2 > 0 are the solutions to the Lyapunov

equations

S1(A+BK) + (A+BK)TS1 = −Q1, (49)

S2(A− LC) + (A− LC)TS2 = −Q2, (50)

for some symmetric positive definite matrices Q1 and Q2,

respectively. Using integration by parts1, the time derivative

of V1(t) along the trajectories of (31)-(36) is given by

V̇1(t) = −XTQ1X + 2XTS1Bw(∆D, t)

+
a1
2
eD0w(D0, t)

2 −
a1
2
e∆Dw(∆D, t)2

−
a1
2

∫ D0

∆D

exw(x, t)2 dx+
a1
4
e∆Dw(∆D, t)2

−
a1
4
exw(x, t)2 −

a1
4

∫ ∆D

x

exw2(x, t) dx

≤ −
λ(Q1)

2
|X |2 +

(

2|S1B|2

λ(Q1)
−
a1
4
e∆D

)

w(∆D, t)2

+
a1
2
eD0 |K|2|P̃ |2 −

a1
2

∫ D0

∆D

exw(x, t)2 dx

−
a1
4

∫ ∆D

x

exw(x, t)2 dx (51)

where (49) was used and Young’s inequality was employed

to upper bound the second term. Proceeding in a very similar

fashion, the derivative of V2(t) along the trajectories of (37)-

(39) is obtained as

V̇2 = −b0P
TQ1P − 2b0P

TS1BKP̃

+
b1
2
eD0v(D0, t)

2 −
b1
2
exv2(x, t)

−
b1
2

∫ D0

x

exv(x, t)2dx+
b2
2
eD0vt(D0, t)

2

−
b2
2
exvt(x, t)

2 −
b2
2

∫ D0

x

exvx(x, t)
2dx

≤

(

−
b0λ(Q1)

2
+
b1
2
eD0 |C|2 +

b2
2
eD0κ1

)

|P |2

+

(

2b0|S1BK|2

λ(Q1)
+
b2
2
eD0κ2

)

|P̃ |2

−
b1
2

∫ D0

x

exv(x, t)2dx−
b2
2

∫ D0

x

exvx(x, t)
2dx, (52)

where the bound

vt(D0, t)
2 ≤ κ1|P |

2 + κ2|P̃ |
2,

1By the differentiation under the integral sign rule one has that
d

dt

∫
b

a
exw(x, t)2 dx =

∫
b

a
2exw(x, t)wx(x, t) dx, where (35) was used.

Then, applying integration by parts leads to d

dt

∫
b

a
exw(x, t)2 dx =

ebw(b, t)2 − eaw(a, t)2 −
∫
b

a
exw(x, t)2 dx.

with κ1 = 2|C(A+BK)|2 and κ2 = 2|CBK|2 was employed,

which follows by differentiating (23), plugging (20), squaring

both sides and then using Young’s inequality. Similarly, the

time derivative of V3(t) along the trajectories of (31)-(36) can

be written as

V̇3 = −c0P̃
TT TQ2T P̃ − 2c0P̃

TT TS2Lw̃(0, t)

− 2c0P̃
TT TS2LI(t)−

c1
2
w̃(0, t)2

−
c1
2

∫ D0

0

exw̃(x, t)2 dx+
c1
4
w̃(0, t)2

−
c1
4
exw̃(x, t)2 −

c1
4

∫ 0

x

exw̃(x, t)2 dx

− exw̃x(x, t)
2 −

∫ D0

x

exw̃2
x(x, t) dx

≤ −
c0λ(T

TQ2T )

4
|P̃ |2 +

4c0|T
TS2L|

2

λ(T TQ2T )
I(t)2

+

(

2c0|T
TS2L|

2

λ(T TQ2T )
−
c1
4

)

w̃(0, t)2

−
c1
2

∫ D0

0

exw̃(x, t)2 dx−
c1
4

∫ 0

x

exw̃(x, t)2 dx

−

∫ D0

x

exw̃2
x(x, t) dx (53)

where the fact that T and A commute was employed; (50)

and w̃x(D0, t) = 0 were used, where the latter follows by

differentiating (36) in time and using the resulting expression

into (35) evaluated at x = D0; and Young’s inequality was

employed to upper bound the second term (2aT b ≤ |a|2/2 +
2|b|2) and the third one (2aT b ≤ |a|2/4 + 4|b|2). Gathering

(51), (52) and (53), and choosing

b0 =
c0λ(T

TQ2T )λ(Q1)

16|S1BK|2
, c0 =

8a1e
D0 |K|2

λ(T TQ2T )
,

a1 =
8|S1B|2

λ(Q1)e∆D
, b1 =

b0λ(Q1)

2eD0 |C|2
, c1 =

8c0|T
TS2L|

2

λ(T TQ2T )
,

the derivative of (48) is given by

V̇ (t) ≤ −
λ(Q1)

2
|X |2 −

a1
2

∫ D0

∆D

exw(x, t)2 dx

−
a1
4

∫ ∆D

x

exw(x, t)2 dx

−

(

b0λ(Q1)

