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Abstract

In this work, Periodic Event-Triggered Sampling (PETS) and dual-rate control techniques are integrated

in a Wireless Networked Control System (WNCS), where time-varying network-induced delays and packet

disorder are present. Compared to the conventional Time-Triggered Sampling (TTS) paradigm, the control

solution is able to considerably reduce network utilization (number of transmissions), while retaining a

satisfactory control performance. Stability for the proposed WNCS is assured using Linear Matrix Inequal-

ities (LMIs). Simulation results show the main benefits of the control approach, which are experimentally

validated by means of an Unmanned Aerial Vehicle (UAV) based test-bed platform.

Index Terms

Event-Triggered Sampling, Networked Control System, Multi-rate Control, Unmanned Aerial Vehicle.

I. INTRODUCTION

Manuscript received Month xx, 2xxx; revised Month xx, xxxx; accepted Month x, xxxx. This work was supported by European
Commission as part of Project H2020-SEC-2016-2017 - Topic: SEC-20-BES-2016 (Id: 740736) - ”C2 Advanced Multi-domain
Environment and Live Observation Technologies” (CAMELOT), by the European Regional Development Fund (ERDF) as part of
OPZuid 2014-2020 under the Drone Safety Cluster project, by the Innovational Research Incentives Scheme under the VICI grant
”Wireless control systems: A new frontier in automation” (No. 11382) awarded by NWO (The Netherlands Organization for Scientific
Research) Applied and Engineering Sciences, and by project FPU15/02008, Ministerio de Economı́a y Competitividad, Spain.
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THE recent proposal of using Event-Triggered Sampling (ETS), instead of Time-Triggered Sampling

(TTS), in control systems [1]–[3] has become a trending research area. While in the TTS strategy

the plant is periodically sampled, in the ETS approach the plant is only sampled ”when necessary”, that

is, when state or output variables satisfy a certain event condition. In this way, ETS (compared to TTS)

is better equipped to lead to a reduction of resource utilization. However, the ETS strategy manages

less system information and, therefore, control performance may be worsened (compared to the desired

one, which is defined by the TTS case) if the ETS schemes are not designed appropriately. In particular,

model-based control techniques [4], [5] for the ETS strategy might be beneficial to guarantee a satisfactory

control performance.

Integrating ideas from TTS and ETS paradigms results in Periodic Event-Triggered Sampling (PETS),

where the event-triggering conditions are evaluated periodically. Different works on PETS can be found

for linear systems (using, e.g., both state-feedback and output-feedback control solutions [3], [6], [7],

observer-based control [4], multi-rate control [8], H∞ control [9], and Youla-Kucera-like parametrization

techniques [10]) and for nonlinear systems (using, e.g., state-feedback control [11], [12], output-feedback

control [13], and observer-based control [14]). PETS can be studied either in a continuous-time framework

(see, e.g. [15]) or in a discrete-time one (see, e.g. [16]). In the present work, the second perspective is

adopted by means of a dual-rate controller, which is configured to update the control signal N times faster

(at period T ) than the sampling rate of the system’s output (at period NT ). From the current measurement,

the dual-rate controller is able to generate N control actions to be injected in the next N control periods.

The sampling time T should be set to reach the required control performance from a single-rate framework.

Actuating at this period T , and despite sensing at period NT , the dual-rate controller is able to preserve

stability and keep a satisfactory control performance [17], [18]. One advantage of adopting dual-rate

control in PETS is that the evaluation period of the triggering conditions can be enlarged, which leads

to various implementation benefits, in addition to guaranteeing a minimum inter-event time [15]. The

main drawback of using dual-rate control (compared to single-rate control) is the consideration of more

complex design techniques. In addition, the single-rate controller at period T may achieve better control

performance.

Networked Control Systems (NCS) [19], [20] is a related prolific control area, addressing control

scenarios where different devices share a common communication link. There are several advantages

associated with NCS (such as cost reduction flexibility and ease of installation and maintenance), but



also drawbacks (like the possible occurrence of time-varying delays [21], [22], packet dropouts [23], [24],

packet disorder [24], [25], and network bandwidth constraints [26], [27]).

