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Summary: During a survey of black foot disease in Algerian grapevine nurseries, a collection of 79 24 
Cylindrocarpon-like isolates were obtained. Based on morphology and DNA sequence data of histone H3 (his3), 25 
three species of Dactylonectria were identified including Dactylonectria torresensis (40 isolates), D. macrodidyma 26 
(24 isolates) and D. novozelandica (14 isolates). In addition, one isolate belonging to the genus Pleiocarpon was 27 
found and it is described here as a new species, Pleiocarpon algeriense, based on morphological features and DNA 28 
sequence data of the internal transcribed spacer region (ITS), translation elongation factor 1-alpha (tef1), β-tubulin 29 
(tub2), large subunit nrDNA (LSU) and histone H3 (his3). This is the first time that these species are reported in 30 
Algeria. Pathogenicity tests, were conducted with representative isolates from each species. All of them were able 31 
to induce typical necrosis symptoms on grapevine cuttings. These results emphasize the urgent need to implement 32 
an integrated management strategy for black foot disease in Algerian grapevine nurseries in order to reduce the 33 
incidence of this disease on grapevine planting material and to prevent that it spreads to new grapevine production 34 
areas. 35 
 36 
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Introduction 38 
Currently, viticulture occupies an important place in Algerian agriculture, consisting of diversified varieties and 39 
cultivars which are threatened by several diseases including Grapevine Trunk Diseases (GTDs) (Levadoux et al. 40 
1971; Berraf-Tebbal et al. 2011). GTDs reefers to a complex of different fungal diseases affecting the perennial 41 
organs of grapevine, leading to the death of the plant in the most of cases (Mugnai et al. 1999; Armengol et al. 42 
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2001; Úrbez-Torres 2011; Bertsch et al. 2013). Thus, GTDs compromise vineyards productivity and longevity, 43 
resulting in considerable economic losses (Larignon 2012; Viret and Gindro 2014; Hofstetter et al. 2017).  44 
Black foot disease of grapevines is one of the main GTDs affecting young plants (Halleen et al. 2003; Chaverri et 45 
al. 2011; Agustí-Brisach and Armengol 2013; Carlucci et al. 2017). The disease was given this name due to the 46 
presence of brown to black necrosis on the base of the rootstock (Badour 1969) and its incidence has increased 47 
significantly in most grapevine production areas of the world over the last two decades (Gramaje and Armengol 48 
2011; Agustí-Brisach and Armengol 2013; Agustí-Brisach et al. 2016; Carlucci et al. 2017). Black-foot disease 49 
has been reported in many vineyards around the world, such as Australia (Sweetingham 1983; Whitelaw-Weckert 50 
et al. 2007), Brazil (Garrido et al. 2004), Canada (O’Gorman et al. 2009; Petit et al. 2011), France (Maluta and 51 
Larignon 1991), Italy (Carlucci et al. 2017), Portugal (Rego 1994; Rego et al. 2000), South Africa (Fourie and 52 
Halleen  2001), Spain (Alaniz et al. 2007; Agustí-Brisach and Armengol 2013), United States  (Petit and Gubler 53 
2005), and many other countries. 54 
Grapevine plants affected by black foot disease show reduced vigour, shortened internodes and small leaves with 55 
interveinal chlorosis and necrosis (Halleen et al. 2006b; Reis et al. 2013). Longitudinal sections made through the 56 
trunk bases of the affected vines show brown to black vascular streaks and large blackened sectors (Oliveira et al. 57 
2004; Alaniz et al. 2007; Abreo et al. 2010; Carlucci et al. 2017). Black foot pathogens have been isolated from 58 
symptomatic or asymptomatic rootstock mother plants (Fourie and Halleen 2004), rooted rootstock cuttings 59 
(Halleen et al. 2003; Aroca et al. 2006; Dubrovsky and Fabritius 2007), young grafted vines (Oliveira et al. 2004; 60 
Rumbos and Rumbou 2001) and also mature grapevines (Agustí-Brisach et al. 2014). 61 
Black foot disease was firstly described as caused by “Cylindrocarpon” species. Campylocarpon was the first 62 
genus segregated from Cylindrocarpon (Halleen et al. 2004; Lombard et al. 2014). Following that, Chaverri et al. 63 
(2011) identified three new genera namely Ilyonectria, Rugonectria and Thelonectria with I. radicicola, R. 64 
rugulosa and T. discophora as type species, respectively. However, studies based on multi-gene phylogeny and 65 
morphological comparison performed by Cabral (2012a,b) and Lombard et al. (2014) re-evaluated the genera with 66 
Cylindrocarpon-like asexual morphs and highlighted the paraphyletic nature of Ilyonectria, leading to the 67 
introduction of the genus Dactylonectria to accommodate Ilyonectria species from grapevine. Nowadays, black 68 
foot disease of grapevine is known to be associated with fungal species from the following genera: 69 
Campylocarpon, Cylindrocladiella, Dactylonectria, Ilyonectria, Neonectria and Thelonectria (Lombard et al. 70 
2014; Carlucci et al. 2017). 71 
Recently, Pleiocarpon, a new Nectriaceae monotypic genus, phylogenetically closely related to the genus 72 
Thelonectria, was described in Italy (Aiello et al. 2017). The name of the genus Pleiocarpon is derived from the 73 
highly variable conidial shapes this fungus produces in culture. The type species was named Pleiocarpon strelitziae 74 
due to the host, Strelitzia reginae, from which this fungus was isolated in an ornamental nursery in Italy (Aiello et 75 
al. 2017). The species P. strelitziae is characterized by simple conidiophores or aggregated to form sporodochia, 76 
abundant microconidia, aseptate, hyaline, ellipsoid to ovoid or subcylindrical, straight to slightly curved, with 77 
clearly laterally displaced hilum. The macroconidia are cylindrical to subcylindrical, hyaline, straight to curved, 78 
1−5-septate. The chlamydospores are not observed (Aiello et al. 2017). 79 
In Algeria, cases of grapevine apoplexy were reported by Debray (1892), but the description of the associated 80 
symptoms does not allow knowing if it was indeed caused by GTDs. In 1905, Ravaz also reported high plant 81 
mortality rates in many wine-growing regions of Algeria. In 2005 GTDs were first described in Algeria affecting 82 



