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Gain-Scheduled Predictive Extended State Observer for Time-varying Delays
Systems with Mismatched Disturbances

Abstract

In this paper, a novel control scheme for systems with input and output time-varying delays is provided in discrete-
time domain. The control strategy combines predictor-like techniques with a delay-dependent gain-scheduled extended
state observer. The main goal is twofold: (i) to minimize the negative effect of time-varying delays in the closed-loop
performance and, (ii) to actively compensate the effect of mismatched disturbances in the controlled output. Moreover,
a sufficient condition based on Linear Matrix Inequalities (LMI) is provided to obtain the maximum delay interval that
ensures the stability of the closed-loop system. Finally, the achieved benefits of the proposal are shown by simulation in
open-loop unstable plants, and experimentally validated in a test-bed quadrotor platform.

Keywords: Time-varying delay, Digital control implementation, Mismatched disturbance, Predictor-based control,
Gain-scheduling, Extended state observer

1. Introduction

Time delays may cause performance deterioration, or
even instability of the control system if they are not taken
into account in the control design [1]. With the objec-
tive of counteracting the negative effects of time delays
in the closed-loop control, different time delay compensa-
tion strategies have been proposed in the literature (see,
e.g., [2, 3, 4] and references therein). In particular, the
predictor-feedback approach uses a transformation that re-
lates the original delayed system with another delay-free
system, simplifying thus the control design [5]. Neverthe-
less, the presence of time-varying delays may degrade the
closed-loop behavior and brings extra difficulties in the
control synthesis. In discrete-time framework, some stud-
ies carried out the closed-loop stability analysis and the
design of the predictor-feedback control with time-varying
input delays [6, 7], and time-varying output delays [8].
However, these studies did not take into account the simul-
taneous presence of time-varying delays in both channels.

On the other hand, a large number of control sys-
tems are usually affected by unmeasurable external dis-
turbances. In the aim of minimizing their negative impact
in the control loop, different approaches were proposed
under the so-called Disturbance Observer-Based Control
(DOBC) methods [9, 10, 11, 12, 13]. In particular, the
Extended State Observer (ESO) became more popular
than other DOBC approaches because no prior knowl-
edge of the system plant is required, except for the sys-
tem relative degree [9]. In case of mismatched uncertain-
ties, that is to say, when the disturbance does not affect
the system in the same channel as the control action, the
disturbance rejection problem is more difficult to handle
[14, 15]. For systems with input delays, a modified ESO
was proposed in [16, 17] by simply considering a delayed

input in the ESO scheme to improve the disturbance rejec-
tion. Other related contributions directly integrated the
ESO with predictor-feedback approaches in [18]. How-
ever, these works assumed that the plant state is fully
measurable, and dealt only with matched uncertainties.
Although these limitations were further overcome in [19]
and extended to discrete-time systems under predictor-
feedback control in [20, 21, 22], all these works were re-
stricted to time-constant input delays. Therefore, to the
best of the authors’ knowledge, the synthesis of predictor-
feedback control and ESO under the simultaneous presence
of time-varying input and time-varying output delays, to-
gether with mismatched disturbances, has not been previ-
ously investigated, which motivates our study.

In this paper, we combine a predictor-feedback control
with a properly designed gain-scheduled ESO to coun-
teract the effect of time-varying delays in both channels.
Therefore, the closed-loop performance is improved with
respect to other recent related works that only consid-
ers time-constant delays [20]. Moreover, the mismatched
disturbances are effectively compensated in the controlled
output. Furthemore, we give a sufficient condition based
on LMIs, which allows to easily obtain the maximum delay
intervals under which the system is stable for any time-
varying delay, no matter how fast it may vary.

The remainder of the paper is structured as follows. In
Section 2, the problem statement and some preliminary
results are introduced. In Section 3, the proposed con-
trol structure is presented. Section 4 presents the stability
analysis for the control system. In Section 5, simulation
examples are presented. In Section 6, the control solution
is experimentally validated using a quadrotor platform.
Finally, some conclusions and perspectives are outlined in
Section 7.
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2. Problem statement and preliminaries

Consider the following discrete-time system model:

xk+1 = Axk +Buk−dIk +Bwwk (1)

where xk ∈ Rn is the system, uk ∈ Rm is the control
action subject to the input delay dIk, wk ∈ Rq is a mis-
matched external disturbance. Also, consider the output
systems:

yk = Cxk−dOk , ys,k = Csxk, (2)

where yk ∈ Rp is the measured output subject to the out-
put delay dOk , and ys,k ∈ Rps is the controlled output.