The main aim of this work is two-folded. First, the integration of PETS and dual-rate control in the

context of Wireless Networked Control Systems (WNCS) in order to reduce the number of transmissions

through the network (which may be related to the battery usage of the different wireless devices connected

to the WNCS), while preserving stability and performance propierties. For this purpose, it is essential to

face the drawbacks considered in WNCS, that is, the presence of

• time-varying delays: they can be compensated by means of the dual-rate controller by considering a

gain-scheduling approach (for example, the one introduced in [28]). The control system becomes a

discrete Linear Time-Varying (LTV) system, and its stability can be proved in terms of Linear Matrix

Inequalities (LMIs) [29].

• packet disorders: as the statistical distribution of the network-induced delay is assumed to be known,

the sensing period can be chosen larger than the maximum time delay found in the delay distribution.

Then, one can guarantee that no packet disorder will occur. In situations where the sensing period is

long (say, in the same order as the settling time), dual-rate setups (i.e. actuating faster than sensing)

may be advantageous in terms of achievable performance [17], [18].

Our second aim is to show the potential of our ideas in the context of a popular control application,

that of Unmanned Aerial Vehicles (UAVs). In fact, the large number of UAV applications has attracted

the interest of the research community [30]–[32]. In order to autonomously navigate, an imperative need

of UAVs is the ability to accurately position the UAV in the environment. Therefore, one of the main

tasks in this research area is the design of position controllers, from conventional PD controllers [33],

[34] to more sophisticated ones [35]–[37]. In the present work, an advanced PD controller such as the

proposed gain-scheduled dual-rate one will be used to wirelessly control the orientation on z axis of a

UAV. The use of WNCS in UAV-based platforms enables to use less onboard hardware, and hence the

total weight of the platform can be significantly decreased. For instance, while vision, navigation and

control algorithms can be implemented on the onboard computer, optical flow computations, flight data

monitoring, and trajectory generation can be performed on the Ground Control Station (GCS) (see, e.g.

[30]). Clearly, including PETS may be beneficial and even needed, since the energy usage of battery-

powered devices and the utilization of communication resources can be reduced [4]. Demonstrators of

PETS schemes are rare, exceptions are [38]–[41]. As such, the experimental validation, next to the novel
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Fig. 1: NCS setup

design, is a contribution of its own. To the best of the authors’ knowledge, only one very recent work [8]

proposes a dual-rate PETS control solution in an NCS framework, where time-varying delays are dealt

with. But in [8], no experimental validation is included. Other differences between [8] and the present

work are: i) the controller design framework (continuous-time and a Lyapunov-Krasovskii method are

used in [8], whereas discrete-time and a gain-scheduling approach are employed in our work), ii) stability

analysis (global asymptotic stability is guaranteed in [8], whereas mean square stability will be assessed

in this work).

The paper is organized as follows. In section II, the considered WNCS is described. Section III presents

the stability analysis for the control system. In addition, some cost functions are included in order to be

used when analyzing control performance and reduction of resource usage for the WNCS. Section IV

presents a UAV-based platform, which enables to validate the control solution, after being simulated in

Truetime [42]. Finally, Section V enumerates the main conclusions of the work.

II. PROBLEM SETTING

The considered networked setup is shown in Fig. 1. In the following subsections its different features

will be explained.

A. Process, network-induced delay, and dual-rate controller

Let us consider an n-order process, which is sampled using a dual-rate scheme considering the actuation

rate 1/T and the sensing rate 1/NT (N is a given integer). It can be represented in a lifted framework



[43] as

xk+1 = APxk +BPUk

yk = CPxk +DPUk (1)

where xk ∈ Rn is the plant state vector (k ∈ N represents instants at period NT ), yk is the output mea-

surement, and Uk ∈ RN , being Uk = (uk1, u
k
2, . . . , u

k
N)T, is the control input sequence with (.)T denoting

transpose, where the actuation updates occur at evenly spaced instants kNT+lT (l = 0, 1, . . . , N−1) under

Zero Order Hold (ZOH) conditions (i.e., uk1 is applied at kNT , uk2 is applied at kNT +T , and so on up to

ukN , which is applied at kNT +(N−1)T ). That leads to a uniform actuation pattern {0, T, . . . , (N−1)T}

inside the sensor period. Matrices in (1) are AP ∈ Rn×n, BP ∈ Rn×N , CP ∈ R1×n, and DP ∈ R1×N . As

usual in most physical systems, we will assume DP = 0 in the sequel.