4
−
b2
2
eD0κ1

)

|P |2

−
b1
2

∫ D0

x

exv(x, t)2dx

−

(

c0λ(T
TQ2T )

16
−
b2
2
eD0κ2

)

|P̃ |2

−
c1
2

∫ D0

0

exw̃(x, t)2 dx−
c1
4

∫ 0

x

exw̃(x, t)2 dx

+

(

4c0|T
TS2L|

2

λ(T TQ2T )
δeδ −

b2
2

)
∫ δ

x

exv2x(x, t) dx

−
b2
2

∫ D0

δ

exv2x(x, t) dx −

∫ D0

x

exw̃2
x(x, t) dx (54)
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in which the following bound was used

I(t)2 ≤ |∆D|

∫ max{0,∆D}

min{0,∆D}

v2x(x, t) dx

≤ δ

∫ δ

x

v2x(x, t) dx ≤ δeδ
∫ δ

x

exv2x(x, t) dx,

where the first inequality follows from Jensen’s, the sec-

ond holds because the integral of a positive function is an

increasing function of its upper limit and it assumed that

|∆D| ≤ δ, and the third one follows from the fact that

eδex ≥ 1, ∀x ∈ [x, δ]. Next, choosing

b2 <
1

4eD0

min

{

b0λ(Q1)

κ1
,
c0λ(T

TQ2T )

4κ2

}

,

and selecting δ such that

δeδ <
b2λ(T

TQ2T )

8c0|T TS2L|2
,

it follows from (54) and (48) that

V̇ (t) ≤ −µV (t), (55)

where

µ = min

{

λ(Q1)

8λ(S1)
,
λ(T TQ2T )

32λ(S2)
,

(

8c0|T
TS2L|

2

b2λ(T TQ2T )
δeδ − 1

)}

.

From (48), one can find that

ψ1Ξ(t) ≤ V (t) ≤ ψ2Ξ(t), (56)

where

Ξ(t) = |X |2 + ‖w‖2 + |P |2 + ‖v‖2H1
+ |P̃ |2 + ‖w̃‖2H1

,

and

ψ1 = max

{

λ(S1), b0λ(S1), c0λ(T
TS2T ),

a1e
x

4
,

b1e
x

2
,
b2e

x

2
,
c1e

x

4
, ex
}

,

ψ2 = max

{

λ(S1), b0λ(S1), c0λ(T
TS2T ),

a1e
D0

2
,

b1e
D0

2
,
b2e

D0

2
,
c1e

D0

2
, eD0

}

.

Integrating (55) and then using (56), the following exponential

stability estimate is obtained for the transformed system

Ξ(t) ≤
ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (57)

Now, it is necessary to show the exponential stability of the

original system, that is, in the sense of the norm

Υ(t) = |X |2 + ‖u‖2 + |P̂ |2 + ‖v̂‖2H1
.

Using (40)-(42) and (45)-(47), one can show there exist

constants αi and βi in [1,∞) such that

Ξ(t) ≤ α1|X |2 + α2‖u‖
2 + α3|P̂ |

2 + α4‖v̂‖
2
H1
,

Υ(t) ≤ β1|X |2 + β2‖w‖
2 + β3|P |

2 + β4‖v‖
2
H1

+ β5|P̃ |
2 + β6‖w̃‖

2
H1
,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (58)

being φ1 = 1/maxβi and φ2 = maxαi. Therefore, one gets

the exponential stability estimate

Υ(t) ≤
ψ2

ψ1

φ2
φ1

Υ(0)e−µt, ∀t ≥ 0,

thus completing the proof.

Remark 2. Some similarities between the observer (15)-(17)

and the sequential observers from [16] can be observed,

although the exact relation is not clear. The continuous spatial

variable x in this formulation seems to play the role of the

discrete index j, used therein to denote each of the observer

components.

IV. DIFFUSIVE ACTUATOR DYNAMICS

Theorem 2 below introduces the proposed observer-based

controller for (7)-(11) and guarantees the closed-loop exponen-

tial stability. The proof is very similar to that of Theorem 1.

In this case, the two systems that compose the closed-loop

are given by (78)-(85), which are also coupled to a third

one because of the uncertainty, given by (86)-(89). Again, a

suitable (invertible) backstepping transformation is proposed

to map these systems into target systems whose stability

is proved via Lyapunov analysis. Then, the stability of the

original systems is proved using the inverse transformations.

Theorem 2. Consider the closed-loop system composed of

(7)-(11) and the observer-based controller

˙̂
Π(t) = AΠ̂(t) +BU(t) +M0(D)L

(

Y (t)− ν̂(0, t)
)

, (59)

ν̂t(x, t) = ǫ0ν̂xx(x, t) + CM0(x)L
(

Y (t)− ν̂(0, t)
)

, (60)

ν̂x(0, t) = 0, (61)

ν̂(D, t) = CΠ̂(t), (62)

U(t) = KΠ̂(t), (63)

where

M0(x) =
[

I 0
]

e





0 A
ǫ0

I 0



x [
I
0

]

,

the matrices K and L are such that A + BK and A − LC
are Hurwitz and ǫ0 > 0. Then, there exists a δ > 0 such

that for all |∆ǫ| ≤ δ, i.e., for all ǫ ∈ [ǫ0 − δ, ǫ0 + δ], the zero

solution of the (X,u, Π̂, ν̂)-system is exponentially stable, that

is, there exist positive constantsR and ρ such that for all initial

conditions (X0, u0, Π̂0, ν̂0) ∈ R
n×H1(0, D)×R

n×H1(0, D),
the following holds:

Υ(t) ≤ RΥ(0)e−ρt,

where

Υ(t) = |X(t)|2 + ‖u(t)‖2H1[0,D] + |P̂ (t)|2 + ‖v̂(t)‖2H1[0,D].

