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ABSTRACT

Students of computer science are becoming incrglgsispecialized, but to work in
multidisciplinary teams they need to appreciatdediint perspectives and methods. This Final
Year Project was carried out in the Physics depamtnat Kochi University of Technology
(Japan), and it concerns two interdisciplinarydglquantum cryptography and econophysics. In
the field of quantum cryptography, two of the mospresentative protocols for quantum key
distribution, BB84 and B92, were analyzed and camegbatheir practical implementation was
also described. In the field of econophysics, walaned the properties of the statistical family of
Lévy distributions, which are applied in financt@mputing to model the evolution of prices.

RESUMEN

Los estudiantes de Ingenieria Informatica se eajiemn cada dia mas, pero para participar en
equipos multidisciplinares deben ser capaces decigprperspectivas y métodos diferentes. Este
Proyecto Final de Carrera fue llevado a cabo @epartamento de Fisica de la Kochi University
of Technology (Japon), y se adentra en dos canmpextlisciplinares: la criptografia cuantica y la
econofisica. En el campo de la criptografia cuante han analizado y comparado dos de los
protocolos de distribucion cuantica de claves regsasentativos, el BB84 y el BB92; ademas se
ha descrito su implementacion practica. En el cangda econofisica, se han explorado las
propiedades de la familia estadistica de distrings de Lévy, las cuales se aplican en
computacion financiera para modelar la evoluciofoderecios.

RESUM

Els estudiants d’Enginyeria Informatica s’espetialn cada dia més, pero per participar en
equips multidisciplinaris han de ser capacos d@preperspectives i metodes diferents. Aquest
Projecte de Fi de Carrera va ser desenvolupat éepartament de Fisica de la Kochi University
of Technology (Japd), i recorre dos camps inteiplisaris: la criptografia quantica i
'econofisica. En el camp de la criptografia quéentis’han analitzat i comparat dos dels protocols
de distribucié quantica de claus meés represeniaiuBB84 i el B92; a més se n’ha descrit la
implementacio practica. En el camp de I'econofisghan explorat les propietats de la familia
estadistica de distribucions de Lévy, les qualplisfaecn en computacio financera per modelar
I'evolucié dels preus.
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Introduction

1. Introduction

In recent times, scientists, researchers and ea@regave become increasingly specialized. To
reach the high depths of knowledge and expertis&chware required of them nowadays,
scientists focus their attention on minute areastofly; the current paradigm in our jobs is far
from the polymath or Renaissance man of ancienédirklowever, the most complex problems
we face still need the application of differentailidines to tackle them, which creates a necessity
for interdisciplinary collaboration. Thus today’s experts in science and engineeringt mot
only be able to reach achievements within theitipalar field of study, but must also have the
ability to work together with experts from otheelfis in amultidisciplinary team — both in the
worlds of academy and business.

Computer scientists and engineers are no excefwiohnis rule — fields such as bioinformatics,
cybernetics, information science and quantum comguteside in the intersection between
computer science and other disciplines. A studén€@mputer Science and Engineering will
therefore benefit greatly from developing suchatwodirative skills during the course of its studies.
For if he or she wishes to participate in multigpiioary ventures in the future, he or she must
become able to appreciate differing perspectivelsnagthods.

Physics is one of the classical sciences which hmweeided the basis for computer science:
physics constitute the foundation of the hardware/hich the mathematical-based apparatus of
software is housed. In this Final Year Project,ghalent has worked as a computer scientist in a
physics laboratory, getting himself acquainted wito promising interdisciplinary subjects:
guantum cryptography and econophysics.

Quantum cryptography is one of the topics which we have explored irs fhinal Year Project.
We have already mentioned quantum computing asladmsaiplinary field related to computer
science, but it is not only one more field in thiat: it is among the most important ones in
current computer science research. As current ceanparadigms reach their physical limits, the
application of the theories ajuantum mechanics to both hardware design and algorithms is
opening the way for the future of computer science.

In the chapter on quantum cryptography, we intredsmme basic notions of quantum mechanics
which are required to understand any quantum pobtd®¥e then proceed to describe, compare
and discuss the implementation of BB84 and B92, pnatocols which take advantage of the
property of quantum indeterminacy to allow for pably secure key distribution. Their provable
security makes them ideal candidates to replaceuthrently prevailing public key cryptographic
protocols if they are broken (something that isrzbio happen when full-fledged quantum
computers become a reality).

Econophysics, the second of the main multidisciplinary fieldsvered in this Final Year Project,
is the application of theories and methods from fileé& of physics to solve problems in
economics. In the last decades, quantitative atsa{gsquants) have acquired relevance for their
work in developing pricing models for investmentogucts. Financial institutions have
traditionally recruited these quants from the ranksnathematics and physics graduates, but a
strong background in computer programming or inaaded computational methods such as
neural networks or evolutionary computation is eitm increasingly valued for these tasks.
Thus computer scientists have also their placehis @rea, under the new discipline of
computational finance; however, they will have tdlaborate with physicists and mathematicians,
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and they will need to understand the methods thmfsipists and mathematicians use for
modelling.

In the chapter on econophysics we study the priggenf statistical distributions that are
frequently applied for economical and financial raltidg, namely the family of Lévy stable
distributions, focusing especially on the Gausgi@rmal) distribution and the not-so-common
Lorentzian (Cauchy-Lorentz) distribution. The Lédigtribution is applied in financial modelling
because of its empirical similarity to the retunissecurities; changes in prices do not follow a
Gaussian distribution, but are rather better medelby Lévy stable distributions. The
background in mathematics and statistics acquiredhe degree in Computer Science and
Engineering proves to be effective for applicatiothis field.
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Quantum Cryptography
Quantum key distribution protocols: BB84 and B92

2.1 Introduction

The theory of quantum mechanics has brought fundehehanges in physics, and science as a
whole, since its inception in the early "2@entury. Especially since the 1980s, quantum
mechanics have been applied also in the field ofprdation and computer science, to the point
that its proponents argue that the future of comampart lies inquantum computation

It could be argued that it is just a matter of si@mantum mechanics can be in some way
“‘ignored” when we deal with the human scale wond can manage with our common-sense
classical physics. But the electronic componensgdan computers are reaching minute sizes in
which quantum mechanics have to be taken into axdcdthus a change of paradigm, from

classical computers to quantum computers, mightigtewaiting to take place in the next years

[1].

But that is not the main topic of this chapter. Whe intend to discuss here is the subfield
known asquantum cryptographyAnd once again, the reader might want to know wieyneed

such an exotic thing, why cannot we go on with dassical cryptography like we have done
until now. Well, it is precisely because of quantwemputing that we will need quantum

cryptography.

Let us explain that. Right now, the most populayptwgraphic protocols are public key
cryptosystems. Public key protocols are not themaky unbreakable; they rely on the
assumption that the calculations needed to break thre hard to solve (meaning, they require
too much time to be solved) on classical comput&s. what would happen if those hard
problems became easy to solve using quantum comnsfuliéat is exactly what might happen
when full-fledged quantum computers become a sedibr instance, RSA, the most widely used
public key cryptosystem today, relies on the assiompthat factoring large numbers is
computationally unfeasible on classical computétewever, there is already a quantum
computing algorithm, known as Shor’s algorithm, fwolving factoring in a fast way (in
polynomial time) on quantum computers. That meaS# Rvould become easily breakable by
using quantum computers [2].

In that case, we would need some other cryptogcaphethod to encode our private
communications. Quantum cryptography gives usthet Interestingly, the quantum formula for
cryptography means going back to private key cryygtems. The problem with private key
cryptosystems, up until now, has been secure loligiton of the keys. The key point of quantum
cryptography is that it provides a provably secuas to share information over a public channel.
Thus we speak ajuantum key distributioprotocols, which exploit quantum indeterminacy to
make provably certain that any eavesdropping wbeldetected. A key shared securely by using
guantum cryptography can then be used for secunencmication by means of a classical private
key cryptosystem.

Quantum computing, therefore, might someday makeegtipublic key cryptosystems obsolete,
but give us at the same time the first truly, pbgBy secure cryptographic protocols.

In this chapter we will have a look at two of thesnh significant quantum key distribution
protocols. One of them, BB84 [3], is the first t&f kind to have been developed, while the second,
B92 [4], is a refinement by one of the authorshad first one. We will analyze how they work
and what are the differences between them, andgbemn to describe the basic requirements to
implement them for practical use.
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2.2 Some basic quantum mechanics for quantum cryptography

Quantum cryptography is built over basic conceptgu@ntum information theoryro use the
properties of quantum mechanics to securely exaharfgrmation we need first a way to codify
physical information as stateof a quantum system.

The basic unit of quantum information is thebit, described by a state vector in a two-level
guantum system. A qubit, like a classical bit, t@ve two possible values: 0 or 1. But, unlike
classical bits, it can also be a superpositionathi lvalues. The states a qubit may be measured in
are known adasisstates. They are traditionally represented usmagkbt (Dirac) notation; thus,
the “0” state is represented as |Oketzero”), while the “1” state is represented as(/ketone”).

As for the physical representation of qubits, awp-tevel system can be used. For instance,
single photons can be used as qubits; photon pataon (horizontal or vertical) will determine
the quantum state [5].

In our examples, we will take as a reference tipeeisentation of qubits using electrons. In this
case, electronispin determines the quantum state. We can imaginepimeas an arrow the
“up” (1) spin represents the state |0>, while the “dowh’spin represents the state [1>.