When the process is wirelessly controlled, network-induced delays usually appear. The discrete round-

trip time delay τk ∈ R≥0 is defined as

τk := τrl(k) + τc(k) + τlr(k) (2)

where τlr(k) is the local-to-remote delay, τrl(k) is the remote-to-local delay, and τc(k) is a computation

time delay required by the different devices, which is lumped together with the network-induced delays. As

it will be later shown, the method employed in this work requires different mathematical operations, being

matrix multiplication the most complex one, and hence, requiring the largest amount of computation time.

When this operation is used in the present work, it concretely involves the multiplication of two matrices

with dimensions n ×m and m × 1 (i.e., an array of m elements). The computation complexity is then

O(nm). The round trip delay τk is assumed to be time-varying in the range [0, τmax], with τmax < NT . This

assumption prevents packet disorder. The local side is assumed to have computation capabilities in order

to execute the gain-scheduling controller. As a local clock is governing the different local devices, they

can be perfectly synchronized. Therefore, no additional synchronization and time-stamping techniques are

required in order to measure the round-trip time delay. τk can be obtained by subtracting packet sending

and receiving times. Once the delay is measured, the local gain-scheduling controller will compensate

for it. The procedure works under the assumption of no packet disorder (as previously pointed out) and

no packet dropouts. Note that, although a shared clock can be assumed in some applications (as in the

present work), it might be hard to fulfill for other applications, for instance, in multiple wireless sensor



nodes that are physically distributed. In this case, an option may be to synchronize nodes [44]. One of the

main drawbacks of using synchronization (which is required by the time-stamping technique) arises when

an accurate delay measurement is needed. In this case, the synchronization protocol may need to send

a large quantity of special messages, increasing network load and hence delays. A probabilistic model

for the network delays τk is considered. In fact, the τk are assumed to be independent and identically

distributed random variables with a known probability function p(τk) : R≥0 → R≥0. As it will be later

shown in Section IV, in our Wireless Ethernet configuration, the probability function can be fitted to a

generalized exponential distribution (such as in [45]).

The delay-dependent dual-rate controller, which is located at the local side, will take in the lifted

framework the form

φk+1 = AR(τk)φk +BR(τk)êk

Uk = CR(τk)φk +DR(τk)êk (3)

where φk ∈ R2 is the state vector, and êk is the error signal received by the controller (which will be

defined in (9)). In this work, AR(τk) ∈ R2×2, BR(τk) ∈ R2, CR(τk) ∈ RN×2, DR(τk) ∈ RN represent a

dual-rate PD controller where

AR(τk) =

 1 0

0 f(τk)


BR(τk) =

 0

1− f(τk)



CR(τk) =


1 −Kd(τk)

1 0

...
...

1 0



DR(τk) =


Kp(τk) +Kd(τk)

Kp(τk)

...

Kp(τk)


(4)

being Kp(τk), Kd(τk), f(τk), respectively, the proportional and derivative gains, and a derivative noise-



filter pole. All of these controller parameters can be captured in the delay-dependent gain vector θ(τk) =

(Kp(τk), Kd(τk), f(τk))
T, which will be computed by means of the gain scheduling approach:

θ(τk) = θ(0) + Ω · τk (5)

where

• θ(0) = (Kp(0), Kd(0), f(0))T is the no-delay, nominal gain vector, which can be designed via classical

procedures [46], [47].

• Ω denotes the scheduling vector, which is deduced after solving a least-square problem on the mini-

mization of the first-order Taylor term of ‖π(τk, θ(τk))−π(0, θ(0))‖, being π(τk, θ(τk)) a performance

vector defined by the modulus of the closed-loop poles. The solution of the proposed problem yields

Ω = −(∆TWTW∆)−1WT∆Tλτk (6)

where W is a weighting filter (to give priority to dominant closed-loop poles), ∆ is a Jacobian

matrix that includes the derivatives ∂π
∂θi

evaluated at the nominal point (i.e. for τk=0 and θ(0)) for

each controller parameter θi, and λτk is the derivative related to the delay, λτk = ∂π
∂τk

, evaluated at

the same nominal point. The scheduling law in (5) tries to maintain the no-delay, nominal control

performance despite network delays. See [28] for more details.