 
 

mature grapevines, and currently they seem to be the main cause of the dieback and mortality observed in young 83 
and adult Algerian vineyards during the last decade (Berraf and Peros 2005; Berraf-Tebbal et al. 2011; Ammad et 84 
al. 2014; Berraf-Tebbal et al. 2014). Nevertheless, black foot disease and the associated pathogens have not yet 85 
been reported on grapevine. 86 
Thus, the aim of the present study was to characterize a large collection of Cylindrocarpon-like asexual morph 87 
isolates associated with black foot disease, which were recovered from grapevine nurseries in different regions of 88 
Northern Algeria, based on morphology and comparison of DNA sequence data. Moreover, a pathogenicity test 89 
was performed to determine the virulence of each species to grapevine.  90 
 91 
Materials and methods 92 
 93 
Fungal isolation 94 
 95 
One hundred and ninety symptomatic one-year-old grapevine grafted plants and rootstocks, including the cultivars 96 
Muscat d’Alexandrie, Vitroblack, Chasselat, Ora, and SO4 rootstock, were randomly sampled from 2015 to 2017 97 
at three commercial grapevine nurseries located in three different provinces of Algeria: Skikda (n=90), Blida 98 
(n=70) and Ain Temouchent (n=30) (Table 1). Transverse and longitudinal sections were made at three areas of 99 
each plant; the grafting point, the basal part in the crown and the middle part between the grafting point and the 100 
basal part, to reveal internal symptoms of GTDs. From each area of the plant, ten pieces of wood of approximately 101 
5 mm2 diameter, were cut by a sterile scalpel and surface-disinfected with 8% sodium hypochlorite for 10 min, 102 
rinsed twice with sterile distilled water and dried on sterile absorbent paper. These wood pieces were transferred 103 
onto Petri dishes containing potato dextrose agar (PDA, Biokar-Diagnostics, Zac de Ther, France), amended with 104 
0.5 g l-1 of streptomycin sulphate (PDAS). The plates were incubated in darkness at 25 C° and examined daily. 105 
Fungal colonies were subcultured on fresh PDA plates in order to obtain pure cultures. From these primary 106 
isolations, single spore isolates were obtained, and stored in 15% glycerol solution at -80ºC into 1.5 ml cryovials. 107 
 108 
Morphological identification 109 
 110 
To determine the morphological characteristics of the isolates, they were plated onto three different types of media: 111 
PDA (BD Difco, Sparks, MD, USA), oatmeal agar (OA), and synthetic nutrient-poor agar (SNA; Nirenberg 1976), 112 
with or without the addition of two 1 cm2 pieces of sterile filter paper on the medium surface (Crous et al. 2009). 113 
Then, they were incubated at 25ºC during 5 weeks with under mixed white and near-UV light and a 12 h 114 
photoperiod. Colony characters and pigment production on PDA and OA were noted after incubation at 25ºC in 115 
darkness for 10 days. Colony colours (surface and reverse) were rated according to Rayner (1970). Measurements 116 
of the fungal structures were performed in an agar square that was removed from the SNA plates and placed on a 117 
microscope slide, a drop of water and a cover slip were added. Observations were done in Leica DM2500 118 
microscope with differential and images were captured using a Leica DFC295 digital camera using the software 119 
Leica Application Suite (LAS) version 3.3.0. For each informative structure, 30 measurements were obtained. The 120 
95% confidence intervals were determined and the extremes of the conidial measurements are shown in 121 
parenthesis, while for the other structures, only the extremes are presented. Cardinal growth temperatures were 122 



 
 

determined by inoculating 90 mm diameter PDA plates with a 3 mm diameter plug cut from the edge of an actively 123 
growing colony. Colony growth was recorded after 7 days in two orthogonal directions. Temperature growth 124 
experiments were performed at 5 to 35ºC, with 5ºC intervals, with three replicates per isolate at each temperature. 125 
 126 