In this paper, the following assumptions are made:

Assumption 1. The input and output delays dIk, dOk are
assumed to be unknown time-varying but measurable dur-
ing control execution, and bounded by:

hI1 ≤ dIk ≤ hI2, (3)

hO1 ≤ dOk ≤ hO2 ,

where each pair (hI1, h
I
2) and (hO1 , h

O
2 ) are known.

Assumption 2. For some unknown initial value w0, the
disturbance signal wk can be modeled as:

wk+1 = Awwk, (4)

being Aw a know matrix. This implies that the amplitude
of the disturbance is unknown, but the type of disturbance
to be rejected should be known: e.g., steps, ramps, or si-
nusoidals with a given frequency.

Assumption 3. There exist K and L such that the ma-
trices A+BK and A− LC are Schur stable, where

A =

[
A Bw
0 Aw

]
, C =

[
C 0p×q

]
. (5)

Note that time-varying perturbations on delays might
cause poor performance or even instability in the closed-
loop control when the delay intervals are large enough.
Therefore, our objective is to design a control law uk =
f(yk) with time delay compensation for system (1) such
that: (i) the closed-loop is stabilized with larger delay in-
tervals, and (ii) the steady-state error in the controlled
output ys,k due to the disturbance wk is rejected, for any
time-varying delays dIk, d

O
k satisfying Assumption 1.

The following preliminary results will be useful for fur-
ther developments:

Lemma 1. Consider the following Artstein’s state trans-
formation [2]:

zk = xk + Φk(hI1) + Φk(hI2), (6)

where

Φk(hIf ) =
1

2

hI
f−1∑
i=0

A−i−1Buk−hI
f+i

, f = 1, 2 (7)

Then, system (1) can be equivalently represented by the
following delay-free interconnected model:

MS :

{
zk+1 = Azk + Fuk + τIB

2 wd,k +Bwwk,

yd,k = uk − uk−1
,

∆ :
{

wd,k = ∆d,kyd,k, ||∆d,k||∞ ≤ 1 ,

where τI = hI2 − hI1, and

F =
(
A−h

I
1 +A−h

I
2

) B
2

(8)

Proof. The proof can be straighfordwarly outlined from
[23].

Theorem 1. (Scaled Small Gain Theorem)[24] (Chap-
ter 8) The interconnected system on Fig. 1 is robustly
stable for any interconnected time-varying uncertain sys-
tem ∆ with ||∆||∞ ≤ 1 if the following two conditions
hold: (i) The system MS is internally stable and (ii) there
exist regular matrices T1, T2 such that T1∆ = ∆T2 and
||T2MST

−1
1 ||∞ < 1.

3. Gain-scheduled predictor-observer control
strategy

In this section, we first present the control strategy. Sec-
ond, we demonstrate that an equivalent delay-free inter-
connected model can be found for the closed-loop control
system formed by (1) and the proposed control law. Other
key aspects, such as the advantages in terms of closed-loop
performance enhancement under time-varying delays, are
discussed in Subsection 3.3.

3.1. Proposed control scheme

Let us introduce the following control strategy:

uk = Kẑk +Kwŵk, (9)

where ẑk and ŵk are obtained from the gain-scheduled
predictive ESO given below:

ˆ̄zk+1 = Aˆ̄zk + Fuk +Ad
O
k L
(
ȳk − CA−d

O
k ˆ̄zk

)
, (10)

where ˆ̄zTk =
[
ẑTk ŵTk

]
, the matrices A and C are defined

in (5), and F = [FT 0]T , being F defined in (8). The
prediction of the output system is obtained as:

ȳk = yk + CA−d
O
k
(
Φk(hI1) + Φk(hI2) + Ωk(dOk )

)
, (11)
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where the operators Φk(hI1), Φk(hI2) involved in the Art-
stein’s reduction method are defined in (7), and Ωk(dOk ) is
defined as:

Ωk(dOk ) =

dOk −1∑
i=0

Ad
O
k −i−1Buk−dOk +i−dI

k−dO
k

+i

. (12)

The control gain K in (9) is defined as K =

2K
(
A−h

I
1 +A−h

I
2

)−1
, where K is determined in such a

way that A + BK is Schur stable (according to Assump-
tion 3). In the same way, the observer gain L in (10) is
defined to be A−LC Schur stable. The parameter Kw in
(9) is tuned to compensate the steady-state error of the
disturbance wk in the controlled output ys,k (more details
in Remark 1, at the end of Section 3.3)

The gain-scheduled strategy is implemented through the

delay-dependent terms Ad
O
k , A−d

O
k in (10) and (11), to-

gether with the operator (12). Thus, the closed-loop poles
are kept to be the same as the eigenvalues of A+BK and
A−LC regardless of time delays, as discussed later in Sec-
tion 3.3. Notice also that the conventional ESO is obtained
from (10) in the absence of time delays (dIk ≡ 0, dOk ≡ 0).

3.2. Delay-free closed-loop model description

The following theorem finds a delay-free interconnected
state-space model for the closed-loop system formed by (1)
and the given control in (9):

Theorem 2. The closed-loop system formed by the sys-
tem (1) and the control law (9) can be expressed as the
interconnected system formed by the delay-free model MS

and the feedback system ∆:

MS :

{
ξk+1 = Ākξk + Ḡwd,k + B̄w,kwk,

yd,k = H̄ξk
,

∆ :
{

wd,k = ∆d,kyd,k, ||∆d,k||∞ ≤ 1 ,

where ξTk =
[
zTk uTk−1 ẑTk ŵTk

]
, and

Āk =


A 0 FK FKw

0 0 K Kw

Π1,k 0 A−Π1,k + FK Bw −Π2,k + FKw

Π3,k 0 −Π3,k Iq −Π4,k

 ,
(13)

Ḡ =


1
0
0
0

⊗ (τIB2
)
, B̄w,k =


Bw
0

Π2,k

Π4,k

 ,
H̄ =

[
0m×n −Im K Kw

]
,

τI = hI2 − hI1,

being Πi,k, i = 1, 2, 3, 4 the matrices obtained from the
following partition:

Ad
O
k LCA−d

O
k =

[
Π1,k Π2,k

Π3,k Π4,k

]
, (14)

Figure 1: Interconnected system: MS is a known system, and ∆
is some unknown unitary norm-bounded system, which contains all
sources of time-delays variations. Matrices T1, T2 are free and must
satisfy T1∆ = ∆T2.

with Π1,k ∈ Rn, and the rest of matrices Π2,k,Π3,k,Π4,k

of compatible dimensions.

Proof. Following the original ideas of the ESO [9], the
following state-space augmented model can be considered
from (1) and (4):{

x̄k+1 = Ax̄k + Buk−dIk
yk = Cx̄k−dOk , ys,k = Csx̄k

, (15)

where x̄T =
[
xTk wTk

]
, the matrices A and C are defined

in (5), and

B =

[
B
0

]
, Cs =

[
Cs 0

]
. (16)

Now, define the augmented state x̄k = [xTk wk]T . From
(15), we have that the exact h-step ahead state prediction
can be obtained as:

x̄k+h = Ahx̄k + Ω̄k+h(h), (17)

where Ω̄k+h(h) =
[
ΩTk+h(h) 01×q

]T
and Ωk(h) is the op-

erator defined in (12). The h-step back of the above ex-
pression yields:

x̄k = Ahx̄k−h + Ω̄k(h). (18)

Multiplying both-sides of (18) by CA−h we obtain:

CA−hx̄k = Cx̄k−h + CA−hΩ̄k(h). (19)

which is equivalent to:

CA−hx̄k = Cxk−h + CA−hΩ̄k(h). (20)

Replacing h by dOk we have:

CA−d
O
k x̄k = Cxk−dOk︸ ︷︷ ︸

yk

+CA−d
O
k Ω̄k(dOk ), (21)

which leads to:

yk = CA−d
O
k x̄k − CA−d

O
k Ω̄k(dOk ). (22)
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Now, replacing ȳk defined in (11) into (10) we have:

ˆ̄zk+1 = Aˆ̄zk + Fuk +Ad
O
k Lyk (23)

+Ad
O
k LCA−d

O
k
(
Φk(hI1) + Φk(hI2) + Ωk(dOk )

)
−Ad

O
k LCA−d

O
k ˆ̄zk.