B. Event-triggered conditions

Two different event-triggered conditions will be considered for the WNCS. The first one is related to

the system’s output yk (and hence, defined at the sensor device, which is located at the local side) and

the other one to the tracking error ek (which is defined at the remote side).

Let βk ∈ {0, 1} denote the scheduling variable at the sensor in the sense that βk = 1 if the sensor data

yk is transmitted at discrete time k over the local-to-remote link, and βk = 0 otherwise. The last sent

sensor data is stored in ŷk. Therefore,

ŷk = βkyk + (1− βk)ŷk−1, for k ∈ N≥1 (7)

and given ŷ0 = y0. Regarding the periodic event-triggered condition at the sensor, it is implemented

following a discrete time version of the so-called Mixed Triggered Mechanism (MTM) [48] based on the



system output yk in such a way that the output yk is sent via the network to the remote side (i.e., βk = 1)

when

‖ŷk−1 − yk‖2 ≥ σs‖yk‖2 + δs, for k ∈ N≥1 (8)

given ŷ0 = y0, and where σs and δs are positive constants. Note that usually, σs is chosen to be smaller

than one, since for large values of σs this condition would hardly be met (see, e.g. [49] and the literature

therein). It is also often the case to have values of σs close to zero or even zero.

Let γk ∈ {0, 1} denote the scheduling variable for the tracking error signal, which is evaluated at the

remote side when a packet from the sensor arrives (that is, when βk = 1; otherwise it is not). In particular,

γk = 1 denotes transmission of the tracking error ek over the remote-to-local link, and γk = 0 otherwise.

A ZOH at the input of the controller (at local side) is considered to store the last sent error êk:

êk = γkek + (1− γk)êk−1, for k ∈ N≥1 (9)

where ê0 = e0 and ek = rk − yk (being rk the reference signal, and ŷk = yk since βk = 1) is transmitted

to the local side (i.e., γk = 1) when βk = 1 and

‖êk−1 − ek‖2 ≥ σe‖ek‖2 + δe (10)

where σe and δe are positive constants. Similarly to the discussion pertaining the choice of σs, note that

typically σe is chosen to be less than one.

Note that the feedback loop is only closed from local to remote sides, and back to local side, when the

conditions (8) and (10) hold (and hence, βk = γk = 1). If one of the event conditions is not true (that is,

βk = 0 or γk = 0), then there is no update of ek, but the controller can use the last sent error êk (provided

by the ZOH) to evolve its dynamics, which enables to retain a satisfactory control performance.

Depending on βk and γk, two different dual-rate sampling schemes will be considered (depicted in Fig.

2):

• If βk = 0 or γk = 0, the dual-rate controller generates Uk from the last sent error (êk = êk−1) and

considers τk = 0, and the actuator injects the set of control actions following a uniform pattern. That

is the lifted framework in (1). Let us denote Uk as Ûk = (ûk1, û
k
2, . . . , û

k
N)T in this case.

• If βk = γk = 1, and due to the network-induced delay τk, another value uk0 appears in the control input

sequence Ũk = (uk0, u
k
1, u

k
2, . . . , u

k
N)T. The value uk0 is actually the first control action calculated from
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Fig. 2: Time axis for the dual-rate sampling strategy

the held error, that is, uk0 = ûk1. This computation is carried out before the updated error is received

by the controller. After τk, the error is received and hence êk = ek, and from this information, the

remaining control actions of Ũk (i.e. (uk1, . . . , u
k
N )) are computed, replacing those ones previously

calculated from the outdated error (i.e (ûk1, . . . , û
k
N)). Therefore, in this case, if every control action

is applied (that is, if τk < T ), the set of control actions Ũk to be applied by the actuator follows the

non-uniform actuation pattern {0, τk, T, . . . , (N − 1)T} inside the sensor period. Otherwise, if the

delay were τk ≥ dT, d ∈ N+, the first d control actions in the subset (uk1, u
k
2, . . . , u

k
N ) would not be

applied.