Molecular identification  127 
 128 
DNA extraction and sequencing 129 
 130 
Total genomic DNA was extracted from 6-d-old single-spore cultures grown on potato dextrose agar for 6 days at 131 
25°C in darkness using the E.Z.N.A. Plant Miniprep Kit (Omega Bio-tek, Doraville, USA), according to the 132 
manufacturer’s instructions. A previous mycelia disruption was perform with 4 tungsten carbide beads of 3 mm 133 
diameter (Qiagen, Hilden, Germany) using a FastPrep-24TM5G (MP Biomedicals, California, USA) at 5m/s for 134 
20 s twice. Partial gene sequences were determined for the histone H3 (his3) using the primers and protocols of 135 
Cabral et al. (2012a), in order to identify the species involved. Additionally, internal transcribed spacer and 136 
intervening 5.8S gene (ITS) region, partial 28S nrRNA gene (LSU), partial regions of the β-tubulin (tub2), 137 
translation elongation factor 1-α (tef1) and RNA polymerase II second largest subunit (rpb2) region genes were 138 
sequenced for some isolates to better resolve their identification. Primers used were CYLH3F and CYLH3R (Crous 139 
et al. 2004b) for his3, ITS1F (Gardes and Bruns 1993) and ITS4 (White et al. 1990) for ITS, LR0R (Moncalvo et 140 
al. 1995) and LR5 (Vilgalys and Hester 1990) for LSU, T1 (O’Donnell and Cigelnik 1997) and Bt2b (Glass and 141 
Donaldson 1995) for tub2, CylEF-1 (5’- ATG GGT AAG GAV GAV AAG AC-3’; J.Z. Groenewald, unpublished) 142 
and CylEF-R2 (Crous et al. 2004b) for tef1, and RPB2-5F2 and RPB2-7cR (O'Donnell et al. 2007) for rpb2. The 143 
cycle conditions in a Peltier Thermal Cycler-200 (MJ Research) were: 94ºC for 3 min, followed by 35 cycles of 144 
denaturation at 94ºC for 30 s, annealing at 55ºC for 30 s, elongation at 72ºC for 45 s, and a final extension at 72ºC 145 
for 10 min. PCR products were sequenced by Macrogen Inc., Sequencing Center (The Netherlands, Europe). 146 
Integrity of the sequences was ensured by sequencing the amplicons in both directions using the same primer pairs 147 
used for amplification. Consensus sequences for all isolates were assembled and compiled into a single file (Fasta 148 
format), using Sequencher software v. 5.3 (Gene Codes Corporation, Ann Arbor, MI, USA), and compared to 149 
those disposed in the NCBI Genbank database, using the Basic Local Alignment Search Tool (BLAST).  150 
 151 
Phylogenetic analyses 152 
 153 
Phylogenetic analyses were conducted with the isolates for which it was not possible to infer species level, using 154 
the four loci ITS, LSU, tub2 and tef1. The his3 and rpb2 gene regions could not be included in the phylogenetic 155 
inference due to the limited sequence data available for Cylindrocarpon-like fungi. Analyses were based on 156 
Bayesian inference (BI) and Maximum Likelihood (ML) and were performed firstly with single-locus alignment, 157 
and successively, with a combined alignment of the four loci. GenBank sequences from different species were 158 
selected in consonance with their high similarity with our query sequences, according to Aiello et al. (2017) (Table 159 
2). These were added to the sequences obtained, aligned and edited manually, if necessary, using MEGA 7.0.26 160 
(Kumar et al. 2015). Incomplete portions at either end of the alignments were excluded prior to analyses. 161 
SequenceMatrix 1.8 program (Vaidya et al. 2011) was used to combine the alignments of each locus in a single 162 



 
 

file. Bayesian analyses were performed with MrBayes v. 3.2.1 (Ronquist et al. 2012) on the CIPRES Science 163 
Gateway V 3.3 (Miller et al. 2010) according to Mora-Sala et al. (2018). The Maximum Likelihood analysis (ML) 164 
was performed with MEGA 7.0.26 (Kumar et al. 2015), determining the best nucleotide substitution model settings 165 
for each locus. Both analyses were performed, rooting the trees to Rugonectria rugulosa (CBS 126565) (Table 2). 166 
Sequences derived in this study were lodged in GenBank (accession numbers listed in Table S1).  Alignments and 167 
phylogenetic trees were lodged in TreeBASE under study number 23154 168 

(http://purl.org/phylo/treebase/phylows/study/TB2:S23154) and taxonomic novelties in MycoBank 169 