Substituting yk from (22) into the above expression

(23), and taking into account that CA−dOk Ω̄k(dOk ) =

CA−d
O
k Ωk(dOk ), we have:

ˆ̄zk+1 = Aˆ̄zk + Fuk (24)

+Ad
O
k LCA−d

O
k
(
Φk(hI1) + Φk(hI2)

)
+Ad

O
k LCA−d

O
k
(
x̄k − ˆ̄zk

)
.

Note from the definition of x̄k and Φ̄k(h) that the equiv-
alence xk = zk − Φk(hI1) − Φk(hI2) deduced from (6)
implies x̄k = z̄k − Φ̄k(hI1) − Φ̄k(hI2), where Φ̄k(hIi ) =[
ΦTk (hIi ) 01×q

]T
, i = 1, 2 and z̄k = [zTk wTk ]T . Then,

replacing x̄k into (24), and taking into account that

CA−dOk Φ̄k(hIi ) = CA−d
O
k Φk(hIi ), i = 1, 2, we obtain:

ˆ̄zk+1 = Aˆ̄zk + Fuk +Ad
O
k LCA−d

O
k
(
z̄k − ˆ̄zk

)
. (25)

Consider the matrix partition defined in (14). Then, (25)
is equivalent to:

ẑk+1 = Aẑk + Fuk + Π1,k (zk − ẑk)

+ (Bw −Π2,k) ŵk + Π2,kwk

ŵk+1 = (Iq −Π4,k) ŵk + Π3,k (zk − ẑk) + Π4,kwk
(26)

On the other hand, by virtue of Lemma 1, system (1)
can be put as the interconnected model between:[

zk+1

uk

]
=

[
A 0
0 0

] [
zk
uk−1

]
+

[
F
Im

]
uk +

[
τIB
2
0

]
wd,k (27)

+

[
Bw
0

]
wk,

yd,k = uk − uk−1

and wd,k = ∆d,k yd,k with ||∆d,k||∞ ≤ 1.
Therefore, the augmented state-space representation of

(26) and (27) yields:
zk+1

uk
ẑk+1

ŵk+1

 =


A 0 0 0
0 0 0 0

Π1,k 0 A−Π1,k Bw −Π2,k

Π3,k 0 −Π3,k Iq −Π4,k



zk
uk−1
ẑk
ŵk



+


F
Im
F
0

uk +


τIB
2
0
0
0

wd,k +


Bw
0

Π2,k

Π4,k

wk. (28)

Finally, replacing uk from (9) into the above expression
(28) and yd,k we obtain the interconnected system (13),
concluding the proof.

3.3. Discussion

Notice that the input and output delays cannot be gath-
ered into a single round-trip delay in the closed-loop sys-
tem due to their time-varying nature. Therefore, they
must be treated separately for compensation purposes: the
input delay is compensated through the Artstein’s reduc-
tion method using Lemma 1, leading to the equivalence
between (1) and (27). The output delay is compensated
by the gain-scheduled ESO (10) together with the output
prediction defined in (11). Therefore, as demonstrated in
the corollary given below, the eigenvalues of the closed-
loop matrix Āk in (13) are those of the matrices A+BK
and A− LC, regardless of the time-varying delays.

Corollary 1. The eigenvalues of the matrix Āk in (13)
are the same as A+BK and A−LC, plus m eigenvalues
at 0, for any instant value of time-varying delays.

Proof. Consider the following regular matrix:

T =


In 0 0 0
0 Im 0 0
−In 0 In 0

0 0 0 Iq

 . (29)

Pre-and post multiplying Āk by T and its inverse T −1, we
obtain:

˜̄Ak = T ĀkT −1 (30)

=


A+ FK 0 FK FKw

K 0 K Kw

0 0 A−Π1,k + FK Bw −Π2,k + FKw

0 0 −Π3,k Iq −Π4,k


Note that ˜̄Ak can also be written as:

˜̄Ak =


([
A 0
0 0

]
+

[
F
Im

] [
K 0

]) [
F
Im

] [
K Kw

]
0

(
A−AdOk LCA−dOk

)
 .