Quantum cryptography exploitfuantum indeterminag¢yone important and unique property of
guantum systems, to achieve security in commuiicati For our purposes, we can interpret
guantum indeterminacy as meaning that observasiot a passive activity in quantum systems;
on the contrary, the act of observing (measuringantum system affects its state.

Let us try to explain this property through an epénA first person, whom we will refer to as
Alice, can prepare an electron so that it points given directior®. When a second person, Bob,
comes and measures in which direction is the elegipinting, the result will depend not only on
the angled that Alice set on the first place, but also on éimgley in which Bob conducts the
measurement. In fact, the observed direction wallpbor ¢+180°, the probability of obtaining
each result depending on betland the original anglé the only measurement that is impossible
to achieve i+180°. So, Bob can determine the two possible tednlit not the probability with
which each of them will come out.

We will now introduce some basics about the mathieadanotation of quantum states before
going on to analyze communications between Aliak Bob in more detail.

Hilbert vectors

Mathematically, quantum states are representeceetors in Hilbert spaceThe quantum state
set up by Alice in anglé would look like this as a Hilbert vector:

COS— 1 0
b>=| 2|= cos?| T +sinf[ ] 0<o< 2 (Eq. 1)
sin? 210 2\ 1
2

As we show, any quantum state can be expressetiremacombination of the two basis states

‘up” = |1>=0> =[éj and “down” =[>=|r> = [(ﬂ

! The electron has a magnetic moment; we can imagir&row pointing through the electron towardsdgh pole.
? Ketvectors are represented as column vectors.
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Theup-down basig] basis) is one of the two bases that we will useuinversions of BB84 and
B92.

As for tge guantum state that Bob is ready to measuanglep, its Hilbert vector would look
like this:

<¢|=(Cosg sin%jzcos%(l 0)+sinf(0 1) ,0sp<2r (Eq.2)

Finally, the probability of Bob finding the finalugntum state ¢¢ when measuring the initial
quantum stat&$ would be [1]*

Pl |0) = | <|o> F = |cos§cos§+sin%sing ? (Eq. 3)

Thus we have exposed the basic points of the algeded for quantum measurement.
Just one more concept before going on: as the reateimagine, the up-down)(basis is not

the only basis in Hilbert space. There are infilngses, from which we will only use a second
one for our explanations of BB84 and B92: tight-left basis(<» basis). Its two basis states are

T Vg
COS— Co{__j
‘right” = |>> = /2> = 7| (l/ ﬁ) and “left’ = }—> = |3v/2> = 4= ( e J
sin— 1/\/5 Sin(_gj —1/\/5

The« basis can be decomposed in terms offtbasis, and vice-versa:

o> = 1>+ |L> 1> = o+ fe>
V2 V2 V2 V2
NG S NG S

|<_>_\/§|T> \/§|l> |~L> \/El > \/El >

We can now rewrite Eg. 1 in terms of the right-lgft) basis to check that (just as with the up-
down basis) any quantum state can be expresselin@aiacombination of the two basis states:

4 co£+sin§ cosﬁ—sing
0> = COSE _ 2 2 (1/\/5]+ 2 2 (1/\5

snf | J2 12 J2 —1/&] 0=8<z  (Eq.49)
2

As we will see later, the following convention wile used to represent bit values as quantum
states in the up-down basis and the right-leftdbasi

Basis 0 1

I (up-down | [t> | |J>
o> (right-left) | | o> | <>

% Bra vectors are represented as row vectors.
* Thebracket<gp|¢> is the inner product ofgt and ¢> (the state expected by Bob and the state prefmgrédice).

8



=

&5 Quantum Cryptography

Communication between Alice and Bob

When Alice sends information encoded as quantutesstand Bob receives and decodes it as
explained, the next table gives a summary of thesipte cases that can arise:

Alice Bob

Value | Encoding| Q. state] Measuring| Q. state| Read | Conditional
to send| basis sent basis read value | probability

0 ) > 1 [t> 0 100%

o |—> 0 50%

|—> 1 50%

— [1> 0 50%

s | ! > |1 [50%

“— |—> 0 100%

1 ) > ) [{> 1 100%

o |—> 0 50%

|—> 1 50%

- 1> 0 50%

[—> ! [|> 1 50%

“— [—> 1 100%

For example, let us say Alice wants to send a ‘@lug. She chooses tfjeencoding basis, then
she encodes “0” a$¥. Now, the value that is read by Bob depends nbt on the qubit sent by
Alice, but also on the basis Bob uses to measuteBob measures along tHebasis, then the
chances are 100% that he will re4d, |which is decoded as “0” (because Pf) = | <t|t> F =

lcos” cos™ +sinZsin” 2 = 1, while P | 1) = | <LIt> £ = | cos R cos™ +sin"2sin”t |2 = 0).
474 7474 4 4 474

On the other hand, if Bob chooses to measure dlumg> basis, then he will reaesp> or p—>
randomly, with probabilities split at 50% (as a sequence of the orthogonality of the bases we

have chosen: P§[1)= | <>|t> F = |cosgcos%+singsin% > = 0.5, and RE|N) = | <—1> F =

| cosgcosﬂ +sin93in£ |> = 0.5).
2 4 2 4

It is important to note in which way quantum indataacy is at work here. If Bob does not
know which basis was used by Alice for encodingnthe has to choose a basis at random for
measuring. In this last example, if he chooseswitang basis <) he will read either-> or
[<—>, which means his act of measuring has changedtéite of the quantum system; if he later
resent the data to a third person, he would beisgiide state as he read it, and not as Alice sent
it in the first place (the state Alice sent woulat exist anymore!).

As we will see in the following sections, this pesty is what guarantees the security of key
distribution using the BB84 and B92 quantum proteco
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2.3 The BB84 protocol

BB84 is the first quantum cryptography protocolyveleped by Charles Bennett and Giles
Brassard in 1984 [3]. It is a prepare and measw&gol, using discrete variable codihls
most interesting feature is that it is provably wsec It is usually applied for securely
communicating a private key for use in one-time padryption (a form of Vernam cipher which
provides perfect secrecy).

There are many possible variations of BB84. We tnlto describe it in a very simple way.
Alice (the sender) and Bob (the receiver) are cotatkby a one-way quantum communication
channel and a two-way classical communication celareither of these channels needs to be

secure.

Alice wi(lal use 2 sequences @ndb) of random bits, while Bob will use 1 sequencearfdom
bits (©0’).

Alice and Bob have agreed beforehand (through icklssommunication) on the following
convention for encoding and decoding bits into frach quantum states:

Basis| O 1
0=7 [it> [ lI>

1= |—>> |<—>

Alice first encodes as a sequence of quantum states, usitogdetermine the encoding basis for
each bit ina. She then transmits the quantum states over tetguon channel. Bob decodes every
guantum state he receives, choosing every timédbis for decoding according bd, and stores
the bits in a new sequenak Note that, at this poink is only known to Alice, and so Bob has no
way of knowing if he is measuring incoming quantstates in the same basis in which they were
encoded by Alice — he is doing it randonmlithe good thing is, if Eve (an eavesdropper)
interfered, she would be in exactly the same sdnaas Bob, and that is why Alice and Bob
would later be able to detect her eavesdropping.

After Bob has received and measured all the quastabes sent by Alice, Alice communicates
her encoding sequenck) (through the classical channel, and Bob commuescais decoding
sequencel(). Alice and Bob compare andb’, and they discard those bitsaranda’ for which
the encoding and decoding modes did not m&fiie bits left froma anda’ after the discarding
process form the sequenaegon Alice’s side) and’ (on Bob’s side). On average, 50% of the
bits froma anda’ will be kept inc andc’.

Now, if there was no eavesdropper between Alice Bolg, c andc’ would be exactly the same.
Bob decoded each bit af in the same basis Alice used to encode the onesand thus their
values would be the same.

® Prepare and measungrotocols exploit the property of quantum indetieyawy in order to detect any eavesdropping
on communication, as opposedetanglement baseatotocols, which exploit the properties of entaggfjuantum
states. As taliscrete variablecoding, it is the first of three families of protas, the other two beingontinuous
variable anddistributed phase refereno®ding.

® The lengths of, b andb’ will be equal, and chosen before communicatioretyas the number of bits desired for
the final shared key (only a part of the bits Wil shared even if communication is successful).

" As a result, the bits ia anda’ will agree with a probability of 75% (50% from quam states measured along the
right basis + 25% from quantum states measuredydlmmwrong basis but randomly resulting in thétigalue).

8 The discarded bits from anda’ had a 50% probability of being in disagreemene @ecoding basis was wrong,
but there was still a 50% chance of reading thiet iiglue).

10
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On the other hand, if Eve tried to eavesdrop onrmanications between Alice and Bob, Eve’s
measurements would introduce changes in the quastates that Bob finally received on the
other end of the linec@andc’ would then differ).

Eve would have access to both communication charenadl would use 1 sequence of random
bits, just like Bob. Eve’snodus operandiould consist in receiving, measuring, re-encoding
resending every quantum state sent by Alice. But,eich quantum state sent by Alice, Eve
would have a 50% chance of decoding it in the wrdagis; then, if Bob measured the
intercepted state in the same basis Alice usetderfitst place he would have a 50% chance of
obtaining the same value Alice sent. The probabibf Eve's eavesdropping introducing
mismatches between the bitsciandc’, then, would be 25%.