III. STABILITY ANALYSIS AND COST FUNCTIONS

In this section, firstly, after presenting the closed-loop model for the considered WNCS, closed-loop

stability is ensured by means of LMIs. Secondly, two cost functions are introduced to analyze the tradeoff

between control performance and resource usage.

A. Stability analysis

We make some simplifying assumptions to streamline the stability analysis.

First, we assume that the delay coincides with one of the actuation update times τk ∈ {T, . . . , (N−1)T}.

From an implementation point of view, this can be obtained by adding an artificial delay on the local

side to enforce this condition. That is, as the local side is assumed to have computation capabilities, once

the round-trip time delay is measured, simple operations can be carried out to decide what is the next

actuation time. Then, from this assumption the description given at the end of the previous section, we



can conclude the following. At times at which there are two transmissions (βk = 1 and γk = 1), the

controller update equations and the control input are given by

φk+1 = AR(τk)φk +BR(τk)ek

Ûk = CR(0)φk +DR(0)êk−1

Uk = CR(τk)φk +DR(τk)ek

Uk = χ(τk)Uk + (I − χ(τk))Ûk

(11)

where, assuming ukj ∈ Rnu for every k and j, and defining χi(j) = 1 if j ≤ i and χi(j) = 0 otherwise

χ(τk) = diag(
[
0Inu χ1(

τk
T

)Inu . . . χN−1(
τk
T

)Inu

]
)

and where Inu denotes the nu × nu identify matrix. These equations can alternatively be written as

φk+1 = AR(τk)φk +BR(τk)ek

Uk = C̄R(τk)φk + D̄R(τk)ek + D̃R(τk)êk−1

(12)

where
C̄R(τk) = χ(τk)CR(τk) + (I − χ(τk))CR(0)

D̄R(τk) = χ(τk)DR(τk)

D̃R(τk) = (I − χ(τk))DR(0).

At times at which either βk = 0 or γk = 0 we have the following

φk+1 = AR(0)φk +BR(0)êk−1

Uk = CR(0)φk +DR(0)êk−1.

We make the following additional assumptions to make the stability analysis simpler:

(A1) Either the reference is zero at every time step (i.e., rk = 0) and thus yk = −ek, or σs = σe = 0 and

the reference is constant.

(A2) δe = δs, σs = σe.

Due to (A1) and (A2) the triggering conditions (8), (10) are equivalent (i.e., βk = γk for every k ∈ N)

and we can consider just one of the conditions. Let

vk = yk − ŷk−1



F0 =

 AP −BPDR(0)CP BPCR(0) BPDR(0)
−BR(0)CP AR(0) BR(0)

CP (AP −BPDR(0)CP )− CP CPBPCR(0) CPBPDR(0) + I


F1(τk) =

 AP −BP (D̃R(τk) + D̄R(τk))CP BP C̄R(τk) BP D̃R(τk)
−BR(τk)CP AR(τk) 0

CP (AP −BP (D̃R(τk) + D̄R(τk))CP )− CP CPBP C̄R(τk) CPBP D̃R(τk)

 (15)

and

ξk =


xk

φk

vk

 .
Note that

ŷk =


CPxk − vk, if βk = 0

CPxk, if βk = 1
.

Taking into account these equations and the assumptions mentioned above we can write the closed-loop

system as

ξk+1 =


F0ξk, if ξᵀkQ0ξk < δe

F1(τk)ξk, if ξᵀkQ0ξk ≥ δe

(13)

where F1 and F0 are defined in (15) and

Q0 =


−σeCᵀ

PCP 0 0

0 0 0

0 0 I

 . (14)

If δe = δs = 0, we can consider a common Lyapunov function and use the S-procedure to prove that

E[ξᵀkξk]→ 0 as k →∞ if the LMIs

F ᵀ
0 PF0 − P − ζ1Q0 < 0

Eτ [F1(τ)ᵀPF1(τ)]− P + ζ2Q0 < 0
(16)

hold, where τ denotes, and will denote in the sequel, a dummy variable with the same distribution as each

τk, for some ζ1 ≥ 0 and ζ2 ≥ 0, which can be found by griding the parameter space (similar arguments

can be found in [50]).