Therefore, from the block-triangular form of ˜̄Ak, it can
be deduced that its eigenvalues are those of the matrices:([

A 0
0 0

]
+

[
F
Im

] [
K 0

])
and

(
A−AdOk LCA−dOk

)
.

Finally, the proof can be completed from the fact that:

• (i) The eigenvalues of ˜̄Ak and Āk are the same.

• (ii) The eigenvalues of:

([
A 0
0 0

]
+

[
F
Im

] [
K 0

])
and

(
A−AdOk LCA−dOk

)
are the same as (A + BK)

(plus m eigenvalues at 0) and (A − LC) respectively,
for any value of dOk .
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Remark 1. In light of Corollary 1, it can be deduced
that the closed-loop poles of system (13) are not affected
by Kw. Therefore, provided that the dimensions of wk
and ys,k are the same, or the generalized rank condi-
tions [14] hold, the parameter Kw can be designed to can-
cel the steady-state error due to the disturbance wk on
the controlled output ys,k. The proper value of Kw can
be deduced from the Final Value Theorem by considering
the augmented system state-space model of system (26)

with
[
xTk , u

T
k−1, · · · , uTk−hI

2
, x̂Tk , ŵ

T
k

]T
, and the transfer

function from wk to the controlled output ys,k. In case of
wk is in step form, we have that Kw = −Ξ̄−11 Ξ̄2, where:

Ξ̄1 =
(
C̄s
(
I − Ā− F̄ K̄

)−1
F̄
)
, (31)

Ξ̄2 =
(
C̄s
(
I − Ā− F̄ K̄

)−1
B̄w

)
,

and

C̄s =
[
Cs γ1CsA

−1B · · · γhI
2
CsA

−hI
2B 0 0

]
,

γi, i = 1, · · · , hI2 =

{
1 if i ≤ hI1
0 otherwise

, (32)

Ā =

A 0 0
0 0m×(m−1)·hI

2
0m×m

0 I(m−1)·hI
2

0

 ,
F̄T =

[
FT Im 0m×m(hI

2−1)
]
,

K̄ =
[
K 0 0m×m(hI

2−1)
]
,

B̄Tw =
[
BTw 0q×m(hI

2)

]
.

4. Stability analysis

The following theorem allows to prove the stability with
decay-rate 0 < β ≤ 1 of the closed-loop system (1) with
the control law (9) and the predictor-observer scheme (10),
for any arbitrary fast-time varying delays dOk , d

I
k:

Theorem 3. Given some control and observer gains K,
and L, the closed-loop system (1) with the control law (9)
and the predictor-observer scheme (10) is robustly asymp-
totically stable with decay rate β if there exists a symmetric
matrix P ∈ R2n+m+q > 0 such that the following LMIs are
satisfied, ∀i = 1, · · · , hO2 − hO1 + 1:

Γ̂i < 0, (33)

where

Γ̂i =


−β2P 0 ˆ̄ATi P H̄T

(∗) −I ḠTP 0
(∗) (∗) −P 0
(∗) (∗) (∗) −I

 , (34)

and

ˆ̄Ai =


A 0 FK FKw

0 0 K Kw

Π1,i 0 A−Π1,i + FK Bw −Π2,i + FKw

Π3,i 0 −Π3,i Iq −Π4,i

 ,
(35)

where

AdiLCA−di =

[
Π1,i Π2,i

Π3,i Π4,i

]
, (36)

being di = hO1 + i− 1 and matrices Ḡ, H̄ defined in (13).