Thus Alice and Bob, after determinimgandc’, of 2n bits each, conduct one further check to
make sure no eavesdropping took place. Alice ardd&tect and comparebits from theirc and

¢’ sequences. The probability that they find a disagrent introduced by Eve’s actions is
Pg = 1 — (3/4). Then, to detect an eavesdropper with probalflity 0.99999999 Alice and Bob
need to compare=72 bits (a figure that has to be taken into acteuren deciding the length of
the original sequenca sent by Alice). If they find any disagreement e tcomparison, they

abort and start over, possibly through a diffeqmintum channél.

If no eavesdropping is detected, then the remainibis inc andc’ constitute the secret shared

key between Alice and Bob (for use in a traditiom@ate key protocol).

Let's have a look at an example of quantum keyribision according to Bass | 0 1
BB84, in the case were no eavesdropping takes .placthis example, 3 0_=1 > | >
sequence of 15 bits is originally transmitted: 1o | o> | >

il1 |2 [3 [4]5 [6 | 7] 8 ] 9] 10] 11] 12 13 14 15
Alice
Original 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0
sequenced)
Mode for 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0
encoding )
Transmitted | [«—> | [|> o> 1> >l |1t>| > ||> [t> [t> k> 1]->1||->| >
State
Bob
Mode for 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1
decoding ")
Observed [—>||l>|]~>1l>|]—>1|> > 1 1> o> > > | > | > [I> |e—>
State
Reconstructed 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1
sequenced)

i 1 2 3 4 5 6 7 8 9 10 11 12 18 14 1
bi #bi’ ? * * * * * * * *
Alice 1 0 1 1 0 1 0
Bob | 1 0 1 1 0 1 0

°If Alice and Bob usénformation reconciliationand privacy amplification techniques which were introduced in
1992 [6], they can tolerate a disagreement ratiess than 20% between thebits compared. If the disagreement
rate does not reach 20% during the check, thendhayapply information reconciliation and privaapgification

to obtainm secret shared key bits from the remainirgjts inc andc’.

11
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After Bob has received and measured all the quastabes sent by Alice, Alice communicates
her encoding sequench) (through the classical channel. Alice and Bob carap andb’, and
they discard those bits manda’ for which the encoding and decoding modes didhmatich. As

no one interfered in communication over the quantimannel, the resulting sequenceandc’

are exactly the same (1011010). But Alice and Babnot be sure of that, so they choose
randomly half of the bits it andc’ to conduct a value comparison. After verifying ttlad
chosen values coincide, they know they can shareett of the bits in andc’ as their secret key
(for use in a traditional private key protocol).

Let's now analyze what happens when Eve tries teeshop on the Bass | 0 1
communications between Alice and Bob: 0= | 1> | >

1= |—>> |<—>

il1 |2 [3 |4]5 |6 |7 | 8] 9] 10] 11] 120 13 14 1%
Alice
Original 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0
sequenced)
Mode for 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0
encoding )

Transmitted |[—> | ||> o> > | > | <> | 1> > ||> [t> [t> k=>11—=>1|->| 11>
state

Eve

Mode for 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0
decoding

Observed (and f—> | ||> | ||> | |I> (1> | [[> | |=>||=>||> | |==>||>>]| > | [>> | [|> | 1>
resent) state

Bob

Mode for 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1
decoding ')

Observed k== |=>|=>{>(l=>{> (1> 1> [ |>>[—=|[>>1> | >
state

Reconstructed 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0
sequenced)

i 1 2 3 4 5 6 7 8 9 10 11 12 18 14 15
bi # bi’ ’) * * * * * * * *
Alice | ¢ 1 0 1 1 0 1 0
Bob |c 1 0 1 0 0 1 0

Eve receives, measures, re-encodes and reserhds gllantum states sent by Alice. This process
introduces errors in Bob’s measurements.

Just like before, after Bob has received and medsall the quantum states sent by Alice (and
tampered by Eve), they compdr@andb’ over the public channel and discard all bits.ianda’

for which the encoding and decoding method didoihcide. They thus obtain the sequences
andc’, which would have matched 100% if it were not Ewe’s interference (in this example 1
error was introduced in Bob’s measuremenitsshould have been 1, but has been read as 0).

To detect any possible eavesdropping, Alice and Balolomly select and compare half of the
bits from theirc andc’ sequences. For long enough shared sequencesyithéave an almost
100% probability of finding the disagreements betwéhem caused by Eve, which will evidence
that eavesdropping has taken place. That is enfuugklice and Bob to know they have to abort.

12
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2.4 The B92 protocol

The B92 protocol was developed by Bennett in 1992 aimplification of BB84 [4]. The most
important refinement introduced in B92 is that oglystates are used for encoding and 2 for
decoding. Thus an encoding/decoding conventio®8& might look like this:

0 1
Alice [t> | >
(encoding)
Bob [—> 1 |l>
(decoding)

As a result, encoding becomes immediate for Alglee does not need to choose the encoding
basis at random for each bit anymore.

Alice will use only 1 sequence)( of random bits. Bob will still use 1 sequenceraidom bits

©).

Alice and Bob are still connected by a one-way @quancommunication channel and a two-way
classical communication channel.

Alice first encodes as a sequence of quantum states, as indicatbe prévious table. She then
transmits the quantum states over the quantum ehaBob decodes every quantum state he
receives, choosing every time the basis for degpdatording td’, and stores the bits in a new
sequencea’. In B92, the following situations can arise duriBgb’'s measurement of each
guantum state received from Alice:

Alice Bob
Q. state Measuring| Conditional] Q. state| Conditional -
sent Prob. basis probability | read probability Value Absolute probability
0=7 50% [1> 100% Erasure| 25%
[t>=0 | 50% _ 0 |[—>> 50% 0 12.5%
1=o 150% > | 50% Erasure| 12.5%
_ [1> 50% Erasure| 12.5%
- 0,
[—>=1|50% 0=1 0% [|> 50% 1 12.5%
l=o 50% [—> 100% Erasure| 25%

As seen in the table, only in 2 cases Bob accégtsdad value: when he measures the quantum
states he was expectings¢ for O or |> for 1); in these 2 cases he can be sure thatalue he

has read is exactly the one Alice encoded and igethie first place. On the other hand, if the
guantum states he measures &regr k—>, then he cannot be sure which value did Alicaedsen
originally. This last situation is called agrasure and has a 75% absolute probability of
happening, which means that in B92, on average, @b%e original sequence transmitted by
Alice will be discarded from the beginning.

Evidently, in B92 Alice and Bob do not need to camgthe bases they used for encoding and
decoding. Instead, after Bob has received and medsll the quantum states sent by Alice, he
uses the classical channel to communicate whighw@te non-erasures, and they both discard all
other bits (all erasures). The remaining bits faha sequences (on Alice’s side) andt’ (on
Bob’s side). The length of andc’ will be, on average, 25% of the length of the ioiad
transmitted sequenee
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If there was no eavesdropper between Alice and Bamdc’ would be exactly the same. That
being so, they would be able to securely asmdc’ as their secret key (for use in a traditional
private key protocol).

However, if Eve tried to eavesdrop on communicaidretween Alice and Bob, Eve’s
measurements would introduce changes in the quastates that Bob finally received on the
other end of the linec@andc’ would then differ).

Just as in BB84, Eve would have access to both agmuation channels and would use 1
sequence of random bits, like Bob. Eve would rezmeimeasure, re-encode and resend every
guantum state sent by Alice. But, like in BB84, Bweuld have no way to know if she is
measuring the quantum states sent by Alice aloagitht basis, and so the quantum states she
would resend to Bob would not be the same oneseAdiiginally encoded. The non-erasures
found by Bob would change from the ones he woulteHaund without Eve’s interference, and
most importantly, in some of the non-erasures deteby Bob he would read a different value
from the one originally sent by Alice.

Again, that allows Alice and Bob to detect any eavepping. To that end, after determining
andc’, Alice and Bob conduct one further check: thegsehnd compare bits from theirc and

c’ sequences. If they find any disagreement in tmepeawison, they abort and start over, possibly
through a different quantum channel.

If no eavesdropping is detected, then the remaibitgyin c andc’ constitute the secret shared
key between Alice and Bob (for use in a traditiomate key protocol).

Let's have a look at an example of quantum keyibigtion according to B2, 0 1
in the case were no eavesdropping takes placéidrexample, a sequence joflice | [1> | [—>
15 bits is originally transmitted: Bob | [—>>] |I>

il1 [2 [3 |4 |5 |6 [ 7] 8] 9] 10] 11] 12 13 14 1%

\=

Alice

Original 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0
sequenced)

Transmitted | [—> | |—>||1> ||k>||>||> 1> ||>||>11> |[I> | >|DI> | I>]| >
state

Bob

Mode for 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1
decoding ")

Observed [—>||>]|]~>1 11> > ||> > 11> ==\ |l—>||->||l>|]~>| 1> |—>
state

Erasure’)(e) * * * * * * * * * *
Reconstructed 0 1 1 0 0

sequenced)

After Bob has received and measured all the quarstaes sent by Alice, he uses the classical
channel to communicate which bits were non-erasunesd they both discard all other bits (all
erasures). As there was no eavesdropper betweee &tid Bob, the remaining sequencéen
Alice’s side) andt’ are the same (01100). But Alice and Bob do nowktimat, so they still have

to check that there was no eavesdropping. Theyorahdselect half of the bits in andc’ to
conduct a value comparison over the classical adamiter verifying that all chosen values
coincide, they know they can use the rest of th® ibic andc’ as their secret key (for use in a
traditional private key protocol).