Interestingly, considering δe = δs > 0 one can still establish a stability property, commonly known as

mean square stability, by testing the LMIs (16), as the next result shows.

Theorem 1: Suppose that the LMIs (16) hold for some ζ1 ≥ 0 and ζ2 ≥ 0. Then there exists c > 0,

dependent on the initial condition ξ0, such that the following holds for the system (13)

E[ξᵀkξk] ≤ c (17)

for every k ∈ N.

Proof.

We start by establishing that the LMIs (16) imply that, there exist d > 0 and α < 1 such that

E[ξᵀk+1Pξk+1|ξk]− αξᵀkPξk < d, for every ξk. (18)

Using the S-Procedure, we can conclude that (18) holds for ξk such that ξᵀkQ0ξk ≥ δe, if there exists

ζ3 ≥ 0 such that

E[ξᵀk+1Pξk+1|ξk]− αξᵀkPξk − d+ ζ3(ξ
ᵀ
kQ0ξk − δe) < 0,

for every ξk or equivalently

ξᵀk(E[F1(τk)
ᵀPF1(τk)]− P + ζ3Q0)ξk−

−ζ3δe − d+ (1− α)ξᵀkPξk < 0.
(19)

Making ζ3 = ζ1, and noticing that from the second inequality in (16), Eτ [F1(τ)ᵀPF1(τ)]−P+ζ3Q0 = −S1

for some S1 > 0, choosing 0 < α < 1 such that (1− α)P − S1 < 0, we conclude that (19) holds.

Using again the S-Procedure, we can conclude that (18) holds for ξk such that ξᵀkQ0ξk < δe, if there

exists ζ4 ≥ 0 such that

E[ξᵀk+1Pξk+1|ξk]− αξᵀkPξk − d− ζ4(ξ
ᵀ
kQ0ξk − δe) < 0

or equivalently

ξᵀk [F ᵀ
0 PF0 − P − ζ4Q0]ξk − (d− ζ4δe) + (1− α)ξᵀkPξk < 0. (20)

Making ζ4 = ζ1, noticing that from the first inequality in (16), F ᵀ
0 PF0 − P − ζ4Q0 = −R1 for some

R1 > 0, choosing 0 < α < 1 such that (1 − α)P − R1 < 0, and picking d > ζ4δe we conclude that the

inequality (20) holds, which concludes the proof of (18).



Applying recursively (18) and using the tower property of conditional expectations we conclude that,

for k ≥ 0,

E[ξᵀk+1Pξk+1] < αξᵀ0Pξ0 +
k∑
`=0

α`d, for every ξk (21)

which implies (17) due to the fact that P is positive definite.

Discussion on feasibility of the LMIs: The LMI

Eτ [F1(τ)ᵀPF1(τ)]− P + ζ2Q1 < 0

should be feasible even for ζ2 = 0, since this corresponds to a situation where there is a transmission.

The feasibility of this LMI can alternatively be tested by checking if the following matrix

L = Eτ [F1(τ)ᵀ ⊗ F1(τ)ᵀ] (22)

is Schur stable, where ⊗ is the Kronecker product (see [51]).

Note that

F ᵀ
0 PF0 − P < 0

would never hold if the plant is open-loop unstable.

However, as the next lemma shows the first inequality in (16) is always satisfied when σe = σs = 0

and the controller stabilizes the plant if one would have êk = ek, i.e.,

φk+1 = AR(0)φk +BR(0)ek

Uk = CR(0)φk +DR(0)ek

which can be easily shown to be equivalent to the following matrix

M :=

AP −BPDR(0)CP BPCR(0)

−BR(0)CP AR(0)

 (23)

being Schur stable.

Lemma 1: Suppose that σs = σe = 0 and that M is Schur stable. Then, there exists (a sufficiently large)

ζ1 > 0 such that the LMI

F ᵀ
0 PF0 − P − ζ1Q0 < 0

is feasible.