Proof. Let us define

ν(x, t) = CM(x)X(t) + C

∫ x

0

m(x− y)Bu(y, t) dy. (64)
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Computing the time derivative of (12) and the spatial and

temporal derivatives of (64), one arrives at the following ODE-

PDE cascade system

Π̇(t) = AΠ(t) +BU(t), (65)

νt(x, t) = ǫνxx(x, t), (66)

ν(D, t) = CΠ(t), (67)

νx(0, t) = 0, (68)

Y (t) = ν(0, t), (69)

See Appendix B for details. Analogously to the input-delay

case, the original system with diffusive actuator dynamics (7)-

(11) has been mapped into the virtual system (65)-(69), in

which the diffusive dynamics is affecting the output. Let us

define the error variables as

Π̃(t) , Π(t)− Π̂(t), (70)

ν̃(x, t) , ν(x, t)− ν̂(x, t). (71)

Differentiating (70)-(71) and using (59)-(62), the observer

error system is obtained as

˙̃Π(t) = AΠ̃(t)−M0(D)Lν̃(0, t), (72)

ν̃t(x, t) = ǫ0ν̃xx(x, t)− CM0(x)Lν̃(0, t) + ∆ǫνxx(x, t), (73)

ν̃x(0, t) = 0, (74)

ν̃(D, t) = CΠ̃(t). (75)

Now, let us introduce the backstepping transformations

w(x, t) = u(x, t)−KM(x)X(t)

−K

∫ x

0

m(x− y)Bu(y, t) dy, (76)

w̃(x, t) = ν̃(x, t)− CM0(x)M0(D)−1Π̃(t), (77)

Using (63) and the transformations (76)-(77) the systems (7)-

(10) and (72)-(75) are mapped into

Ẋ(t) = (A+BK)X(t) +Bw(0, t), (78)

wt(x, t) = ǫwxx(x, t), (79)

wx(0, t) = 0, (80)

w(D, t) = −KΠ̃(t), (81)

˙̃Π(t) = (A−M0(D)LCM0(D)−1)Π̃(t)

−M0(D)Lw̃(0, t), (82)

w̃t(x, t) = ǫ0w̃xx(x, t) + ∆ǫνxx, (83)

w̃x(0, t) = 0, (84)

w̃(D, t) = 0 (85)

Most of the calculations involved in the transformation above

are the same as those carried out in Appendix B. Some hints

follow: (78) employed (76) evaluated at x = 0 and (139); (79)

followed after subtracting the first-in-time and second-in-space

derivatives of (76), applying integration by parts twice, and

using (133)-(136) and (138)-(139); (140) was used to obtain

(80) while M ′
0(0) = 0 was used to obtain (84); and finally,

(83) used that M ′′
0 (x) = ǫ−1

0 AM0(x) and the fact that A and

M0(x) commute for all x. On the other hand, using (63) and

(70), the system (65)-(68) can be written as

Π̇(t) = (A+BK)Π(t)−BKΠ̃(t), (86)

νt(x, t) = ǫνxx(x, t), (87)

νx(0, t) = 0, (88)

ν(D, t) = CΠ(t). (89)

Gathering previous equations, the overall transformation

(X,u, Π̂, ν̂) 7→ (X,w, Π̃, w̃,Π, ν) can be written as

w(x, t) = u(x, t)−KM(x)X(t)

−K

∫ x

0

m(x− y)Bu(y, t) dy, (90)

Π̃(t) =M(D)X(t) +

∫ D

0

m(D − y)Bu(y, t) dy

− Π̂(t), (91)

w̃(x, t) = CM0(x)M0(D)−1Π̂(t)− ν̂(x, t)

+ CM(x)X(t) + C

∫ x

0

m(x− y)Bu(y, t) dy

− CM0(x)M0(D)−1

(

M(D)X(t)

+

∫ D

0

m(D − y)Bu(y, t) dy

)

, (92)

Π(t) =M(D)X(t) +

∫ D

0

m(D − y)Bu(y, t) dy, (93)

ν(x, t) = CM(x)X(t) + C

∫ x

0

m(x− y)Bu(y, t) dy, (94)

while the inverse transformation is given by

u(x, t) = w(x, t) +KN(x)X(t)

+K

∫ x

0

n(x− y)Bw(y, t) dy, (95)

Π̂(t) = Π(t) − Π̃(t), (96)

ν̂(x, t) = ν(x, t) − CM0(x)M(D)−1Π̃(t)− w̃(x, t). (97)

where

n(s) =
1

ǫ

∫ s

0

N(ξ) dξ,

N(ξ) =
[

I 0
]

e





0 A+BK
ǫ

I 0



ξ [
I
0

]

.