14
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Let's now analyze what happens when Eve tries teesop on the 0 1
communications between Alice and Bob: Alice | 1> | k—>
Bob [—>>1 ||>

il1 |2 [3 |4 |5 |6 |7 [8 ] 9] 10] 11] 12 13 14 15

Alice

Original 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0
sequenced)

Transmitted <> | |«>]| > > | [—> | |—>| It> > | [—>1| 1> [t> f—>1 |t> h>1 1>
state

Eve

Mode for 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0
decoding

Observed (and [—> | 1> [ > [ 1> [ 1> [ 11> [ > [—=>[[1> [ > [l [I=>[>> [ 11> [ It>
resent) state

Bob

Mode for 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1
decoding ')

Observed > |>[l—> > |[F>II> (> [> [bP> > == >]|]>|1>]||>>
state

Erasure?(e) * * * * * * * *
Reconstructed 1 0 1 0 0 0 0
sequenced)

Eve receives, measures, re-encodes and resertds gliantum states sent by Alice. As in BB84,
this process introduces errors in Bob’s measuresnent

After Bob has received and measured all the quastates sent by Alice (and tampered by Eve),
he uses the classical channel to communicate whishwere non-erasures. Keeping only those
bits, they obtain the sequenaeéon Alice’s side) and’, which would have matched 100% if it
were not for Eve’s interference (in this exampleeBwavesdropping has introduced 2 errors in
Bob’s measurements;’ andcy’ should have been 1, but have been read as 0).

To detect any possible eavesdropping, Alice and Ballomly select and compare half of the
bits from theirc andc’ sequences. For long enough shared sequencesyithéave an almost
100% probability of finding the disagreements betwéhem caused by Eve, which will evidence
that eavesdropping has taken place. That is enfuugklice and Bob to know they have to abort.
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2.5 Comparison between the BB84 and the B92 protocols

The B92 protocol very much follows the method esthkd in BB84 (indeed, BB92 was
conceived by one of the creators of BB84). Both prepare-and-measure quantum key
distribution protocols, which work following similasteps, and which achieve the same result:
provable security, through the fact that any ear@gyung is inevitably detected.

As such, both protocols are susceptible of beingemented and used for secure key distribution.
Both are effective in that respect.

B92 can be considered a refinement of BB84 in #w that encoding the initial random bit
sequencea into qubits becomes immediate for Alice, usingyodlstates, and less initial data is
required (Alice only needs 1 random bit sequencB98, as opposed to 2 in BB84). Also, B92
avoids the step in which Alice and Bob compareltases they used for encoding and decoding
(b andb’); in B92, Bob can communicate directly to Aliceialhbits were erasures and thus can
be discarded by both of them to obtaiandc’. From this point of view, B92 is simpler and more
efficient in its steps.

On the other side, if we examine the efficiencyrahsmission, B92 does not come out as better
than BB84. As we already explained, in BB84, onrage, 50% of the bits sent initially by Alice
are measured along the right basis by Bob, andegt ik c’; then, if 50% of those correctly
measured bits are compared to check for eavesarmpitie resulting shared key will have an
average of 25% of the length of the originalequence transmitted by Alice. In contrast, in BB9
just from the beginning, 75% (on average) of thts Bent by Alice are discarded by Bob as
erasures; and then, if 50% of the remaining biésa@mpared to check for eavesdropping, the
resulting shared key will be on average 12.5% efiéimgth of the originad sequence transmitted
by Alice.

In the following table we can compare how both pcots perform if we want to obtain a 128-bit
shared key:

Length of Bits discar ded Bits used Length of
Pr otocol aa,b from a. a’ Length of| fromc,c’ thesecure key Transmission
(alsob (avere{ge) cC to check for | obtained and sharddefficiency rate
in BB84) eavesdropping by Alice and Bob
BB84 512 bits 50% 256 bits 50% 128 bits 1/4
B92 1024 bits 75% 256 bits 50% 128 bits 1/8

As we can see, even if both protocols guarantees¢icarity of key distribution, B92 is more
refined in its method, while BB84 is more efficiantthe transmission of data. The convenience
of choosing one protocol over the other will beedetined by the constraints of each particular
case.
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2.6 Application of quantum cryptography

Most practical implementations of quantum key distiion protocols are based on single
photons transmitted over optical fibre [7] (as nmtd in section 2, single photons are a two-
level quantum system that can be used to physiogtisesent qubits).

In choosing the source, the detectors and the lagpi@al fibre to be used, the most important
factor is the wavelength to be used; two main fagses thus arise. The first option is to use

commercially available single photon counters, \Whiperate on a wavelength range of around
800 nm; the second one is to use a wavelength ddrtgavith standard telecommunications

optical fibres, i.e., 1300 nm or 1550 nm. The choio operate with existing single photon

counters requires the use of special fibres, whichild prevent the use of already installed

telecommunications networks. On the other handcliwéce of a wavelength suitable for today’s

optical fibres requires the development of detector 1300 nm or 1550 nm.

When using single photons to encode classical nmftion as qubits, different polarization states
can be used as the bases for BB84 and B92 [2]. Wé¢ake as a reference the 4 states we used
to explain the protocols in sections 3 and 4, ttaj>> and +> (from the right-left— basis);
plus > and |> (from the up-dowri basis). Linear polarization can be used as ortheobases
(whose two states are still representedtasand |>), while circular polarization can be the

second basis (whose two states woulde for |»>> and }T-J'> for k—>). Our conventions for
encoding and decoding would then become as follows:

BB84 B92
Basis 0 1 0 1
0 =Linear | [t> |||> Alice 1> |=f,,;->
polarization (encoding)
1 =Circular |=__L'> |=$,,;-> Bob |=__L'> [{>
polarization (decoding)

A diode laser can be used to generate the phototieichosen wavelength, polarized in one of
the 4 possible states. As single photon statesliffreult to realize in practice, faint laser putse
are used to produce approximately single phototest@’approximately” single photons will
require some extra measures for such an implenmemtat work in practice). Photons then travel
through optical fibre, and they are received bingle-photon polarization analyzer.

Thus we have a quantum channel for the BB84 or @B8#cols. We just need to complement it

with a classical channel, such as the Internet, advial implementation of the steps of the

protocol as an algorithm to be run in a classiaahputer, and so we have all we need for a
practical implementation of quantum cryptography.

Still one more option has been tried in physicgblementations of BB84 and B92: free space
transmission of the photons, instead of the useptical fibre. Free space transmission is
restricted to line-of-sight links, but eliminatdgetneed for a fibre-optics infrastructure to be in
place. In free space transmission, the choice ofelgagth is easy, as the region were good
photon detectors exist, around 800 nm, is at timeesame the wavelength were absorption is
lower, which makes it ideal for transmission [8]fr&e-space link, then, is another viable option
for transmission; coupled with the rest of the edais explained before, it allows for the

implementation of secure quantum cryptography.
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2.7 Closing comments

Quantum cryptography (quantum key distribution)tpcols are one of the most active and
fruitful areas in the field of quantum computingtlb in the theoretical and practical sides. Since
the introduction of the first ideas on quantum togpaphy by Wiesner in the 1960s, many
protocols have been described which take advarghfjee properties of quantum mechanics to
ensure provably secure communication. Not only, twait also many successful experiments have
demonstrated the practical applicability of quantkey distribution (QKD) protocols to real
situations.

Among QKD protocols, BB84 and B92 are two of thestmepresentative. As we have seen, they
are simple, elegant, easily described and undeatstdée have confirmed how they use the
properties of quantum indeterminacy to ensure doeirsty of the key distribution. And we have
shown how they work when electronic spin is userefmesent qubits, in a way that is extensible
to any other quantum state representation. Alsthertheoretical side, we have confirmed that,
while B92 is in some ways more refined, BB84 stilkes a more efficient use of the data that is
transmitted.

In the last section, we have described how BB84 BA& can be implemented through
components available today. Single photons tramsdibver optical fibre have been chosen to
represent quantum states in our description; & igery fruitful method which continues to be
used in a majority of the experiments on QKD widtywpromising results. For more information
on the latest results in quantum cryptography, biothm the theoretical and the practical
perspectives, see [8] and [9].
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Econophysics
Some statistical properties of the Lévy distribution

3.1 Introduction

Econophysics is the application of theories anchiods from the field of physics to solve problems in
economics. The main area in this interdisciplinagearch field is that adtatistical financethat is,
the application of methods from statistical phydiosthe study of financial markets, especially in
problems including uncertainty or stochastic preessand nonlinear dynamics.

Concepts from the field of physics such as power-ldistributions, correlations, scaling,
unpredictable time series and random processebeapplied to financial markets. Indeed, the first
use of apower-law distributiontook place in the field of economics, one centagp, when Pareto
used the distributiog ~ X' to model the wealth of individuals in a stable e [10].

The concept ofandom walkwas also first applied to economics, specificadlyhe pricing of options

in speculative markets (a very relevant issue tpfe}j. The Black & Scholes option-pricing model
—the milestone in option-pricing theory— was onlybpshed decades later, and it still needs
correction in its application. Thus, the problemwdfich stochastic process describes the changes in
the logarithm of prices in a financial market il sin open one.

The problem of the distribution of price changes Meeen object of research since the 1950s.
Bachelier originally proposed a Gaussian distridoutnodel for price changes, which was replaced by
a log-normal distribution model (geometric Browniamotion). The latter model, however, only
provides a first approximation of what is obseruedeal data. Therefore, various alternative models
have been proposed, the most revolutionary of whielng Mandelbrot's hypothesis that price
changes follow & évy stable distributiofil2]. Distributions of this kind, however, areftitilt to use

for modelling.