Proof. Consider the Lyapunov function Vk = ξTk Pξk,
where P > 0 and ξTk defined in (13). The system MS

in (13) is asymptotically stable with decay rate β, say
||ξk|| ≤ Ω||ξ0||−β ,∀k ≥ 0, for some arbitrary Ω > 0 and
any initial condition ξ0, if the following condition holds:

∆βVk = Vk+1 − β2Vk < 0. (37)

On the other hand, it is well-known that the following
condition along (MS):

∆βVk + yTd,kyd,k − wTd,kwd,k, (38)

< ε
(
||ξk||2 + ||w̄d,k||2

)
≤ 0,

for some ε > 0, guarantees that the H∞ norm of system
T2MST

−1
1 is less than 1, where T1 = T2 = Im. From (13),

the expression (38) yields:

ξTk
(
ĀTk PĀk − β2P + H̄T H̄

)
ξk + ξTk Ā

T
k PḠwd,k (39)

+ wTd,kḠ
TPĀkξk + wTd,k

(
ḠTPḠ− Im

)
wd,k < 0

Note that Āk =
∑r
i=1 µi(d

O
k ) ˆ̄Ai, where r = hO2 − hO1 + 1,

ˆ̄Ai is defined in (35), and

µi(d
O
k ) =

{
1 if dOk − hO1 + 1 = i

0 otherwise
(40)

Applying Schur Complement and the above expression for
Āk, the inequality (39) is equivalent to:

r∑
i=1

µi(d
O
k )Γ̃i < 0, (41)

where Γ̃i is defined in (34). Taking into account that the
functions µi(.) in (40) satisfy the convex sum properties:∑r
i=1 µi(.) = 1, 0 ≤ µi(.) ≤ 1, a sufficient condition for

(41) is given in (33).

5. Simulation results

Two examples are provided in this section. Example
1 gives simulation results to show the effectiveness of the
proposed control strategy by comparison with other simi-
lar approaches published in literature therein, and Exam-
ple 2 simulates the closed-loop response of an open-loop
unstable system, which corresponds to the experimental
platform of Section 6.
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5.1. Example 1
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Figure 2: Comparative results (Example 1) between two control set-
tings given in [20] (dashed and dash-dotted lines) and the proposed
control (solid line) for dIk = 5 and 1 ≤ dOk ≤ 6. Output system ys,k
(upper-side) and control action uk (lower-side)

Let us consider the following example, already studied
in [20]. The plant consists in an injection moulding process
with input and output delays subject to load disturbance.
The discrete-time system model is (1) with system matri-
ces:

A =

[
1.607 1
−0.6086 0

]
, B =

[
1.2390
−0.9282

]
, Bw =

[
1
1

]
, (42)

C =
[
1 1

]
, Cs =

[
1 0

]
The simulation results given in Fig. 2 compare the
time evolution of the output system ys,k (upper-side) and
the control action uk (lower-side) under the two differ-
ent control settings given in Example 1 [20] (dash-dotted
and dashed lines respectively) with our proposed con-
trol scheme (9) (solid-line). A time-varying output delay
1 ≤ dOk ≤ 6 has been assumed, together with an input
delay dIk = 5. Fig. 3 depicts the same comparative results
as Fig. 2, but assuming an input delay dIk = 15.

A time-constant disturbance wk in the form (4) with
Aw = Iq has been assumed in all the performed simula-
tions, corresponding to the following step signal:

wk =

{
0 0 ≤ k ≤ 100

−2 k > 100.
(43)

For a fair comparison, the control and observer gains
have been chosen to be the same as in [20]:

K =
[
−1.297 −0.8071

]
, (44)

LT =
[
1.307 −0.4461 0.0875

]
.

Moreover, the same time-varying output delay pattern for
dOk has been used in all the performed simulations.
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Figure 3: Comparative results (Example 1) between two control set-
tings given in [20] (dashed and dash-dotted lines) and the proposed
control (solid line) for dIk = 15 and 1 ≤ dOk ≤ 6. Output system ys,k
(upper-side) and control action uk (lower-side)

5.2. Example 2

Consider the system model (1) (which is a discrete-time
approximate model of the experimental platform used af-
terwards for a given sampling period Ts), where the system
matrices are given below:

A =

[
1 Ts
0 1

]
, B = Bw =

[
0

0.1Ts

]
, (45)

C = Cs =
[
1 0

]
.