The fact that (95) is the inverse of (90) is proved in Ap-

pendix C. In order to assess stability, let us choose the

Lyapunov functional

V (t) = V1(t) + V2(t) + V3(t) (98)

where

V1(t) = a0X
TS1X +

a1
2ǫ

‖w‖2 +
a2
2ǫ

‖wx‖
2

V2(t) = b0Π
TS1Π+

b1
2ǫ

‖ν‖2 +
b2
2ǫ

‖νx‖
2

V3(t) = Π̃TM−T
0 S2M

−1
0 Π̃ +

c1
2ǫ0

(

‖w̃‖2 + ‖w̃x‖
2
)

,
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where M0 =M0(D) for the sake of brevity and S1 = ST
1 > 0,

S2 = ST
2 > 0 are the solutions to the Lyapunov equations

S1(A+BK) + (A+BK)TS1 = −Q1, (99)

S2(A− LC) + (A− LC)TS2 = −Q2. (100)

for some symmetric positive definite matrices Q1 and Q2.

Using integration by parts2, the time derivative of V1(t) along

the trajectories of (78)-(81) can be written as

V̇1(t) = −a0X
TQ1X + 2a0X

TS1Bw(0, t)

+ a1w(D, t)wx(D, t)− a1‖wx‖
2

+ a2wx(D, t)wxx(D, t)− a2‖wxx‖
2

≤ −
a0λ(Q1)

2
|X |2 +

2a0|S1B|2

λ(Q1)
w(0, t)2

+
Da21
a2

w(D, t)2 +
a2
4D

wx(D, t)
2

+
a2
4D

wx(D, t)
2 +Da2wxx(D, t)

2

− a1‖wx‖
2 − a2‖wxx‖

2 (101)

where Young’s inequality was used conveniently used multiple

times. To proceed, some inequalities are derived next. By

the fundamental theorem of calculus and Jensen’s inequality,
(

w(D, t) − w(0, t)
)2

=
(

∫D

0 wx dx
)2

≤ D‖wx‖
2, and then

expanding the squared difference and employing Young’s

inequality to upper bound the cross term leads to

w(0, t)2 ≤ 2w(D, t)2 + 2D‖wx‖
2, (102)

Proceeding in a similar way with wx and w̃, and using (80)

and (85), respectively, yields

wx(D, t)
2 ≤ D‖wxx‖

2, (103)

w̃(0, t)2 ≤ D‖w̃x‖
2. (104)

Integrating ‖w‖2 by parts and using Young’s inequality con-

veniently, leads to ‖w‖2 ≤ 2Dw(D, t)2 + 4D2‖wx‖
2, from

which we get

−‖wx‖
2 ≤

1

2D
w(D, t)2 −

1

4D2
‖w‖2, (105)

follows. Using the same procedure with ‖wx‖
2 and taking (80)

into account yields

−‖wxx‖
2 ≤ −

1

4D2
‖wx‖

2. (106)

Using (102)-(103) into (101) and selecting

a1 =
8Da0|S1B|2

λ(Q1)
,

yields

V̇1(t) ≤ −
a0λ(Q1)

2
|X |2 +Da2wxx(D, t)

2

+

(

4a0|S1B|2

λ(Q1)
+
Da21
a2

)

w(D, t)2

2By the differentiation under the integral sign rule one has that
d

dt

1

2ǫ
‖w(t)‖2 =

∫
D

0
w(x, t)wxx(x, t) dx, where (79) was used. Then,

applying integration by parts leads to d

dt

1

2ǫ
‖w(t)‖2 = w(D, t)wx(D, t) −

w(0, t)wx(0, t) − ‖wx(t)‖2 .

−
a1
2
‖wx‖

2 −
a2
2
‖wxx‖

2 (107)

Now, using (105)-(106) into (107), one can write

V̇1(t) ≤ −
a0λ(Q1)

2
|X |2 +Da2wxx(D, t)

2

+

(

4a0|S1B|2

λ(Q1)
+
Da21
a2

+
a1
4D

)

w(D, t)2

−
a1
8D2

‖w‖2 −
a2
8D2

‖wx‖
2 (108)

Furthermore, using (79), (81) and (82),

wxx(D, t)
2 ≤ κ1|Π̃|

2 + κ2w̃(0, t)
2 (109)

where κ1 = 2ǫ−2|K(A − M0LCM
−1
0 )|2 and

κ2 = 2ǫ−2|KM0L|
2. Using (81), (104) and (109) into

(108) yields

V̇1(t) ≤ −
a0λ(Q1)

2
|X |2 +D2a2κ2‖w̃x‖

2

+

((

4a0|S1B|2

λ(Q1)
+
Da21
a2

+
a1
4D

)

|K|2

+Da2κ1

)

|Π̃|2 −
a1
8D2

‖w‖2 −
a2
8D2

‖wx‖
2 (110)