Regarding time series of asset prices, it is widaetgepted that they are unpredictable. Thus,
stochastic processdw/hich represent the evolution of random varialolesr time) are usually applied
for the description of price dynamics. While it oah be ignored that unpredictable time series can
come from deterministic nonlinear systems, andirsgntial markets might followhaotic dynamics
most research is being conducted assuming that gyicamics arstochastic processes

Financial markets exhibit several of the propertiest characterizeomplex system®owadays it is
possible to develop models and to test their acguaad predictive power using data available from
large databases. Recently, methods from the fiélgphysics are increasingly used to analyze
economic systems. This research activity is comeptaary to the traditional approaches of finance
and mathematical finance. A new emphasis is putthenempirical analysisof economic data,
bringing to the subject the background of theord amethod of statistical physics (which include
applicable concepts such as scaling, universdlisordered frustrated systems and self-organized
systems).

Among the most important areas in econophysicsareBe one concerns the complete statistical
characterization of the stochastic process of mi@nges of a financial asset. A second area cascer

the development of a theoretical model that is @ablencompass all the essential features of real
financial markets. But this new discipline is beapgplied in many other areas of economics research.
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The Lévy distribution in econophysics

As we already mentioned, the first use ofpewer-law distributiontook place in the field of
economics, when Pareto modelled the wealth of iddals in a stable economy by using the
distributiony ~ X', wherey is the number of people having incomer greater thax, andv is the
Pareto exponenfwhich Pareto estimated to be 1.5). But power-thstributions, characterised by
their long tails, are in some way counterintuitilecause they lack any characteristic scale. Oy t
recent emergence of new paradigms has broughtdio #pplication for this kind of statistical
modelling.

Thus, power-law distributions have found their watp statistical finance. To model the distribution
of price changes, Bachelier originally proposed @u$3ian distribution model for price changes,
which was replaced by a log-normal distribution mlg@eometric Brownian motion). However, these
models (not based on power-law distributions) gorlyvide a first approximation of what is observed
in real data; specifically, empirical evidence skaWwat the tails of measured distributions areefatt
than expected for a geometric Brownian motion. Thathy recent models are based on Mandelbrot’s
hypothesis that price changes follow.évy stable distributionLévy stable processes are stochastic
processes obeying a generalized central limit #reorin Lévy processes, the sum of independent
identically distributed stochastic procesSgs: X"-; X characterized by a probability density function
with power-law tailsP(x) ~ X** will converge to a Lévy stochastic process of indavhenn tends

to infinity. That means the distribution of a Léstable process is a power-law distribution for ¢arg
values of the stochastic variabie

Different values for the index give us some special cases. The Lévy distributidh o = 2 is the
Gaussian (normal) distributionVhena = 1, we obtain the long-tailddorentzian (Cauchy-Lorentz)
distribution Among the different Lévy distributions in the ggnl <=a <= 2, only the Gaussian
distribution ¢ = 2) has finite variance. All the rest € 2) have infinite variance (stochastic processes
with infinite variance are especially difficult tse).

One of the most important features of the Gausdistnibution is its being aattractor in terms of the
Central Limit Theorem; that is to say, stochastiecpsses tend to a Gaussian distribution. But non-
Gaussian stable distributions are also attractélisLévy distributions, including the Lorentzian
distribution, have an associated limit theorem bhyclw a sum of independent random variables can
converge to them [13].

So, if the distribution of price changes cannot dit Gaussian distribution, because empirical
distributions feature fatter tails than the Gaussilstribution, then more fitting models can be
formulated based on other Lévy distributions.

In the following pages we will study some propestief these statistical distributions that are
frequently applied for economical and financial rellidg, namely the family of Lévy stable
distributions. We will focus especially on the Gsias (normal) distribution, the only one with fiit
variance, and on the Lorentzian (Cauchy-Lorentgjriution, a notorious representative of stable
distributions with infinite variance.
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3.2 Random walk. Generation of sets according to specific probability distributions.

The concept ofandom walkwas first applied to economics, to model the pgcof options in
speculative markets. The evolution of prices inideal efficient marketcan be modelled as a
stochastic process Under the efficient market hypothesis, the eivotutof prices behaves
approximately like uncorrelated random walks [10].

While real markets are not ideally efficient, theewf an idealized system (as is usual in physscs)
instrumental to develop theories and models anmktiorm empirical tests. The validity of the result
obtained in this way must always be analyzed takmbg account that the idealized efficient market
only approximates the real market.

To better understand random walks, a Matlab progras created to generate (with graphic output) a
distribution function P(S_n) where S n=x_1 +x 2. + x_n and each x_i is a two-valued uniform
random number x_i = s or —s in equal probabilitynfeger and s:positive real are two inputs).

As expected in random walks, when the number qisste- «, the random walk tends to follow the
Gaussian distribution.

>hi st 0og2(n=10, s=1, iter=10000) %P (S_n) distribution function generator

3000

2500 -

2000+

1500 -

1000+

500

S(10)
>hi st og2(n=20, s=1, iter=100000)

18000 —

16000 -
(follows

14000 - Gaussian distributic)

12000 -

10000 -

8000 -

6000 -

P(x)
o
N

4000 -

2000 -

0

! Specifically, stochastic processes applied toetmwlution of prices are of the kind known msrtingales(in which the
conditional expected value of an observation atesimet, given all the observations up to some earlieesnis equal to
the observation at that earlier tirgle For more information on martingales in econojtg/ssee [10] and [11].
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Generation of data sets according to a specific pbability distribution function

Three programs where created to generate randonmbersmaccording to specific distribution
functions f(x): P(x) = f(x). The three distributidiinctions are: Gaussian, Lorentzian, and Lévy.
Gaussian and Lorentzian distributions can then é&@eeated through their specific programs, or
through the Lévy distribution program (settingt values 1 or 2). The Lévy program is shown as an
example.

The method used for random number generation aicgprtb a given distribution function
was therandom deletion method

For a distribution F(x) in the rangé&l[a, by,
*Choose a real numbersuch that >= F(x),x[[a, b[
*Prepare a candidate random numb&om a uniform distribution in the range [a, Bp(x) = 1-(b/a)
*Prepare a uniform random numhein the range [Og[
*If u <= F(x), accepk, otherwise reject.

The set of acceptedfollows the distribution P(x) = F(x).

function x=g_gen(xm n, Xxmax) PDE : 1 ex _X_2
% Gaussian random number generator ) /27T 2
function x=l or_gen(gamma, xm n, Xxmax) PDF Ly 1
% Lorentzian ~ random number generator TP+ y2
function x=l evy_gen(a, xm n, xmax) 1 o
% Lévy random number generator _ PDF: p(V)(x) :_J. ¢, (q)cos@x)dq,
% Usage: x=l evy_gen(al pha, xm n, xmax) T
% defaul t: al pha=1, xmin=-5, xmax=5 4 (q) — o
. =
if nargin < 1, a=1; end

if nargin < 2, xmn=-5; xmax=5; end
C=0.4, % >= F(x) for every x in [a,b)

accept = 0; %=not accepted
whil e accept == 0

X = rand*(xmax-xm n) +xm n;
u = rand*C
y = (1/pi) * quad(@p,0,10); %DF
if u<=y
accept = 1;
end

end

function y = pp(q) %mested function (used for quad)

y = exp(-(g.”a)).*cos(q.*x);
end
end

In the following graphs, sets of random data gdedraising these three programs (Gaussian,
Lorentzian and Lévy) are graphically compared te theoretical graph drawn directly from each
probability distribution function (PDF). Note thecreasingly fat tails of Lévy distributions when we
follow the reduction of parameterfrom a = 2 (Gaussian) ta = 1 (Lorentzian).
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Gaussian distribution:
>g_di st [Probability Distribution Function]

0.4 T T T T *

0.35r ° ° b

0.3 ° o -

0.25r b

P(x)

0.15 B

0.1r b

0.05r ® ® b

0.2r b

0...;..-.. L L L L L ®0cecs00s

Lorentzian distribution ¢=1):

> or _di st [Probability Distribution Function]

0.4

0.35+

0.3 o o

0.25 ° °

0.2F ° °

P()

0.15+

0.1} ° °

0.05- o® .,

>g_hi st og(iter=100000)

10000

9000 -

8000 -

7000 -

6000 -

5000 -

4000 -

3000

2000

1000 -

0

-5 -4 -3 -2 -1 0 1 2 3 4 5

>| or _hi st og(iter=100000)

10000

9000 -

8000 -

7000 -

6000 -

5000 -

4000 -

3000 -

2000 -

1000+

[Generated random data]

[Generated random data]

PDF :iexp{

Jor

PDF:~

TX% + )

2
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Lévy distribution:

[Probability Distribution Function] ~ PDF : p%’(x) = ij‘: #.(q)cos@X)dq, @, (q) =e”™"
T

>| evy_di st (al pha=1) >| evy_di st (al pha=1. 2) >| evy_di st (al pha=1.5) >| evy_di st (al pha=1. 8) >| evy_di st (al pha=2)
0.25 0.25 0.25 0.25 0.25]
0.05 e . 0.05 . . 0.05 0.05 0.05
5"‘;.--3 2 1 0 1 2 3...:...5 5‘.-;...3 2 1 0 1 2 3...;...5 5"‘;"’:‘% ‘2 ‘1 ‘0 ‘1 ‘2 C‘i...:".s 5”';“’3 2 1 ) 1 2 3...;“.5 5 4 3 2 1 0 1 2 3 4 5
(Lorentzian) (Gaussian)

[Generated random data]

>| evy_hi st og(al pha=1, iter=20000) >| evy_hi st og(al pha=1.5, iter=20000) >| evy_hi st og(al pha=2, iter=20000)

2000 T T T T T T T T T 2000 T T T T T T T T T 2000

1800 1800+ B 1800 - B
1600 - 1600+ B 1600 - B
1400 1400 B 1400 -

1200 1200+ B 1200+

1000 1000 B 1000 -

800 800+ B 800

600 - 600 b 600 -

400 - 400+ 400 -

200 - 200+ 200 -

(Lorentzian) (Gaussian)
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3.3 Additive stability of probability distributions. Rescaling.