(www.MycoBank.org) (Crous et al. 2004a). 170 
 171 
Pathogenicity tests  172 
 173 
Representative isolates from each phylogenetically resolved species namely, D. macrodidyma (WAM8, WAM63), 174 
D. novozelandica (WAM95, WAM186), D. torresensis (WAM124, WAM163) and P. algeriense (WAM6), were 175 
selected to determine their pathogenicity to grapevine wood. Trials were conducted on one-year-old cuttings of 176 
grapevine cv. Cardinal. Before inoculation, these cuttings were subjected to hot water treatment at 53 °C for 30 177 
min, to eliminate the presence of any fungal GTDs pathogens (Gramaje et al. 2009; Carlucci et al. 2017). Eighty 178 
dormant cuttings were cut into equal length (35 cm), containing 3 to 4 buds. Then, the cuttings were wounded 179 
between two nodes with and scalpel and a 5 mm mycelial plug from a 10 days old colony of each isolate grown 180 
on PDA was placed in the wound. Negative controls were inoculated with fresh, no-colonized, PDA plugs. The 181 
inoculated cuttings were wrapped with wet sterile cotton and parafilm around the inoculation point to prevent 182 
desiccation. There were 10 replicates per isolate, and the same number of cuttings were used as controls. All 183 
cuttings were immediately transplanted into pots containing sterilized water as a growth substrate (10 cuttings per 184 
pot), which were incubated in a phytotron at 25°C. One month after inoculation the cuttings were examined by 185 
removing the bark and measuring the length of the lesions in both directions from the inoculation point. Small 186 
pieces (0.2 to 0.5 cm) of necrotic tissue from the edge of each lesion were cut and placed on PDAS in an attempt 187 
to recover the inoculated fungi and complete Koch’s postulates. Fungi were identified as described above. Lesion 188 
length data were subjected to statistical analysis to determine the homogeneity of the variance of the dataset by 189 
performing analysis of variance (ANOVA) and means comparison by Fisher's Least Significant Difference (LSD) 190 
test at P ≤ 0.05. 191 
 192 

Results 193 
 194 
During the survey, internal wood necrosis were revealed by cross-sections on the grapevine nursery plants. The 195 
necrosis consisted of different brownish discolorations around the pith more consistent at the basal part and less 196 
important at the medium part. The isolation from these symptomatic tissues yielded to 79 Cylindrocarpon-like 197 
asexual morph isolates. The colour of the colonies on PDA varied from white to yellow or light to dark brown, 198 
with cottony mycelium. Based on the microscopic observations, all the isolates produced macroconidia and 199 
microconidia, as described by Cabral et al. (2012a) and Halleen et al. (2006a).  200 
 201 
Isolates, molecular identification and phylogenetic analysis  202 
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 203 
The identification of 79 isolates was performed using the primers CYLH3F and CYLH3R. DNA sequence data 204 
showed high similarities (≥99%) with the reference sequences disposed in the NCBI Genbank database, and 205 
confirmed 78 isolates belonging to the genus Dactylonectria: D. torresensis (40 isolates), D. macrodidyma (24 206 
isolates) and D. novozelandica (14 isolates), and one isolate belonging to the genus Pleiocarpon. ITS, LSU, tef1, 207 
tub2 and rpb2 genes were sequenced for the isolates WAM104, WAM158, WAM168, WAM180, and WAM186, 208 
which showed 99% of similarity with D. novozelandica (three nucleotide differences), and for the isolate WAM6, 209 
which showed a similarity of  99% with P. strelitziae (four nucleotide differences). Similarity values of 100% 210 
were observed when WAM104, WAM158, WAM168, WAM180 and WAM186 were compared with D. 211 
novozelandica sequences thus, they were not considered a new species. WAM6 showed similarity values of 99% 212 
when compared with P. strelitziae sequences of ITS (three nucleotide differences and a gap), tef1 (six nucleotide 213 
differences) and tub2 (three nucleotide differences). Therefore, phylogenetic analysis were performed using ITS, 214 
tef1, tub2 and LSU sequences of WAM6 and 15 more taxa, including Rugonectria rugulosa (CBS 126565) as an 215 
outgroup taxa. The four loci alignment (including the outgroup) contained 2103 aligned characters (including 216 
gaps), from which 500 corresponded to ITS sequences, 803 to LSU, 515 to tef1 and 285 to tub2. Of the 2103 217 
characters used in the analysis, 379 were parsimony-informative, 163 were variable and parsimony-uninformative 218 
and 1561 were constant. BI and ML trees had similar topology and only the ML tree is presented with posterior 219 
probability values (PP) and bootstrap support values (BS) (Fig. 1). The Maximum Likelihood tree was drawn to 220 
scale, with branch lengths measured in the number of substitutions per site. The obtained phylogeny placed the 221 
isolate WAM6 in a different clade than the other eight isolates of P. strelitziae with a posterior probability value 222 
of 1 and a bootstrap support value of 100%, confirming the isolate WAM6 as a novel species (Fig. 1) belonging 223 
to the genus Pleiocarpon, which is described below as new species, P. algeriense (Fig. 2). 224 
 225 
Taxonomy 226 
 227 
Based on the phylogenetic analysis and morphological characters, one new species of Pleiocarpon is described 228 
(Fig. 2).  229 
 230 
Pleiocarpon algeriense sp. nov. W. Aigoun-Mouhous, A. Cabral and A. Berraf-Tebbal. MycoBank MB827378. 231 

 232 
Etymology: Named after Algeria, where the species was first discovered. 233 
 234 
Type: Algeria: Blida, Larbaa, isolated from the basal part of rootstock SO4 in a one-year-old nursery plant (cv. 235 
Vitroblack grafted on SO4), May 2017, coll./isol. W. Aigoun-Mouhous (CBS H-23695 – holotype; CBS 144964 236 
= WAM6 – ex-type culture). 237 
 238 
Description: Ascomata not observed. Conidiophores simple or aggregating to form sporodochia. Simple 239 
conidiophores solitary, arising laterally or terminally from aerial mycelium, to loosely aggregated, unbranched or 240 
sparsely branched, 1−3-septate, 50−110 μm long, bearing one to three conidiogenous cells. Conidiogenous cells 241 
monophialidic, cylindrical, tapering slightly towards the apex, 16−40 μm long, 2−3 μm wide at the base, 1.5−2 242 