Similarly as before, using integration by parts and Young’s

inequality, the time derivative of V2(t) along the trajectories

of (86)-(88) can be bounded by

V̇2(t) = −b0Π
TQ1Π− 2b0Π

TS1BKΠ̃

+ b1ν(D, t)νx(D, t)− b1‖νx‖
2

+ b2νx(D, t)νxx(D, t)− b2‖νxx‖
2

≤ −
b0λ(Q1)

2
|Π|2 +

2b0|S1BK|2

λ(Q1)
|Π̃|2

+
Db21
b2

ν(D, t)2 +
b2
4D

νx(D, t)
2

+
b2
4D

νx(D, t)
2 +Db2νxx(D, t)

2

− b1‖νx‖
2 + b2‖νxx‖

2

≤ −

(

b0λ(Q1)

2
+
Db21|C|

2

b2
+
b1|C|

2

2D
+Db2κ3

)

|Π|2

+

(

2b0|S1BK|2

λ(Q1)
+Db2κ4

)

|Π̃|2

−
b1
4D2

‖ν‖2 −
b2
2
‖νxx‖

2 (111)

where the inequalities

νx(D, t)
2 ≤ D‖νxx‖

2 (112)

−‖νx‖
2 ≤

1

2D
ν(D, t)2 −

1

4D2
‖ν‖2, (113)

νxx(D, t)
2 ≤ κ3|Π|

2 + κ4|Π̃|
2, (114)

with κ3 = 2ǫ−2|C(A + BK)|2 and κ4 = 2ǫ−2|CBK|2 were

used. Note that (112) and (113) follow by the same procedures

used to derive (103) and (105), respectively, whereas (114)

follows from (86)-(89). Choosing

b1 = min

{
√

b0λ(Q1)b2
8D|C|2

,
b0λ(Q1)D

4|C|2

}

, (115)
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in (111) yields

V̇2(t) ≤ −

(

b0λ(Q1)

4
+Db2κ3

)

|Π|2

+

(

2b0|S1BK|2

λ(Q1)
+Db2κ4

)

|Π̃|2

−
b1
4D2

‖ν‖2 −
b2
2
‖νxx‖

2. (116)

Again, integrating by parts, using Young’s inequality and

(104), the derivative of V3(t) along the trajectories of (82)-

(85) can be bounded by

V̇3(t) = −λ(M−T
0 Q2M

−1
0 )|Π̃|2 − 2M−T

0 S2Lw̃(0, t)

− c1‖w̃x‖
2 + c1

∆ǫ

ǫ0

∫ D

0

w̃(x, t)νxx(x, t) dx

− c1‖w̃xx‖
2 + c1

∆ǫ

ǫ0

∫ D

0

w̃x(x, t)νxx(x, t) dx

≤ −
λ(M−T

0 Q2M
−1
0 )

2
|Π̃|2

+

(

8D|M−T
0 S2L|

2

λ(M−T
0 Q2M

−1
0 )

− c1

)

‖w̃x‖
2

+ c1
∆ǫ

ǫ0

∫ D

0

w̃(x, t)νxx(x, t) dx

− c1‖w̃xx‖
2 + c1

∆ǫ

ǫ0

∫ D

0

w̃x(x, t)νxx(x, t) dx

(117)

Integrating ‖w̃‖2 and ‖w̃x‖
2 by parts, using Young’s inequality

and taking (84)-(85) into account, one can show that

‖w̃‖2 ≤ 4D2‖w̃x‖
2, ‖w̃x‖

2 ≤ 4D2‖w̃xx‖
2. (118)

Using Cauchy-Schwartz, Young and (118), the following

bounds are derived

∆ǫ

ǫ0

∫ D

0

w̃νxx dx ≤
1

4
‖w̃x‖

2 + 4D2

(

∆ǫ

ǫ0

)2

‖νxx‖
2

∆ǫ

ǫ0

∫ D

0

w̃xνxx dx ≤
1

2
‖w̃xx‖

2 + 2D2

(

∆ǫ

ǫ0

)2

‖νxx‖
2,

which plugged into (117) and after choosing

c1 =
16D|M−T

0 S2L|
2

λ(M−T
0 Q2M

−1
0 )

,

yield

V̇3(t) ≤ −
λ(M−T

0 Q2M
−1
0 )

2
|Π̃|2

−
c1
4
‖w̃x‖

2 −
c1
2
‖w̃xx‖

2

+ 6D2

(

∆ǫ

ǫ0

)2

c1‖νxx‖
2 (119)

Gathering (110), (116) and (119), and selecting

a1 = min







√

a2λ(M
−T
0 Q2M

−1
0 )

24D|K|2
,
λ(M−T

0 Q2M
−1
0 )D

6|K|2







a0 =
λ(M−T

0 Q2M
−1
0 )λ(Q1)

72|S1B|2|K|2
,

b0 =
λ(M−T

0 Q2M
−1
0 )λ(Q1)

24|S1BK|2
,

leads to

V̇ (t) = −
a0λ(Q1)