All Lévy distributions are stable. The most impattaroperty of stable distributions for econophgsic
is that all of them arattractorsfor sums of independent and identically distrilbbutandom variables.
We have designed a set of Matlab programs to stgwephically the stability properties of Lévy
distributions.

To begin with, we examine the additive stabilitytbé Gaussian distribution (the stability of other
Lévy distributions will be studied in the followingection). We define additive stability in the
following terms:

Additive stability Suppose two random numbers {x} and {y} have ideaitdistributions P(x) = f(x);
P(y) = f(y). When the sum of the elements z = x Haye essentially the same distribution underdraft
properrescaling P(z) = A f(Bz) for some A and B (constants), tligtribution f is called stable against
addition of elements.

Rescalings necessary to compare the distribution of thgimal sets and the added set and see if they
are indeed the same. Thus we have implementediduscto rescale sets of data P(S_n) to P(T_n),
where mean=0 and variance=1.

For Gaussian distributionrescaling with the square averagethod

a =1/ sqrt( mean(X.*2) - mean(X)"2 );
b = -nean(X) * a;
X = a*X + b;

For Lorentzian and Lévy (hon-Gaussian) distribusiofin whichvar (X) = <)

a) rescaling with the average of absolute vahathod

1/ nmean( abs(X) );
a*X;

a
X

b) rescaling with the half-widtmethd

Dx; % P(Dx/2)=1/2* P(0)

a 1/
X arX;

As only the Gaussian distribution has finite vacenmany of the rescaling techniques that can be
applied in its case cannot be applied to other Ldigiributions (including the Lorentzian distribari).
We will come back to this point in the next sectiatmere we will explore other Lévy distributions.

Now, incorporating rescaling into our program, vee ®bserve the additive stability of the Gaussian
distribution.
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Gaussian distribution:

X
>plot( X(1,:),

10000

>g_stabl e(iter=100000)

% Gaussian additive stability checker

% (distributions rescaled with square avera

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

X(2,:) );

10000

9000 - /
8000 |-
7000 - /
6000 /
5000 - ,
4000 /
3000
2000 /

1000 /

\ R 7000 |

\ B 5000

\ B 3000

\ g 2000

\ B 1000 -

>plot( Y(1,:), Y(2,:) );

B 9000

b 8000

b 6000 -

B 4000

— L L I I i I
-4 -3 -2 -1 0 1 2 3 4 5

10000

9000 -

8000 -

7000 -

6000 -

5000 -

4000

3000 -

2000

1000 -

ge)

Z=x+y
>plot( Z(1,:),

2(2,:) );

+»As expected, the numerical results confirm that @aussian distribution is additively stablkfter rescaling, the added sed} {fits the Gaussian
distribution, just as the two original oneg @nd {y}.
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3.4 Stability of Lévy distributions

The Lévy distributioris studied in this section, according to its Ptolity Distribution Function:

P (x) = = I: #,(g)cosgXdqg, @, (q)=e”"
m

The parameter is fixed aty=1, while different values are assignedtim the range 1 <g <=2
(=1 gives a Lorentziadistribution;a=2 gives a Gaussiatistribution).

As we explained in the previous sectiorescaling is necessary to graphically compare the
distributions of different sets of data. Therefaseme rescaling functions where implemented in the
first place, to be employed in later programs teathfor stability in different Lévy distributions.

Initially, from a set of random numbers {x_i} (i=h), we planned to produce a rescaled set of random
numbers {X i} (i=1..n) with zero average and uniéredard deviation (Av[X]=0, Var[X]=1) by a
linear transformation X _i = a*x_i + b. That is whhe square average method does in the case of the
Gaussian distribution, which héigite variance But the rest of the Lévy distributions hawdinite
variance and so different approaches are required. Lehawe a look at the different rescaling
methods we implemented and some graphical exaroptéeir results.

Gaussian distribution (Lévy distribution wittx2):
Rescaling can be achieved using square average

a =1/ sqrt( mean(x.”2) - mean(x)"2 );
b = -nean(x) * a;
X = a*x + b,
>g_hi st og2(iter=100000) >rescale_g
%Gaussian distribution function generator %square average rescaler

10000

9000

8000

7000

6000 -

5000

4000 -

3000

2000

1000

0

mean(X) = 6.51e-4 ; var(X) = 1.0020 —> mean(X).£5&-17 ; var(X) = 1.0000
>| evy_hi stog2(al pha=2, iter=20000) >rescale g
%L évy distribution function generator %square average rescaler

2000 T T T T T T T T T 2000

1800 - 1800
1600 b 1600
1400 1400
1200 1200
1000 1000
800 800
600 600
400+ 400

200 200

mean(X) =-4.70e-3 ; var(X) = 1.9807 —> mean(X) = -5.37e-1¥ar(X) = 1.0001
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Other Lévy distributions, including Lorentzian distition (1 <= « < 2):

Asvar (x) = «, the square average method cannot be applieggoaling in this case.
Two alternatives have been tested for rescalinggtloiéstributions in order to compare them:

a) rescaling with average of absolute value

a =1/ mean( abs(x) );
X = a*x;
>| evy_hi stog2(al pha=2, iter=20000) >rescal e_abs
%L évy distribution function generator %avg. of abs. value rescaler

2500 T T T T T T T T T 2500

2000 - 1 2000 -

1500 -

1500

1000 -

1000

500 - 500

b) rescaling with half-width

a
X

1/ Dx; % P(Dx /2) = 1/2 * P(0)
a*x;

>| evy_hi st og2(al pha=2, iter=20000)
%L évy distribution function generator

2500

2000 -

1500~

1000 -

500

0

>rescal e_hw >rescal e_abs
%half-width rescaler %avg. of abs. value rescal er

4000 T T T T T T T T T 2500

3500

2000
3000+

2500+ 15001

2000 -

1500} 1000 -

1000
500

500
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+ The incorporation of rescaling in our programs Well us graphically compare the distribution of
different sets of data, to observe if they confoonthe same distribution.

Gaussian distributed sets are easily rescalabléghésariance is defined in the Gaussian distrimyti
it is the only Lévy distribution which can be relethusing the square average method. The other two
rescaling methods will also work for Gaussian dsiied data sets.

The rest of the Lévy distributions &= o < 2), including the Lorentzian distributioa & 1) cannot
be rescaled using the square average method, leetaeis variance is not defined (var[X] =).
Different methods have been thus tested for rasg#fiese distributions: the average of absoluteeval
method and the half-width method.

Additive stability of Lévy distributions

In the previous section we showed the propertyddiiteve stability in the Gaussian distribution. We
will now try to observe graphically the propertyasfditive stability in Lévy distributions in thermge
1 <= a < 2. We will compare results with the different rdsgamethods we have already introduced.

From the definition of additive stability given the previous section, our programs start with tets s
of random numbers {x_i} and {y_i} whose distributios given by the Lévy distribution with identical
shape parametet, P(x) = Lev(x,a), P(y) = Lev(y,a). Then graphical results are given to check that
the set of random numbers {z_i} produced by theitaaldof the elements of {x_i} and {y_i}, namely
z_ i=x_i+y i, is also Lévy distributed with tisamea, namely P(z) = Lev(z), after rescaling. We
observe the results obtained with 5 values bétweern=1 (Lorentzian) and=2 (Gaussian).
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a) Rescaling with average of absolute value a = 1 / mean( abs(X) );
X = a*X
>| evy_st abl e2(al pha=1, iter=10000) >| evy_st abl e2(al pha=1. 2, iter=10000)
%Lévy additive stability checker
1200 T T T T T T T T T 1200
1000 (Lorentzian) 1000
I | I N oy
800} 800} Ji T y
/ — Z=Xty
600 600
400} 400
200 200
o N [T
K -5 -4 3 2 -1 0 1 2 3 4 5
>| evy_stabl e2(al pha=1.5, iter=10000) >| evy_st abl e2(al pha=1.8, iter=10000) >| evy_ st abl e2(al pha=2, iter=10000)
1200 T T T T T T T T T 1200 T T T T T T T T T 1200
(Gaussian)
1000 b 1000 b 1000 q

+The added setd keeps the distribution of the original oneg find {y} after rescaling with the average of absolute gatethod. The fit is especially
apparent for distributions in the range 1.&6 <= 2, that is, for the Gaussian distribution attteo Lévy distributions close to it.
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b) Rescaling with half-width a=1/ Dx; % P(Dx / 2) = 1/2 * P(0)
X = a*X
>| evy_ st abl e3(al pha=1, iter=10000) >| evy_st abl e3(al pha=1.2, iter=10000)
%L évy additive stability checker
2500 T T T T T T T T T 2500

(Lorentzian)

2000- 1 2000- . 1 -——- X
/ i
1500 1500 g — Z =Xty

1000+ 1000+

500 - 500 -

>| evy_st abl e3(al pha=1.5, iter=10000) >| evy_st abl e3(al pha=1. 8, iter=10000) >| evy_st abl e3(al pha=2, iter=10000)

2500 T T T T T T T T T 2500 T T T T T T T T T 2500

(Gaussian)

2000 - 1 2000 2000

1500 1500 1500

1000 1000 1000+

500 - 500 500

+ The additive stability of the distributions canihet appreciated when using the half-width methoddecaling. The average of absolute value method
is more suitable for this task.