Let Ts = 0.01s. The proposed control and observer
gains K and L, used to perform the simulation, are chosen
such that the matrices A + BK and A − LC are Schur
stable, with their respective eigenvalues {0.98, 0.975} and
{0.50, 0.96, 0.97}:

K = −
[
50 45

]
, LT =

[
0.57 3.62 60

]
, (46)

Simulation results (controlled output ys,k and control
action uk) are depicted in Fig. 4. The controlled output
corresponds to the pitch angle in degrees, and tracks a ref-
erence consisting of a sequence of steps with an amplitude
of 5◦, also depicted in Fig. 4. Moreover, it is assumed a
step disturbance wk with amplitude −2.5V , introduced at
t = 15s The first simulation (dash-dotted line) has been
performed using a conventional state-feedback control with
a ESO without delays (nominal case). The second simu-
lation (dashed line) implements the same control law as
the first simulation, but assuming a randomly generated
time-varying input and output delays: 1 ≤ dOk ≤ 17 and
1 ≤ dIk ≤ 17. The third simulation (solid-line) imple-
ments the proposed control strategy (9) with the same
time-varying delay pattern as the previous simulation, for
a fair comparison.
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Figure 4: Simulation results (Example 2). Dash-dotted line: state-
feedback with ESO (nominal response with no delays), dashed line:
state-feedback with ESO and time-varying delays : 1 ≤ dOk ≤ 17 and

1 ≤ dIk ≤ 17, and solid-line: proposed control scheme (9) with the
same time-varying delay pattern.
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Figure 5: Comparative results (Example 2) using the proposed con-
trol strategy for different sampling periods.

In order to check the closed-loop performance of the
proposed control scheme for greater sampling periods, the
simulations have also been performed assuming Ts = 0.05s
and Ts = 0.1s with the following input and output delay
intervals: 1 ≤ dIk ≤ 3, 1 ≤ dOk ≤ 4 for Ts = 0.05s, and 1 ≤
dIk ≤ 1, 1 ≤ dOk ≤ 2 for Ts = 0.1s. The obtained results
have been compared in Fig. 5 with the case Ts = 0.01s
and delay intervals 1 ≤ dIk ≤ 17, 1 ≤ dOk ≤ 17.

5.3. Discussion of the results:

In light of Fig. 2 and Fig. 3 (Example 1), it can be
seen that the system becomes unstable with the two con-
trol settings given in [20] (dashed and dash-dotted line,

respectively). Indeed, the closed-loop instability is due
to time variations in the output delay dOk , which are not
considered in [20]. However, the closed-loop control sys-
tem is stabilized with the proposed control strategy (solid
line) because such variations are properly counteracted by
the implemented gain-scheduled approach. Furthermore,
the steady-state error in the controlled output ys,k coming
from the disturbance wk in (43) is cancelled, despite the
presence of time-varying delays (upper side of Fig. 2 and
Fig. 3).

On the other hand, Theorem 3 confirms that the closed-
loop system is guaranteed to be stable for any arbitrarily
fast time-varying output delays 1 ≤ dOk ≤ 3 for dIk = 5,
and 1 ≤ dOk ≤ 2 for dIk = 15, respectively. Notice that
the maximum time delay intervals obtained by Theorem 3
are smaller than the obtained by simulation in both cases.
This fact reveals that maximum allowable delay intervals
obtained by applying Theorem 3 are more conservative,
since the LMIs (33) are only sufficient conditions, that is
to say, the most unfavorable time-varying delay pattern
(worst-case) is taken into account in our analysis.

In Example 2, both time-varying delay intervals (1 ≤
dIk ≤ 17, 1 ≤ dOk ≤ 17) have been chosen to force the
closed-loop system to the limit of stability using a con-
ventional state-feedback control with ESO considering a
sampling period Ts = 0.01s. Indeed, it can be seen in
Fig. 4 that the system is almost unstable (dashed line).
Nevertheless, by comparing the nominal delay-free time-
response (dash-dotted line) to the obtained one with the
proposed control strategy under the same time-varying de-
lays dIk, d

O
k (solid line), it can be seen that closed-loop per-

formance is almost recovered. On the other hand, it is
proved by Theorem 3 that the stability of the closed-loop
control system is guaranteed for any arbitrarily fast time-
varying delay satisfying 1 ≤ dIk ≤ 5 and 1 ≤ dOk ≤ 7
respectively. Notice again that the maximum time delay
intervals obtained by Theorem 3 are smaller than the ones
obtained by simulation, such as expected from the same
arguments already given in Example 1. Moreover, the pro-
posed control strategy is shown to stabilize the system for
greater sampling periods in Fig. 5. Nevertheless, it can
be appreciated how the closed-loop response degrades as
long as Ts is higher, as it could be expected from the fact
that the open-loop system is unstable.