2
|X |2 −

(

b0λ(Q1)

4
−Db2κ3

)

|Π|2

−

(

λ(M−T
0 Q2M

−1
0 )

4
−Db2κ4 −Da2κ1

)

|Π̃|2,

−
a1
8D2

‖w‖2 −
a2
8D2

‖wx‖
2

−
b1
4D2

‖ν‖2 −

(

b2
2

− 6D2

(

∆ǫ

ǫ0

)2

c1

)

‖νxx‖
2

−
(c1
4

−D2a2κ2

)

‖w̃x‖
2 −

c1
2
‖w̃xx‖

2 (120)

Now, choosing

a2 =
1

8D
min

{

c1
Dκ2

,
λ(M−T

0 Q2M
−1
0 )

2κ1

}

,

b2 =
1

8D
min

{

b0λ(Q1)

κ3
,
λ(M−T

0 Q2M
−1
0 )

2κ4

}

,

into (120) yields

V̇ (t) = −
a0λ(Q1)

2
|X |2 −

b0λ(Q1)

8
|Π|2

−
λ(M−T

0 Q2M
−1
0 )

8
|Π̃|2

−
a1
8D2

‖w‖2 −
a2
8D2

‖wx‖
2

−
b1
4D2

‖ν‖2 −

(

b2
2

− 6D2

(

∆ǫ

ǫ0

)2

c1

)

‖νxx‖
2

−
c1
8
‖w̃x‖

2 −
c1
2
‖w̃xx‖

2. (121)

Integrating ‖νx‖
2 by parts, using Young’s inequality and

taking (84) into account, one gets ‖νx‖
2 ≤ 4D2‖νxx‖

2, which

can be used, along with (118), to further bound (121) as

V̇ (t) = −
a0λ(Q1)

2
|X |2 −

b0λ(Q1)

8
|Π|2

−
λ(M−T

0 Q2M
−1
0 )

8
|Π̃|2

−
a1
8D2

‖w‖2 −
a2
8D2

‖wx‖
2

−
b1
4D2

‖ν‖2 −

(

b2
2

− 6D2

(

∆ǫ

ǫ0

)2

c1

)

1

4D2
‖νx‖

2

−
c1

32D2
‖w̃‖2 −

c1
8D2

‖w̃x‖
2. (122)

Assuming |∆ǫ| ≤ δ and selecting

δ <
ǫ0
2D

√

b2
3c1

,

it follows from (98) and (IV) that

V̇ (t) ≤ µV (t)

where

µ = min

{

λ(Q1)

8λ(S1)
,
λ(M−T

0 Q2M
−1
0 )

8λ(M−T
0 S2M

−1
0 )

,
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(

1

2
−

6D2(∆ǫ/ǫ0)
2c1

b2

)

ǫ

2D2
,
ǫ0

16D2

}

.

Now, from (98), one can find that

ψ1Ξ(t) ≤ V (t) ≤ ψ2Ξ(t), (123)

where

Ξ(t) = |X |2 + ‖w‖2H1
+ |Π̃|2 + ‖w̃‖2H1

+ |Π|2 + ‖ν‖2H1
,

and

ψ1 = min
{

a0λ(S1), b0λ(S1), λ(M
−T
0 S2M

−1
0 ),

1

2ǫ
min{a1, a2, b1, b2},

c1
2ǫ0

}

,

ψ2 = max
{

a0λ(S1), b0λ(S1), λ(M
−T
0 S2M

−1
0 ),

1

2ǫ
max{a1, a2, b1, b2},

c1
2ǫ0

}

.

Hence, the following exponential stability estimate is obtained

for the transformed system

Ξ(t) ≤
ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (124)

Now, an estimate is derived in terms of

Υ(t) = |X |2 + ‖u‖2H1
+ |Π̂|2 + ‖ν̂‖2H1

.

Using (90)-(94) and (95)-(97), one can show there exist

constants αi, βi such that

Ξ(t) ≤ α1|X |2 + α2‖u‖
2
H1

+ α3|Π̂|2 + α4‖ν̂‖
2
H1
,

Υ(t) ≤ β1|X |2 + β2‖w‖
2
H1

+ β3‖Π̃‖
2 + β4‖w̃‖

2
H1

+ β5|Π|
2 + β6‖ν‖

2
H1
,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (125)

being φ1 = 1/maxβi, φ2 = maxαi. Therefore, from (124)-

(125), one gets the exponential stability estimate

Υ(t) ≤
ψ2

ψ1

φ2
φ1

Υ(0)e−µt, ∀t ≥ 0,

completing the proof.

V. SIMULATIONS

The proposed control strategies are illustrated in this section

using a second-order system defined by

A =

[

0 1
1 0

]

, B =

[

0
1

]

and C =
[

1 0
]

,

which has an exponentially unstable mode, provided that the

poles of the system are located at s = ±1. The feedback gain

matrices are chosen as K = LT = [−2, −2], which guarantee

A+BK and A− LC Hurwitz, being all their poles located

at s = −1.
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Fig. 1. Nominal simulation of a plant with delay actuator dynamics, where

X(0) = [1, 2]T , P̂ (0) = [0, 0]T and v̂(x, 0) = 0, ∀x ∈ [0, 1)

A. Delay case

First, we consider the case modeled by (1)-(4), in which the

input is affected by a delay D = 1. The control law (15)-(18)

is implemented using an upwind scheme (first order accurate

both in time and space) for the PDE discretization. Simulation

results are shown in Fig. 1 for the nominal case, that is, with

D0 = 1. Note that the system (solid blue) runs in an open-loop

fashion until the control action reaches the system at t = D.