 
 

μm near the apex. Sporodochia consisting of a pulvinate mass of short conidiophores, the conidiogenous cells 243 
monophialidic, cylindrical, tapering towards the apex, 14−32 μm long, and 2−3.5 μm wide at the base and 1.5−2 244 
μm near the apex. Microconidia aseptate, with a minute or clearly laterally displaced hilum, ellipsoid to ovoid or 245 
subcylindrical, straight to slightly curved, (6−)8−8.5(−10,5) × (2−)3−3.3(−4)μm (av. 8.3 × 3.2 μm) with a 246 
length:width ratio of (1,8−)2,5−2,8(−3,8), formed in heads on simple conidiophores. Macroconidia formed on 247 
sporodochia on SNA around and over the filter paper pieces, hyaline, straight to curved, 1−5-septate, 248 
predominantly 3-septate, apex or apical cell typically slightly bent to one side and minutely beaked, base with 249 
sometimes visible, centrally located or laterally displaced hilum; 1-septate (17−)25−30(−42) × (4.5−)6−6.5(−8) 250 
μm (av. 27.4 × 6.2 μm) with a length:width ratio of (3−)4−5(−6.7); 2-septate (28−)35−39.5(−51) × 251 
(5.5−)6.7−7.3(−8) μm (av. 37.2 × 7 μm) with a length:width ratio of (3.7−)5−5.7(−7.3); 3-septate 252 
(28−)41.5−46(−57) × (5−)7−7.5(−8.5) μm (av. 43.7 × 7.1 μm) with a length:width ratio of (4.2−)5.9−6.4(−8.3); 253 
4-septate (47.5−)53−55.5(−61) × (7−)7.5−8(−9) μm (av. 54.3 × 7.7 μm) with a length:width ratio of 254 
(5.7−)6.9−7.3(−8.2); 5-septate (50−)57−59.5(−65.5) × (6.5−)7.5−7.8(−8.5) μm (av. 58.2 × 7.6 μm) with a 255 
length:width ratio of (6.5−)7.4−7.9(−9.3). Chlamydospores rarely observed, globose to subglobose, 7–12 × 6–10 256 
μm, smooth but often appearing rough due to deposits, thick-walled, formed intercalary in chains, hyaline. 257 
 258 
Culture characteristics: Mycelium cottony with average density on PDA and low to average on OA. Surface on 259 
PDA cinnamon to honey, with buff aerial mycelium, on OA light cinnamon to buff, with aerial mycelium white. 260 
Zonation absent, transparency homogeneous, margin uneven on PDA and even on OA. Reverse on PDA and OA 261 
similar to surface. 262 
 263 
Cardinal growth temperatures: No growth was observed on PDA at 10 °C, while at 15 ºC colonies grew 12 mm 264 
diam. after 7 days. Optimum temperature for growth is 25-30°C, when colonies reach 32–36 mm diam, after 7 265 
days. Colony diam was 14–16 mm at 35°C, after 7 days.  266 
 267 
Habitat: Basal part of rootstock of nursery grafted plants of Vitis spp. 268 
 269 
Known distribution: Northern Algeria, Blida. 270 
 271 
Genetic identification: LSU and rpb2 do not separate P. algeriense from P. strelitziae. Both species can be 272 
distinguished by three differences in ITS positions 180 (T/A), 290 (G/A) and 433 (C/T); four differences in his3 273 
positions 95 (A/G), 295 (C/T), 323 (C/T), 434 (C/T), six differences in tef1 on positions 317 (T/C), 323 (G/A), 274 
334 (T/C), 375 (A/G), 527 (T/C), 651 (A/G) and three differences in tub2 positions 364 (T/C), 376 (G/C) and 409 275 
(C/T). 276 
 277 
Notes: P. algeriense is closely related with P. strelitziae based on the phylogenetic inference in this study. 278 
Morphologically can be distinguished by having longer (50–110 μm) solitary conidiophores when compared to P. 279 
strelitziae (50−85 μm; Aiello et al. 2017). The 2-septate (28−)35−39.5(−51) × (5.5−)6.7−7.3(−8) μm (av. 37.2 × 280 
7 μm); 3-septate (28−)41.5−46(−57) × (5−)7−7.5(−8.5) μm (av. 43.7 × 7.1 μm); 4-septate (47.5−)53−55.5(−61) × 281 
(7−)7.5−8(−9) μm (av. 54.3 × 7.7 μm) and 5-septate (50−)57−59.5(−65.5) × (6.5−)7.5−7.8(−8.5) μm (av. 58.2 × 282 



 
 