6. Experimental results

The proposed control strategy has been implemented in
the 3-DOF Hover of Quanser (see Fig. 6). It consists of
a quadrotor mounted on a 3-DOF pivot joint so that the
body can freely rotate in roll, pitch, and yaw angles. Our
control strategy has been implemented and executed using
a computer running Linux with a soft real-time patched
kernel, which allows to run the full algorithm with a sam-
pling time Ts = 0.01s. The computer is connected to the
Quanser hardware by means of a data acquisition board.
The angular positions are measured by optical encoders

7



Figure 6: 3-DOF Hover of Quanser (experimental platform)

with an accuracy of 0.04◦, and the control inputs of the
system are the voltages applied to the four motors, which
have an input range of ±10V , and present a dead zone
between ±0.5V .

The controlled variable represented in the experiments
is the pitch angle, which is denoted as θ(t). Assuming the
yaw and roll angles are zero, the dynamics of θ(t) can be
approximated by [25]:

θ̈(t) = Ksu(t) + w(t), Ks = 0.1, (47)

where u(t) is the input voltage of the propeller, which is
used to control the pitch axis torque, Ks = 0.1 is a con-
stant representing the inertia moment, and w(t) represents
a load disturbance.

The discrete-time system model with sampling period
Ts = 0.01s is the same as Example 2, with system matrices
given in (45). Moreover, the control and observer gains are
given in (46).

In order to experimentally validate the proposed-control
law (9), three simulation have been carried out: (i) the
nominal (delay-free) case with the ESO-based control, (ii)
the ESO-based control with time-varying delays: 1 ≤
dOk ≤ 11, and 1 ≤ dIk ≤ 10, and (iii) the proposed con-
trol strategy (9) with the same time-varying delays as in
case (ii).

For a fair comparison between cases (ii) and (iii), the
time-varying delay patterns have been induced by software
in both channels using a fixed seed of the random num-
ber generator for the repeatability of the experiments. In
addition, the delay intervals have been intentionally cho-
sen to lead the closed-loop system with the conventional
ESO-based control to instability (case (ii)). The experi-
ments have been carried out for changes of the set-point
of 5◦, and a time-constant disturbance of w(t) = −2.5V
is introduced in t = 47s. The response of the experiments
is shown in Fig. 7, in which the improvement of our pro-
posed strategy can be clearly appreciated: whereas the
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Figure 7: Experimental results. Pitch response and the control ac-
tion. A video clip of this experiment is available as complementary
material.

ESO-based control strategy is unstable, the proposed al-
gorithm achieves a response very similar to the delay-free
case.

7. Conclusions and Perspectives

In this paper, a novel predictor-feedback control scheme
with a delay-dependent gain-scheduled ESO has been pro-
posed for systems with mismatched disturbances and time-
varying delays in the input and output channels. Dif-
ferently to other similar techniques, the proposed control
scheme is able to counteract variations in time delays by
means of gain-scheduled strategies, while actively compen-
sating the steady-state error due to mismatched distur-
bances in the controlled output. As a result, the closed-
loop poles are kept as the nominal (delay-free) behavior,
improving the closed-loop performance under time-varying
delays. Moreover, a sufficient LMI-based condition has
been given to determine the closed-loop stability for any

8



arbitrarily fast time-varying delays bounded by given time
delay intervals.

The effectiveness of the proposed control strategy has
been illustrated through comparative simulation results
and tested in open-loop unstable plants. Furthermore, it
has been validated in an experimental real-time test-bed
consisting in a quadrotor platform. However, the applica-
bility of the proposed control scheme is limited to the case
of unknown but measurable time-varying delays. There-
fore, an appealing extension of this work could be to ana-
lyze the robustness of the proposed control scheme against
uncertainties on time delay measurements.
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