Proof. Note that, due the the assumption that M is Schur stable, there exists a positive definite Pcl such

that

MᵀPclM − Pcl = −Rcl < 0

for some positive definite Rcl (which can be picked arbitrarily). Moreover,

F0 =

M N

R Q


where M is defined above and the expressions for N , R, and Q can be easily obtained. Suppose that we

pick P taking the form

P =

Pcl 0

0 Pe


for positive definite Pcl and Pe. Then, using the fact that σs = σe = 0,

F ᵀ
0 PF0 − P − ζ1Q0 =

−Rcl S1

Sᵀ
1 R1 − ζ1I


for some matrices S1, R1 whose expressions are omitted. By considering a sufficiently large ζ1 one can

prove that the latter matrix is negative definite, concluding the proof.

B. Cost functions about control performance and resource utilization

In order to compare the proposed PETS-based control solution with the conventional TTS one, control

performance and resource utilization may be evaluated. For this purpose, two different cost functions are

proposed:

• J1, which is based on the `2-norm, and its goal is to provide a measure about how accurate the

reference rk is followed along m iterations:

J1 =

√√√√ m∑
k=1

e2k. (24)

• J2: in order to analyze the network usage in the PETS strategy (which may be related to the battery

usage of the different devices when sending packets through the network), let us define the number

of transmitted packets as NoTPETS, which will be compared with the number of transmissions carried



out in the TTS approach NoTTTS. In this way, the network usage J2 (in %) can be expressed for the

PETS strategy as

J2 =
NoTPETS

NoTTTS
· 100%. (25)

IV. APPLICATION TO A UAV-BASED TEST-BED PLATFORM

In this section, the proposed WNCS is simulated and experimentally validated considering a UAV as the

process to be controlled. The main goal of this section is to present the main benefits of the PETS-based

strategy compared to the TTS-based one, regarding the tradeoff between network utilization and control

performance (see Section III-B for the performance measures). The section is split into four parts. Firstly,

the experimental platform in which the control solution is implemented is briefly described. From this

description, important data used for the simulation will be obtained (transfer function, delay distribution,

control parameters, and so on). Secondly, the stability conditions presented in Section III-A will be checked

in order to prove stability for the proposed WNCS. Thirdly, by means of a Truetime application [42],

the cost functions exposed in Section III-B will be evaluated. Finally, the control solution is implemented

in the test-bed platform, and experimental validations are provided (also computing the cost functions in

Section III-B).

A. Description of the test-bed platform

The proposed WNCS considers a four-rotor UAV as the process to be controlled, which is commonly

called as quad-rotor (see Fig. 3). This platform can be seen as a rigid body with no constraints, having

six degrees of freedom, being three position coordinates (x, y, z), and three Euler angles (φ, θ, ψ) (which

respectively represent pitch, roll and yaw). The platform is connected to a Ground Control Station (GCS)

via wifi, which works as the remote device in Fig. 1.

Using the four rotors as actuators, the six variables can be controlled. Due to the intrinsic instability

of the system, in this platform an on-board control for the roll and pitch angles is already implemented

in order to get auto-stabilization. In this application, the orientation along z, i.e the yaw angle ψ, will be

controlled. This angle can be approximately modeled by means of the following transfer function:

G(s) =
ψ(s)

u(s)
=

1175

s2
(26)

where u(s) is a virtual control action related to the rotor’s speed, which will be saturated in the range

[-0.2, 0.2].



Fig. 3: Four-rotor UAV

Fig. 4: Experimental round-trip time delay τ(k)

A histogram of the round-trip time delays τ(k) measured in the WNCS is depicted in Fig. 4. As the

maximum delay τmax is less than 40ms, the sensor period is chosen as NT=40ms in order to ensure no

packet disorder. In addition, since most of the delays τk are less than 20ms, N can be defined as N=2,

being T=20ms. As the situation in which τk < T is often given, when βk = γk = 1 (bottom subplot in

Fig. 2) the N control actions will be in most of the cases applied.

The TTS strategy defines the desired control performance for ψ. In this application, we use the

following control requirements to design the nominal controller: settling time ts ≤ 1.5s and overshoot

δ ≤ 15%. Then, the nominal parameters of the dual-rate controller are θ(0) = (Kp(0), Kd(0), f(0))T =

(0.023, 0.45, 0.15)T. To face the network-induced delays, the scheduling vector in (6) is Ω = (Kp, Kd, f)T =

(−0.10038,−375.4386, 0.8614)T. When using a PETS context, firstly, the values to be considered for the

thresholds in (8) and (10) will be σs = σe = 0, δs = δe = 0.125. In this way, the two assumptions needed

to assess stability in subsection III-A are fulfilled. Secondly, a different, more flexible configuration for

the thresholds will be tested, where σs = 0.3125, σe = 0.03125, δs = 0.125, δe = 0.0125.