7.6 μm) macroconidia are larger and wider than those of P. strelitziae (23−29(−31) × 5 μm (av. 26 × 5 μm), 283 
(28−)30−40(−46) × 5−6 μm (av. 35 × 6 μm), (36−)37−41 × 6−7 μm (av. 39 × 6 μm) and (41−)42−47(−50) × 5−7 284 
μm (av. 44 × 6 μm), respectively; (Aiello et al. 2017). Chlamydopores were observed in P. algeriense and were 285 
not present in P. strelitziae (Aiello et al. 2017).  286 
 287 
Frequency and localization of the species 288 
 289 
A total of 79 isolates were obtained by sampling from commercial grapevine nurseries located in three regions of 290 
North Algeria: Ain Temouchent (20 isolates), Blida (8 isolates) and Skikda (51 isolates). Most of the isolates (77) 291 
were obtained from the basal area of the plants and only two isolates were obtained from the medium area, whereas 292 
no isolates were found in the grafting point. Cylindrocarpon-like asexual morph were detected in all grapevine 293 
nurseries surveyed.  294 
Concerning the geographical distribution of the different species (Fig. 3), in Ain Temouchent province 80% of the 295 
isolates obtained belong to D. torresensis and 20% to D. macrodidyma. In Bilda province, 75% of the isolates 296 
obtained belong to D. torresensis, 12.5% D. macrodidyma and 12.5% to P. algeriense. In the Skikda province, D. 297 
macrodidyma (23 isolates) was the most frequently isolated species (45%), followed by D. torresensis (35%) and 298 
D. novozelandica (20%) . 299 
 300 
Pathogenicity tests 301 
 302 
All the Dactylonectria and Pleiocarpon isolates used in the pathogenicity test were pathogenic to the grapevine 303 
cuttings. Within 30 days after inoculation irregular black to brown necrosis starting from the point of inoculation 304 
developed on the wood tissue under the bark. The negative control plants did not develop any symptoms (Fig. 4). 305 
Percent recovery of the pathogens was higher than 95% from all inoculated cuttings and reisolated species were 306 
confirmed to be the same inoculated previously. No isolates were obtained from the negative control. 307 
The size of the necrotic lesions varied among the isolates studied. The most virulent isolate was WAM124 (D. 308 
torresensis), which produced the longest lesion size (4,20 ± 2,36 cm) and differed statistically from all the other 309 
isolates. It was followed by the isolate WAM95 (D. novozelandica) (2,89 ± 1,37 cm), which was statistically 310 
different from the other isolates, except WAM8 (D. macrodidyma). The smallest lesion size were produced by the 311 
isolate WAM163 (D. torresensis) (1,65 ± 0,35 cm), which was found to be the less virulent isolate, but not 312 
statistically different from the isolates WAM6, WAM8, WAM63 and WAM186. The necrotic lesion produced by 313 
the isolate WAM6 (P. algeriense) (1,93 ± 0,25 cm) was not statistically different from the Dactylonectria isolates 314 
WAM8, WAN63, WAM163 and WAM163 (Fig. 5).  315 

 316 
Discussion 317 
 318 
This is the first study evaluating the relevance of black foot disease and the associated pathogens in Algerian 319 
grapevine nurseries. Our results confirm the presence of Dactylonectria spp. as causal agents of internal wood 320 
necrosis of grapevine rootstocks and adds the genus Pleiocarpon to the list of genera currently associated with this 321 
complex disease worldwide. The integration of morphological characters and DNA sequences allowed the 322 



 
 