31



R FLS:  Econophysics

Gaussian distribution (Lévy distribution wittx2):

>| evy_stabl e(al pha=2, iter=10000) %Lévy additive stability checker >| evy_ st abl e2(al pha=2, iter=10000)
*Rescaling with square average *Rescaling with average of absolute value
1200 T T T T T T T T T 900
1000 -—-- X
-ty
800 - - 7= X+y
600 [
400+
200 -
0
Lorentzian distributiond=1):
>| or _stabl e(iter=100000) %Lorentzian additive stability checker >| or _stabl e2(iter=100000)
a) Rescaling with average of absolute value b) Rescaling with half-width
x 10"
12000 T T T T T 2
10000 -
--- X
8000 - -— y
— Z =Xty
6000
4000
2000 -
0

32



R WFLS:  Econophysics

»Let us now take a closer look at the Gaussiar2) and Lorentziand=1) distributions.

Random sets of numbers according to_the Gaussstiibditioncan be generated using the Probability
Distribution Function (PDF) for Gaussian distrilauts or the Probability Distribution Function for
Lévy distributions witha=2. The resulting distribution is the same in bo#ses, but the random
number generation is much quicker when using tleeip Gaussian PDF, which is simpler than the
integration-containing Lévy PDF. Quicker random m@mgeneration allows us to generate big data
sets for tests in a very short time.

In the previous section, the additive stability @aussian distributions was checked by generating
random numbers using the PDF for Gaussian distobsit using the functiog_st abl e. The
original sets (X} and {y}) and the added setz{ where rescaled using the square average method
(which is valid only for the Gaussian distribution)

In this section, the initial¥} and {y} sets have been generated using the Lévy PDFasith(through
the functionl evy_st abl e), and all sets have been rescaled using the sgwarage method and
the average of absolute value method. The resalts heen positive in all cases: the additive stgbil
of the Gaussian distribution is always apparent.

As for the _Lorentzian distributigntests have been made using both the specificntnes PDF

(I or _st abl e function) and the Lévy PDF witk=1 ( evy_st abl e function). Both methods for
random number generation yield the expected redulitsagain the specific Lorentzian PDF is much
quicker in execution than the Lévy PDF.

Lorentzian distributed data sets have been resocasathy two different methods: the average of
absolute value method and the half-width methodil&\the average of absolute value method allows
us to observe the additive stability of the Lor@ntzdistribution, the half-width method does notkea

it apparent.
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Divisive rescaling

The simplest stochastic models of trade or weadtth@nge involve random divisions and additions of
random numbers. Therefore, as our last experimest,have checked the behaviour of Lévy
distributed sets when subject to random divisions.

A set of Matlab programs have been implemented hwktart from a set of random numbers {z_i}
whose distribution is given by the Lévy distributiavith shape parameter, P(z) = Lev(z,q).
Graphical results are generated to observe whistiilalition will be obtained for {x'_i} and {y’_i}
whose elements are produced by random division iahto two: X’_i = R*z_i, y'_i = (1-R)*z_i, with

R drawn from uniform random numbers in the rangé[[Orhe experiment was repeated for 5 values
of a betweern=1 (Lorentzian distribution) ang=2 (Gaussian distribution).

The following fragment of code shows the way in ethihe set {z} is randomly divided into {x} and

{y}.

function [Xres Yres Zres]=levy stable div(a,iter,xm n,xnmax)
%Levy divisive stability checker

%Jsage: [Xres Yres Zres]=levy stable div(al pha,iter,xm n, xmax)
%lef aul t al pha=1,iter=1000, xni n=-5, xmax=5

[...]
for i=l:iter
R =rand(1); %uniformy distributed random nunber

Z(1,i) = levy_gen(a, xm n, xmax) ;
X(1,i) = R* Z(1,i);
Y(1,i) = (1-R * Z(1,i);

end
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Rescaling with average of absolute value

>| evy_stabl e_di v2(al pha=1, iter=10000) >| evy_stabl e_div2(al pha=1.2, iter=10000)
%L évy divisive stability checker

2000 T T T T T T T T 2000

1800+ 1800+ B

(Lorentzian) |

1600 - 1600 -

1400 1400+ [ 4
1200 1200+ ----Xx=R*z
1000} 1000} -y = (1-R)*Z

800+ 800+

600} 600}
400} 400}

200+ 200+

gl | _
-10 -8 -6 -4 -2 0 2 4 6 8 10

>| evy_stabl e_di v2(al pha=1.5, iter=10000) >levy_stable_div2(al pha=1.8, iter=10000) >levy_stable_div2(al pha=2, iter=10000)

2000 T T T T T T T T T 2000 T T T T T T T T T 2000

1800+ B 1800+ B 1800+ (GaUSSian) B
1600+ 1600+ B 1600+ B
1400+ 1400+ ‘1 bt 1400+ bt
1200+ 1200+ B 1200+ B
1000+ 1000+ bt 1000+ bt

800 800 800

600 - 600 - 600 -

400+ 400+ 400+

200 200 200

+ The distribution of the initial setzf and those of the divided setg}{and {y} do not fit well after rescaling. No divisive stity was appreciated in
this test for any value of the Lévy distributiorvda so, the fit seems to be better for Lévy distidns in the range 1 <& <= 1.2, that is, for the
Lorentzian distribution and other Lévy distributsonlose to it. (No better results were obtained wthe test was repeated using rescaling with half-
width).
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Gaussian distribution (Lévy distribution wittx2):

Without rescaling:
>g stabl e_div2(iter=100000)

x 10°

—Z
----X=R*z
----y=(1-R)*z
0
Lorentzian distributiond=1):
Without rescaling:
>| or _stabl e_di v2(iter=100000)
3’><10"

—Z
----X=R*z
----y=(1-R)*z

With rescaling (square averagethod):

>g_stabl e_div2(iter=100000)

x 10°

With rescaling (averaje@bsolute valuenethod):

>| or _stabl e_di v2(iter=100000)

x10°

La} \

1.6 |
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+This time, we generate Gaussidistributed data directly with the Gaussian PDij ave rescale
using the square average method. The result, &) is the same: no divisive stability is obedrv

Lastly, we generate Lorentzialstributed data directly with the Lorentzian PRRd we rescale using

the average of absolute value method. Once agaimivisive stability is observed, but the fit still
seems to be better than in the Gaussian case.
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3.5 Closing comments

While natural random data tends to follow the Grumssdistribution, social and economical
phenomena like the distribution of wealth [14] dhe evolution of prices [11] fit different Lévy &tia
distributions, which are characterized by power-kails (long tails). Lévy distributions have some
gualities which make them especially suitable fardelling economic and financial data: they are
stable, and therefore attractors with their assedidimit theorems, and among stable distributions
they are unique in having an analytically exprdssinobability density function.

In this chapter we have explored the statisticathimds used in econophysics, while examining some
basic properties of different Lévy distributionstsE a set of programs was implemented to generate
random numbers according to Lévy distribution fiores. With its graphical results we observed the
different Lévy shapes, from the Gaussian distrdnutio the long-tailed Lorentzian distribution. We
then proceeded to implement a set of rescalingrameg based on three different methods (square
average, average of absolute value and half-widithaas). Lastly, the three rescaling methods were
tested while observing the stability propertied é¥y distributions. A set of programs was developed
to graphically show the stability of added Lévytdisitions, and another one to check the behaviour
of Lévy distributions when subject to random digrss (such as the ones needed for simple stochastic
models of trade or wealth exchange).

From our implementation of different rescaling noeth, we have observed that the square average
method can only be used for the Gaussian distabufivhich has a finite variance). The other two
methods can be used for all Lévy distributions, dwity the average of absolute value method has
given us good results in examining the stability.é¥y distributions.

With regard to the analyzed properties, we haven sg@phically how Lévy distributions are
increasingly fat-tailed when going from Gaussian= 2) to Lorentziand = 1). We have also
represented graphically the stability of added Léistributions. Finally, we could not observe
divisive stability in Lévy distributions applyinguo rescaling methods, that is, random divisions
applied to a specific Lévy distribution did notudsn the same Lévy distribution.

As for the actual implementation of our programs &mctions, Matlab was the chosen language.
Matlab, as a language for numerical computing arathematics, carries a wide range of pre-
implemented mathematical functions, and it allove® dor easy plotting of functions and data, all of
which simplifies the task of statistical programiistill, there is one disadvantage to the useref p
implemented functions: the programmer cannot twbake functions for efficiency. We ran into this
problem when we had to calculate the integral ie frobability density function of the Lévy
distribution; calculations would go on for minutasfore we obtained the results. Efficiency wasanot
requirement for these exercises; however, in cageme efficiency is the goal, Matlab can call
functions written in C, so quicker C functions abdide used instead of the Matlab equivalents. The
Matlab functions we implemented are attached t® phoject for reference and use.

To sum up, models based on fat-tailed Lévy distriims are needed to overcome the limitations of the
widespread Black-Scholes model for option-pricibgged on geometric Brownian motion, and thus
on the Gaussian distribution), which is useful asapproximation, but disagrees significantly with
real markets as observed in empirical data.