The observer estimates P̂1 and P̂2, which are actually D units

of time ahead predictions, are shown delayed by D units of

time (dashed red), to match the actual state (blue). One can

also see that the value of v̂ at the spatial location x = 0
contains an actual estimation of the output (dashed black), as

expected. The bottom plot shows the control law (blue) and

the actual signal that reaches the ODE (black), which is simply

delayed by D units of time.

Robustness is also illustrated in Fig. 2, where a +5%
additive disturbance in the time delay is considered, that

is, D = 1.05. One can see that the asymptotic stability is

preserved in spite of the uncertainty.

B. Diffusion case

Now, we consider the case modeled by (7)-(11), in which

the input undergoes a diffusive process through a domain of

length D = 1 with a diffusive coefficient ǫ = 1. The control

law (59)-(63) is implemented using a first-order-in-time and

second-order-in-space discretization for the PDE. Simulation

results are shown in Fig. 3 for the nominal case, that is ǫ0 =
ǫ = 1. The system states are depicted at the top and central

plots (blue). Recall that Π̂1 and Π̂2, are actually the “anti-

diffused” state estimates, as discussed in Remark 1. Then, we

plot the observer estimates after undergoing a diffusion process

through a domain of length D = 1 and with ǫ = 1 (dashed

red), to see that they match the actual state (blue). One can also

see that the value of v̂ at the spatial location x = 0 contains

an actual estimation of the output (dashed black), as expected.
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Fig. 2. Robust simulation of a plant with delay actuator dynamics, where

X(0) = [1, 2]T , P̂ (0) = [0, 0]T and v̂(x, 0) = 0, ∀x ∈ [0, 1)
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Fig. 3. Nominal simulation of a plant with diffusive actuator dynamics, where

X(0) = [1, 2]T , Π̂(0) = [0, 0]T and ν̂(x, 0) = 0, ∀x ∈ [0, 1)

The bottom plot shows the control law (blue) and the actual

signal that reaches the ODE (black).

Robustness is also illustrated for this case, performing one

more simulation in which ǫ = 2 while we keep ǫ0 = 1. The

results are shown in Fig. 4, where it can be seen that small

oscillations appear but stability is preserved.

VI. CONCLUSIONS AND FUTURE WORK

The problem of compensating delay or diffusive actuator

dynamics via output measurement has been addressed in this

work. Furthermore, the compensation is achieved for any

arbitrarily large delay or diffusion domain length, respec-

tively, while avoiding integral terms. Robustness under small

variations in the delay size or the diffusion coefficient has

been also proved. The proposed control laws may be of

interest in practice as one only needs to take care of the PDE

discretization. Although it may not be an straightforward task,
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Fig. 4. Robust simulation of a plant with diffusive actuator dynamics, where

X(0) = [1, 2]T , Π̂(0) = [0, 0]T and ν̂(x, 0) = 0, ∀x ∈ [0, 1)

ample tools are available for that purpose. Future work may

include extending the same procedures to actuators governed

by wave dynamics or more general types of PDEs.
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APPENDIX A

The transformation (40) can be compactly written as

w(x, t) = u(x, t)− f(x−∆D)X(t)− (g ⋆ u)(x, t) (126)

where f(x) = KeAx, g(x) = KeAxB and ⋆ denotes the

convolution operator in the x variable, i.e., (g ⋆ u)(x, t) =
∫∞

−∞ g(x − y)u(y, t) dy. Note that the limits of the integral

can be truncated assuming that g : [0,∞) and provided that

u : [∆D,D0]× [0,∞). Taking the Laplace transform of (126)

yields

w(σ, t) = Γu(σ, t)−K(σI −A)−1e−∆DσX(t) (127)

where σ is the Laplace argument and Γ = I−K(σI−A)−1B.

Solving (127) for u(σ, t) yields

u(σ, t) = Γ−1w(σ, t) + Γ−1K(σI −A)1e−∆DσX(t) (128)

where Γ−1 = I + K(σI − A − BK)−1B, which fol-

lows by the Woodbury identity. Adding and subtracting

K(σI −A−BK)−1 to Γ−1K(σI −A)−1 and using the

identity (σI −A−BK)−1
(

I −BK(σI −A)−1
)

= (σI −
A)−1 leads to

Γ−1K(σI −A)1 = K(σI −A−BK)−1. (129)

Finally, plugging (129) into (128) and taking the inverse

Laplace transform yields (45), which completes the proof.
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APPENDIX B