identification of four species, belonging to two genera; namely D. macrodidyma, D. novozelandica, D. torresensis, 323 
and P. algeriense. This later has been described here as a new species and the four species are reported for the first 324 
time on grapevine in Algeria.  325 
Overall, the results obtained in the survey of Algerian grapevine nurseries fit with the relative importance of the 326 
different Dactylonectria species reported in other similar studies worldwide. Our results showed that D. torresensis 327 
was the most frequent species. Isolates of this pathogen were found in the five cultivars and on the three provinces 328 
surveyed. This pathogen was first described as Ilyonectria torresensis by Cabral et al. (2012a) in Portugal from 329 
grapevine. Later it was renamed as D. torresensis after a re-evaluation of the Ilyonectria species by Lombard et 330 
al. (2014). Dactylonectria torresensis is considered the most frequent pathogen associated with black foot disease 331 
of grapevine. According to Larignon (2016), this species has been reported in Australia (Cabral et al. 2012a), 332 
Canada (Cabral et al. 2012a, Úrbez-Torres et al. 2014), Italy (Carlucci et al. 2017), New Zealand (Cabral et al. 333 
2012a), Portugal (Cabral et al. 2012a, Reis et al. 2013), Spain (Agustí-Brisach et al. 2013), South Africa (Cabral 334 
et al. 2012a) and United States (Cabral et al. 2012a). 335 
Dactylonectria macrodidyma was the second most common species found. This species was first described as 336 
Cylindrocarpon macrodidyma by Halleen et al. (2004) from grapevine in South Africa, latter Chaverri named it 337 
as Ilyonectria macrodidyma (2011) and  introduced as D. macrodidyma by Lombard et al. (2014). This pathogen 338 
has been reported on grapevine in Australia (Whitelaw-Weckert et al. 2007), Brazil (Santos et al. 2014), USA 339 
(Petit and Gubler 2005), Canada (Petit et al. 2011, Úrbez-Torres et al. 2014), Chile (Auger et al. 2007), New 340 
Zealand (Halleen et al. 2004), Portugal (Cabral et al. 2012a; Reis et al. 2013), South Africa (Halleen et al. 2004), 341 
Spain (Alaniz et al. 2009), Switzerland (Hofstetter et al. 2009), Turkey (Özben et al. 2012) and Uruguay (Abreo 342 
et al. 2010). 343 
Regarding D. novozelandica, this pathogen was first described as I. novozelandica by Cabral et al.  (2012b) from 344 
grapevine, being classified as D. novozelandica by Lombard et al. (2014). This species has been isolated from 345 
grapevine in New Zealand (Cabral et al. 2012a), Peru (Alvarez et al. 2012, Munive et al. 2013), Portugal (Reis et 346 
al. 2013), South Africa (Cabral et al. 2012a), Spain (Agustí-Brisach et al. 2013) and USA (Cabral et al. 2012a). 347 
The description of P. algeriense in our study adds a second species to the Pleiocarpon genus, which to date was 348 
only represented by one species, P. strelitziae, isolated from the ornamental plant species Strelitzia reginae in Italy 349 
(Aiello et al. 2017). Moreover, P. algeriense introduces Vitis spp. as a new host plant for this genus. Additional 350 
surveys are needed to better understand the role of Pleiocarpon genus as plant pathogens, its host range and 351 
distribution.  352 
The preliminary pathogenicity tests with isolates of D. macrodidyma, D. novozelandica, D. torresensis and P. 353 
algeriense on grapevine cuttings confirmed that all of them were able to develop irregular black to brown necrosis 354 
on the wood tissue under the bark. These findings confirm previous studies, in which severe disease symptoms 355 
were reproduced by artificial inoculation of one-year-old grapevine rootstock shoots with D. torresensis (Carlucci 356 
et al. 2017). Moreover, grapevine plants inoculated with D. macrodidyma showed necrosis of the leaf ribs, 357 
reduction in root mass, root and crown necrosis, browning of vessels, drying of shoots, and death (Santos et al. 358 
2014). By comparing the lesions produced by P. algeriense, there were no statitical differences with some of the 359 
isolates of the three Dactylonectria spp. included in our study. In the survey performed by Aiello et al. (2017) on 360 
ornamental nurseries in Italy, the plants of Strelitzia reginae inoculated with representative isolates of P. strelitziae 361 
showed dry basal stem rot symptoms similar to those observed in the nursery. Future new pathogenicity tests with 362 



 
 

additional isolates of P. algeriense will be useful to understand the role of this species in the black foot disease 363 
complex. 364 
It is well known that soils in grapevine nurseries and vineyards are an important inoculum source for black-foot 365 
pathogens (Agustí-Brisach et al. 2013; 2014; Berlanas et al. 2017). Moreover, several studies have led to the 366 
conclusion that planting material can be already infected by black foot pathogens in young vineyards, either from 367 
infected mother vines (Ridgway et al. 2002; Halleen et al. 2003; Gramaje and Armengol 2011) or by contamination 368 
during the propagation process in nurseries (Gramaje and Armengol 2011; Gramaje and Di Marco 2015). Taking 369 
into account this information, our results emphasize the urgent need to implement an integrated management 370 
strategy for black foot disease in Algerian grapevine nurseries (Gramaje et al. 2018) in order to reduce the 371 
incidence of this disease on grapevine planting material and to prevent that it spreads to new grapevine production 372 
areas.  373 
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Figure captions 579 

Figure. 1 Maximum Likelihood tree inferred from the combined ITS, tef1, tub2, and LSU sequence alignments 580 
and determined by using Tamura Nei model with 1,000 rapid bootstrap inferences. A discrete Gamma distribution 581 
was used to model evolutionary rate differences among sites 5 categories (+G, parameter = 0.2428). Posterior 582 
probability and bootstrap support values (PP/BS) are indicated near the corresponding nodes, where asterisk 583 
indicates not supported and the symbol – indicates that the value was lower than 0.70 or 70, respectively. The scale 584 
bar indicates the expected changes per site. Newly described species are indicated by grey boxes. The tree is rooted 585 
to Rugonectria rugulosa (CBS 126565). 586 
 587 
Figure. 2 Pleiocarpon algeriense (A−C) Simple, sparsely branched conidiophores of the aerial mycelium. (D) 588 
Sporodochia over the filter paper pieces on SNA. (E−F) Complex conidiophores. (G−I) Micro- and macroconidia. 589 
(J) Chlamydospores. Bars A−C, F−G, I−J = 10 μm; D = 200 μm and E, H = 20 μm. All from isolate CBS 144964. 590 
 591 
Figure. 3 Spatial distribution in North Algeria of the species associated to black foot disease found in this study. 592 



 
 

 593 
Figure. 4 Necrotic lesions induced by the Dactylonectria and Pleiocarpon species on grapevine cuttings. C: 594 
control; D. macrodidyma (1:WAM8; 2: WAM63); D. novozelandica (3: WAM95; 4: WAM186); D. torresensis 595 
(5: WAM124; 6: WAM163); 7: P. algeriense (WAM6). 596 
 597 
Figure. 5 Means lesion length (cm) caused by Dactylonectria macrodidyma (WAM8; WAM63); D. novozelandica 598 
(WAM95; WAM186); D. torresensis (WAM124; WAM163) and Pleiocarpon algeriense (WAM6) associated to 599 
black foot disease in Algerian grapevine nurseries. Error bars represent the standard error of means. Significant 600 
differences are represented with different letters above columns according to Fisher's Least Significant Difference 601 
test (P ≤ 0.05). 602 
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Table 1 Sampling regions and samples characteristics 606 