B. Stability check

From the first PETS case, σs = σe = 0, then we can simply resort to Lemma 1 to assert the feasibility

of the first LMI in (16). Computing the eigenvalues of M in (23) and L in (22), we conclude that both of

them are Schur matrices and, therefore, mean square stability is guaranteed (and, in addition, the LMIs

in (16) are satisfied).

C. Truetime simulation

The simulation application is developed in Truetime [42], considering a Wireless Local Area Network

(WLAN). The study will compare both approaches: TTS versus PETS. Firstly, the results obtained by the

TTS strategy are depicted in Fig. 5. At the top subplot, output ψ and reference r can be observed. The

index J1 is calculated from this subplot (Table I shows the consequent value). At the bottom subplot, a

binary variable shows the network usage, that is, 0 means that the network is not being used, and 1 means

that the network is being used. In this case, the network is completely used (at every period NT ) and

hence J2 = 100%.

TABLE I: J1 and J2 indexes for the simulation

index TTS PETS (case 1) PETS (case 2)
J1 101.16 107.86 105.20
J2 100 26.74 32.13

Secondly, Fig. 6 and 7 show the results obtained by the PETS strategy. As shown in the top subplot,

the dynamic control specifications (ts, δ) are generally reached, but some worsening in the steady-state

response is observed. This fact is verified when computing J1. In the first PETS case, this cost function is

increased around 7% compared to the TTS case. In the second PETS case, it is increased around 4% (see

Table I). In both PETS cases, the bottom subplot shows a clear reduction of the network usage compared

to the TTS strategy, which is quantified by means of a decrease of around 73% in J2 for the first case, and

67% for the second case (as shown in Table I). The conclusion of these results is that the second PETS

case achieves a 3% more accurate reference tracking, but consuming 6% more resources. The differences

between both cases can be considered to be not very significant. Therefore, and since network usage is

more reduced in the first PETS case, we will only use this instance in the experimental validation.
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Fig. 5: System behavior for the TTS strategy. Simulation.
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Fig. 6: System behavior for the PETS strategy (case 1). Simulation.

D. Validation on the test-bed platform

Now, real experiments are carried out with the quadcopter, validating the previous results. Firstly, the

results obtained on the experimental platform by the TTS strategy are depicted in Fig. 8. Table II presents

the results for the indexes J1 and J2.

TABLE II: J1 and J2 indexes for the experiment

index TTS PETS
J1 120.77 135.02
J2 100 24.37

Secondly, Fig. 9 shows the results obtained by the PETS strategy (case 1). As in the simulation, the top

subplot shows that the dynamic control specifications (ts, δ) are mostly reached, but some worsening in

the steady-state response is observed. Then, J1 is increased around 11% compared to the TTS case (see

Table II). The bottom subplot shows a significant reduction of the network usage compared to the TTS
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Fig. 7: System behavior for the PETS strategy (case 2). Simulation.

strategy, as observed in the simulation. Concretely, J2 shows a decrease of around 76% (see Table II).
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Fig. 8: System behavior for the TTS strategy. Experiment.

Therefore, as similar values for the cost indexes and a same trend are obtained, the control solution is

validated in practice, showing the potential of the proposed PETS strategy.

V. CONCLUSIONS

In this paper, we studied the design and experimental validation of an undegraded PETS strategy in a

WNCS framework (concretely, on a UAV-based test-bed platform). Dual-rate control techniques are used

to face time-varying delays and packet disorder, and to try to maintain control performance at the desired

level. Integrating PETS in the WNCS enables to reach significant reduction of resource usage. Control

system stability for the WNCS is ensured via LMIs.
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Fig. 9: System behavior for the PETS strategy (case 1). Experiment.

One of the research directions we would like to pursue in the future is the extension of the results to

nonlinear systems. Related work on PETS for nonlinear systems can be found in [11]–[14] and literature

therein.
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