The proof of this transformation requires several intermedi-

ate results that are derived first. Let us start by defining

q(x, y) =
1

ǫ

∫ x−y

0

M(ξ)B dξ, (130)

to rewrite (12) and (64) in a more compact notation

Π(t) =M(D)X(t) +

∫ D

0

q(D, y)u(y, t) dy, (131)

ν(x, t) = CM(x)X(t) + C

∫ x

0

q(x, y)u(y, t) dy. (132)

Note that (130) satisfies the following relations

qxx(x, y) = qyy(x, y), (133)

q(x, x) = 0, (134)

ǫqx(x, y) =M(x− y)B, (135)

ǫqy(x, y) = −M(x− y)B. (136)

Let us define R =

[

0 A/ǫ
I 0

]

and ΦT =
[

I 0
]

so that

M(ξ) in (14) can be expressed as M(ξ) = ΦT eRξΦ. Direct

computations then show that

M ′(ξ) = ΦTReRξΦ, (137)

M ′′(ξ) = ΦTR2eRξΦ = ǫ−1AM(ξ), (138)

where the last equality follows from the fact that

ΦTR2 = ǫ−1AΦT , which is readily verified. Evaluating (14)

and its derivative (137) at ξ = 0, the following holds

M(0) = I, (139)

M ′(0) = 0. (140)

Now, integrating (138) from 0 to x − y on both sides, post-

multiplying by B and using (140) yields

M ′(x − y)B = ǫ−1A

∫ x−y

0

M(ξ)B dξ = Aq(x, y), (141)

where the last equality follows from (130). Differentiating

(136) and using (141) leads to

ǫqyy(x, y) = Aq(x, y). (142)

The equations derived so far in this appendix are instrumental,

which are next used to show how to obtain the transformed

system (65)-(69). Differentiating (131), using (7)-(8) and in-

tegrating twice by parts, yields

Π̇(t) =M(D)[AX(t) +Bu(0, t)] +

(

qy(D, 0)u(0, t)

− qy(D,D)u(D, t)− q(D, 0)ux(0, t)

+

∫ D

0

qyy(D, y)u(y, t) dy

)

ǫ. (143)

Using (9), (136) and (139), one can simplify (143) to

Π̇(t) =M(D)AX(t) +Bu(D, t)

+

∫ D

0

ǫqyy(D, y)u(y, t) dy. (144)

Plugging (142) evaluated at x = D into (144), using (131)

and the fact that M(D) and A commute, yields (65). On the

other hand, (66) can be obtained by computing the first-in-time

and second-in-space derivatives of (132), integrating twice by

parts in the former, subtracting the resulting expressions and

using (133)-(136), (138)-(139). Finally, (67) follows simply by

evaluating (64) at x = D, while (68) follows by evaluating the

spatial derivative of (64) at x = 0 and using (140).

APPENDIX C

First, it is shown that M(x) can be alternatively rewritten

in terms of a hyperbolic function as

M(x) = cosh(x
√

A/ǫ). (145)

Let us recall the matrices R and Φ, defined in Ap-

pendix B. Because of their structure, it is verified (by di-

rect computations) that ΦTR2j+1Φ = 0 and ΦTR2jΦ =
(A/ǫ)j , for all j ∈ {0, 1, . . . ,∞}. Therefore, using

the Taylor expansion of the matrix exponential, one has

that M(x) = ΦT eRxΦ =
∑∞

n=0(Φ
TRnΦ)xn/n! =

∑∞
n=0(A/ǫ)

nx2n/(2n)! =
∑∞

n=0(x
√

A/ǫ)2n/(2n)! =
cosh(x

√

A/ǫ), which proves (145). Using (145), the back-

stepping transformation (90) can be compactly rewritten as

w(x, t) = u(x, t)− f(x)X(t)− (g ⋆ u)(x, t), (146)

where f(x) = K cosh(x
√

A/ǫ), g(x) = ǫ−1K
∫ x

0
f(ξ) dξB

and ⋆ denotes the convolution operator in the x variable.

Taking the Laplace transform of (146) yields

w(σ, t) = Γu(σ, t)−Kσ(σ2I −A/ǫ)−1X(t), (147)

where σ is the Laplace argument and Γ = I − ǫ−1K(σ2I −
A/ǫ)−1B. Solving (147) for u(σ, t) yields

u(σ, t) = Γ−1w(σ, t) + Γ−1Kσ(σ2I −A/ǫ)−1X(t), (148)

where Γ−1 = I + ǫ−1K(σ2I − (A + BK)/ǫ)−1B,

which follows by the Woodbury identity. Now,

adding and subtracting Kσ(σ2I − (A+BK)/ǫ)−1

to Γ−1Kσ(σ2I − A/ǫ)−1 and using the identity

(σ2I − (A + BK)/ǫ)−1
[

I − ǫ−1BK(σ2I −Aǫ)−1
]

=
(σ2I −Aǫ)−1 leads to

Γ−1Kσ(σ2I−A/ǫ)−1 = Kσ(σ2I−(A+BK)/ǫ)−1. (149)

Finally, plugging (149) into (148) and taking the inverse

Laplace transform of the resulting expression yields (95),

which completes the proof.
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