But Lévy distributions still have a downside: thegve infinite variance, which makes them difficult
to apply for practical modelling. This problem daas circumvented through the use of truncated Lévy
distributions, as proposed in the works of Mante§r&tanley [10] and Vasconcelos [11].

The Lévy distribution has been applied by Mante§rfstanley to model the distribution of changes in
the S&P 500 stock index of the US Stock Exchandé. [Many other applications of Lévy processes
in finance have been performed, such as in [1B], §bd [17].
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4. Concluding comments

Quantum cryptography and econophysics are two disdiplinary fields in which computer
science interacts with physics, even if the natfréhe interaction is different in each case. On
the one hand, in quantum physics (and quantum ctatipa in general), physical theory is
applied to computer science, to find new ways fomputers to evolve. Conversely, in
econophysics (and computational finance), it is pot@r science that can provide methods and
perspectives that can be applied, with the framkwbphysical statistics (statistical finance), to
solve problems in the area of economics.

Most theoretical results of quantum computationstitefar from becoming a practical reality. At
the moment, the most important practical resuléstaing obtained in the subfield of quantum
cryptography. Quantum cryptography has been impiegein many occasions, even over long
distances, and there are already several compant@sh offer commercial quantum
cryptography systems.

In our chapter on quantum cryptography, we havecrde=d the two main quantum key
distribution protocols, BB84 and B92. They both tise properties of quantum indeterminacy to
ensure the security of the key distribution. Weehaliown how they work using electronic spin
to represent qubits, in a way that is extensiblany other quantum state representation. And we
have compared both protocols, to see how B92 s®ime ways more refined, while B84 is more
efficient in the use of transmitted data.

We have finally described the implementation of juen cryptography protocols. In this case
we have used single photons to represent quantataesstwhich is one of the most popular
practical implementations, as it allows for thensmission of secure data over optical fibre, and
for free space transmission as well. In this waypugh the use of components available today,
guantum cryptography is becoming a practical areh@ommercial reality.

As for econophysics, the development of new antebétting economical models has become a
field of extreme importance in banking and in therld of finance; computer scientists are
members of teams for statistical finance, alondhvphysicists and mathematicians. Statistical
finance, quantitative finance and computationalariice, all of them are in some way
interchangeable, and combinable; approaches frifereit disciplines, all external to traditional

economics, which bring solutions from new perspesti

In our chapter on econophysics, we have exploredsthtistical methods used in statistical
finance, while examining some basic propertiesitbéknt Levy distributions. Matlab programs
were implemented all thorugh the chapter to tedtsdrow the shapes and behaviours of different
Lévy distributions, from Gaussian to Lorentzianrdéndifferent rescaling methods were tested so
as to observe the stability properties of Lévyrdistions. A set of programs was developed to
graphically show the stability of added Lévy distiions, and another one to check the
behaviour of Lévy distributions when subject todam divisions (such as the ones needed for
simple stochastic models of trade or wealth exchang

Computer scientists and engineers apply theirsskillmany multidisciplinary fields. Different

specialized profiles have a place in modern reseand industry. Quantum computation is a

field which will be acquiring more and more imparta in the next years. Computer scientists

with a good understanding of the physical foundeianvolved will participate in the

development of the new technologies that will beeanore of a practical reality in the medium
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term and which might change the very foundationsamhputing. Quantum cryptography can be
considered the first practical reality of quantulmmgputation; it is already there for us to
experiment and take advantage of it. On the othedhcomputer scientists with a good grasp of
mathematics, statistics and advanced computatiomethods such as neural networks and
evolutionary computation can partake in researcthenworld of finance, in the disciplines of
econophysics, statistical finance and computatinahce.
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Appendix. Matlab functions implemented for Chapter 3.

3.2 Random walk. Generation of sets according to spific probability distributions.

function X=essu(n,s)
% S n (uniformrandom generator
% default n=10, s=1

function X=histog(n,s,iter)

%(S _n) distribution function generator
% manual |y cal cul ated hi st ograni
%Jsage: X=histog(n,s,# of iterations)
%default s=1, iter=1000

function X=histog2(n,s,iter)

%(S n) distribution function generator
% uses Matlab hist function]

%Jsage: X=histog2(n,s,# of iterations)
Y%gefault s=1, iter=1000

function Z=g_dist(n,s)
%Gaussi an distribution function generator
%lefault n=5, s=1

function x=g_gen(xm n, Xxmax)
%Gaussi an random nunber gener at or
%def aul t xmi n=-5, xnmax=5

function X=g_histog(iter,xm n, xmax)
%Gaussi an di stribution function generator
%lefault iter=10000, xm n=-5, xnmax=5

function Z=l or _di st (ganmg, xm n, xnmax)
%.orentzian distribution function generator
%ef aul t gamma=1, xm n=-5, xmax=5

function x=l or_gen(gamma, Xm n, Xmax)
% or ent zi an random numnber gener at or
%ef aul t gamma=1, xm n=-5, xmax=5

function X=l or_histog(iter,gamm, xm n, Xmax)
% orentzian distribution function generator
%def aul t iter=10000, ganma=1, xm n=-5, xnax=5

function Z=l evy_di st (a, xm n, xnmax)
%.evy distribution function generator
%Jsage: X=levy_di st (al pha, xm n, xmax)
%lef aul t al pha=1, xm n=-5, xmax=5

function x=l evy_gen(a, xm n, xmax)
%.evy random nunber generat or
%Jsage: x=l evy_gen(al pha, xm n, xmax)
%lef aul t al pha=1, xm n=-5, xmax=5

function X=l evy_histog(a,iter,xmn, xmax)
%.evy distribution function generator
%Jsage: X=l evy_hi stog(al pha,iter,xm n, xmax)
%lef aul t al pha=1, iter=1000, xmni n=-5, xmax=5
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3.3 Additive stability of probability distributions . Rescaling.

function [Xres Yres Zres]=g_stabl e(iter,xm n, xmax)
%Gaussi an additive stability checker

% uses rescaling with square average]

%ef aul t iter=10000, xm n=-5, xmax=5

3.4 Stability of Lévy distributions

function X=g_histog2(iter,xm n, xmax)

%Gaussi an distribution function generator

% his version returns the original nunbers, not the histogram
% | ater used for rescaling)

%efaul t iter=10000, xm n=-5, xmax=5

function X=l or_hi stog2(iter,ganmg, xm n, xnmax)

% orentzian distribution function generator

% his version returns the original nunbers, not the histogram
% | ater used for rescaling)

%default iter=10000, ganma=1, xm n=-5, xnmax=5

function X=l evy_histog2(a,iter,xm n, xmax)

% evy distribution function generator

% his version returns the original nunbers, not the histogram
% | ater used for rescaling)

%Jsage: X=l evy_hi stog2(al pha,iter,xm n, xmax)

%lef aul t al pha=1, iter=1000, xmi n=-5, xmax=5

function Xres=rescal e_g(Xx)
%zaussi an distribution rescaler
% rescaling with square average]

function Xres=rescal e_abs(X)
%li stribution rescaler: avg. of absolute val ue
% rescaling with avg. of absol ute val ue]

function Xres=rescal e_hw X, a)

%li stribution rescaler: half-w dth
% or Levy distribution

% rescaling with hal f-w dth]
%Jsage: Xres=rescal e_hw(X al pha)

function Dx=l evy_dist_hw a, xm n, xmax)
%.evy hal f-wi dth cal cul ator

%Jsage: Dx=l evy di st _hw(al pha, xm n, xmax)
%lef aul t al pha=1, xm n=-5, xmax=5

function [Xres Yres Zres]=levy_stable2(a,iter,xmn, xmax)
% evy additive stability checker

%rescaling with nean(|x|)]

9%default a=1,iter=1000, xnm n=-5, xmax=5

function [Xres Yres Zres]=levy stable3(a,iter,xmn, xmax)
% evy additive stability checker

% rescaling with hal f-w dth]

9%default a=1,iter=1000, xnm n=-5, xmax=5



function [Xres Yres Zres]=lor_stabl e(iter, ganm, xm n, xmax)
% orentzian additive stability checker

%rescaling with nean(|x|)]

%defaul t iter=10000, ganma=1, xm n=-5, xnax=5

function [Xres Yres Zres]=lor_stabl e2(iter,gamm, xm n, Xxmax)
% orentzian additive stability checker

% rescaling with hal f-w dth]

%defaul t iter=10000, ganma=1, xm n=-5, xmax=5

function [Xres Yres Zres]=levy stable _div2(a,iter,xmn, xmax)
% evy divisive stability checker

%rescaling with nean(]|x|)]

%lefault a=1,iter=1000, xm n=-5, xmax=5

function [Xres Yres Zres]=levy stable _div3(a,iter,xm n, xmax)
% evy divisive stability checker

% rescaling with hal f-w dth]

%lefault a=1,iter=1000, xm n=-5, xmax=5

function [Xres Yres Zres]=g_stable div2(iter,xm n, xmax)
%Gaussi an divisive stability checker

% uses rescaling with square average]

%lefault iter=10000, xm n=-5, xmax=5

function [Xres Yres Zres]=lor_stable_div2(iter, ganm, xm n, xmax)
% orentzian divisive stability checker

% rescaling with nean(|x|)]

%defaul t iter=10000, ganma=1, xm n=-5, xnax=5

Others

function Xres=hi st ogx(X, xm n, xmax)

%shows the histogramfor a set of numbers X
% uses Matlab hist function]

%lef aul t xm n=-5, xmax=>5
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