 

Region 

 

Latitude  

 

Longitude 

                            Grapevine plants Age 

(months) 

Number 
of plants Scion Rootstock 

Skikda 36°52′34″ N    6°54′33″ E Muscat d'Alexandrie 

Ora 

Chasselat 

41B 

41B 

41B 

12 

12 

12 

30 
30 
30 

Blida 36°28'12''N 6°54′33″ E Muscat d'Alexandrie 

Vitroblack 

SO4 

SO4 

12 

12 

40 

30 

Ain Temouchent 35°17′50″ N    1°08′25″ O - SO4 12 30 

Total      190 

 607 



 
 

Table 2 Isolation details and GenBank accession numbers of the isolates included in the phylogenetic analysis 

Species Isolate 

number1 

Origin Host Collector GenBank accession numbers2 

     LSU ITS β-tub2 tef1 Rpb2 his3 

Pleiocarpon strelitziae CBS 142251 

ST1; CPC 

27628 

Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304672 KY304644 KY304750 KY304722 KY304697 KY304616  

P. strelitziae CBS 142252 

ST20 

Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304688 KY304663 KY304769 KY304741 KY304713 KY304635  

P. strelitziae ST10 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304678 KY304653 KY304759 KY304731 KY304705 KY304625  

P. strelitziae ST11 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304679 KY304654 KY304760 KY304732 KY304706 KY304626  

P. strelitziae ST12 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304680 KY304655 KY304761 KY304733 KY304707 KY304627  

P. strelitziae ST13 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304681 KY304656 KY304762 KY304734 - KY304628  



 
 

P. strelitziae ST17 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304685 KY304660 KY304766 KY304738 KY304710 KY304632  

P. strelitziae ST18 Italy S. reginae D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304686 KY304661 KY304767 KY304739 KY304711 KY304633  

Pleiocarpon algeriense CBS 144964 

WAM6   

Algeria Vitis 

vinifera 

W. Aigoun-

Mouhous 

MH587321 MH587320 MH587324 MH587323 MH587322 MH587296  

Rugonectria rugulosa CBS 126565 Venezuela Dead tree L. Lombard, N.A. 

van der Merwe, J.Z. 

Groenewald and 

P.W. Crous 

KM231615 KM231749 KM232007 KM231873 - -  

Thelonectria 

discophora 

CBS 134034 

AR 4742 

Chile Tepualia 

stipularis 

C. Salgado, A.Y. 

Rossman and P. 

Chaverri 

KC121440 KC153714 KC153779 KC153843 - -  

T. olida CBS 215.67 

ATCC 16548 

IMI 116873 

Germany Asparagus 

officinalis 

C. Salgado KJ022058 KJ021982 KM232024 - - -  

T. olida CBS 142255 Italy Strelitzia 

reginae 

D. Aiello, G. 

Polizzi, P.W. Crous 

and L. Lombard 

KY304684 KY304659 KY304765 KY304737 KY304709 KY304631  



 
 

T.rubi CBS 113.12 

IMI 113918 

 Rubus 

idaeus 

C. Salgado, A.Y. 

Rossman and P. 

Chaverri 

KC121444 KC153718 KC153783 KC153847 - -  

T. trachosa CBS 112467 

IMI 352560 

Scotland Bark of 

conifer 

P. Chaverri, C. 

Salgado, Y. 

Hirooka, A.Y. 

Rossman and G.J. 

Samuels 

HM364312 AY677297 AY677258 KM231896 - -  

T. veuillotiana CBS 132341 

AR 1751 

Azores Eucalyptus 

sp. 

C, Salgado, A. 

Rossman, G.J. 

Samuels, M. Capdet 

and P. Chaverri 

JQ403345 JQ403305 JQ394698 JQ394734 - -  

Ex-type strains are shown in bold. 1 AR: Amy Y. Rossman working collection; ATCC: American Type Culture Collection, Virginia, USA; CBS: Westerdijk Fungal Biodiversity 
Institute , Utrecht, The Netherlands; CPC: Pedro Crous working collection housed at CBS; IMI: International Mycological Institute, CABI- Bioscience, Egham, Bakeham Lane, 
UK; ST: D. Aiello personal culture numbers; WAM: Wassila Aigoun-Mouhous collection, LBSM, ENS Kouba, Algeria.2ITS = internal transcribed spacers and intervening 
5.8S rDNA, LSU = 28S large subunit ribosomal rDNA, his3 = histone H3, rpb2 = RNA polymerase II largest subunit, tef1 = translation elongation factor 1-alpha, tub2 = β-
tubulin. 



 
 

 
FIGURA 1 

  



 
 

 
 

FIGURA 2 

 

  



 
 

 
FIGURA 3 

  



 
 

 
 

 

FIGURA 4 

 

  



 
 

 
 

FIGURA 5 


