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1Centre de Recerca Matemàtica. Campus de Bellaterra, Edifici C 08193 Bellaterra, Barcelona
2Barcelona Graduate School of Mathematics (BGSMath),

Campus de Bellaterra, Edifici C 08193 Bellaterra, Barcelona
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Evolutionary and dynamical investigations on real viral populations indicate that RNA replica-
tion can range between two extremes given by so-called stamping machine replication (SMR) and
geometric replication (GR). The impact of asymmetries in replication for single-stranded, (+) sense
RNA viruses has been up to now studied with deterministic models. However, viral replication
should be better described by including stochasticity, since the cell infection process is typically
initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic
noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication
predict a quasineutral coexistence scenario, with a line of fixed points involving different strands’
equilibrium ratios depending on the initial conditions. Recent research on the quasineutral coex-
istence in two competing populations reveals that stochastic fluctuations fundamentally alters the
mean-field scenario, and one of the two species outcompetes the other one. In this manuscript we
study this phenomenon for RNA viral replication modes by means of stochastic simulations and a
diffusion approximation. Our results reveal that noise has a strong impact on the amplification of
viral RNA, also causing the emergence of noise-induced bistability. We provide analytical criteria
for the dominance of (+) sense strands depending on the initial populations on the line of equilibria,
which are in agreement with direct stochastic simulation results. The biological implications of this
noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA
viruses with different modes of replication.

Keywords: Complex systems; Intracellular viral dynamics; Noise-induced bistability; Nonlinear dynamics;
Replication mode; RNA viruses.

I. INTRODUCTION

An essential yet poorly understood process during in-
tracellular amplification of viral genomes is the mode of
genome replication. Very few theoretical studies have ex-
plored the dynamical properties of alternative modes of
RNA virus genomes replication [1–3], and even fewer ex-
perimental studies have collected data properly describ-
ing the temporal increase of viral sense genomes and of
antisense genomes that are the unavoidable intermedi-
ates of replication [4]. Nevertheless, the scarce available
data suggest different models of replication for different
viruses. Two extreme mechanisms of RNA virus genome
replication have been discussed. The first mechanism is
referred as the stamping machine replication (hereafter
SMR) mode. For SMR, and considering an infecting
virus of (+) sense RNA genome, the whole progeny of

∗Corresponding author: J. Sardanyés (jsardanyes@crm.cat).

(+) sense strands will be synthesized from a few (-) sense
strands complementary to the infecting (+) one. In SMR,
an asymmetric accumulation of strains of both polarities
exists: (+) strands are massively produced while inter-
mediate (-) strands stay at low concentration. Under
this mode of replication, the expected fraction of mu-
tant genomes produced per infected cell follows 1− e−µ,
being µ the genomic mutation rate. In this case, the
distribution of mutants per infected cell before the ac-
tion of selection follows a Poisson distribution. Such a
distribution of mutants has been described for bacterio-
phages φX174 [5] and Qβ [6]. The second possible mode
of replication is the geometric replication (hereafter GR).
For GR replication is symmetrical and both (+) and (-)
sense RNA strands are used as templates for viral amplifi-
cation with equal efficiency. For this mode of replication,
the expected fraction of mutants genomes produced per
infected cell depends on the number of replication cy-
cles, n, according to expression 1 − e−nµ. The resulting
distribution of mutants then follows the Luria-Delbrück
distribution. Deviations from the Poisson distribution
were found for the phage T2 [7], thus suggesting that
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such a virus replicates according to the GR model. In
principle, these two modes of replication represent the
two extremes of a continuous of possible strategies. In
this sense, intermediate modes of replication have been
described for bacteriophage φ6 [8] and turnip mosaic po-
tyvirus (TuMV) [4]. In these cases, the distribution of
mutants slightly deviated from the Poisson distribution,
thus suggesting that the replication was mainly achieved
by an SMR strategy plus a small contribution of GR.

Results from experiments specifically designed to de-
termine the mode of replication for eukaryotic RNA
viruses have been published only in recent years. Of par-
ticular interest, Mart́ınez et al. [4] monitored and quan-
tified the accumulation of both RNA polarities of TuMV
infecting in vitro protoplasts of the host plant Nicotiana
benthamiana. In this study, a simple dynamical model
describing the production of (-) and (+) sense RNAs and
interference of (+) strands on the synthesis of (-) ones
was proposed (see Section II). The model was then used
to fit the experimental data and to estimate replication
parameters, most remarkably the fraction of molecules
produced by SMR and GR. Inspired by this study, later
on Combé et al. [11], working with the (-) sense RNA
Vesicular stomatitis virus (VSV), and Schulte et al. [9],
working with the (+) sense poliovirus, have shown that
GR is the main mode of replication for these very differ-
ent viruses.

Stochasticity is an essential component of molecular
biosystems and so does virus replication. Firstly, infec-
tion is generally initiated by one or very few genomes per
cell (a variable known as multiplicity of infection or MOI)
which has to bind to cellular components to begin repli-
cation. Secondly, once starting to be synthetized, viral
product have to find and interact with their appropriate
cellular targets in a crowed environment. Accordingly,
the outcome of an infection is likely to be affected by
variability in the initial molecular interactions between
virus and host cells and result into heterogeneity among
infected cells (e.g., [10], [11]). Viruses have evolved mech-
anisms to minimize the effect of noise, such as for exam-
ple actively controlling MOI [12] or limiting replication
to well-defined and space-limited membrane-associated
compartments known as viral replication factories [13].

The impact of stochasticity in the fate of replicator
systems is a current subject of interest. Especially, the
effects of noise on so-called quasineutral or degenerate
scenarios, found in the deterministic limit. These sce-
narios involve a particular phase space topology in which
quasineutral invariant sets appear (also called normally
hyperbolic invariant manifolds [16]). Typically, these in-
variant sets display hyperbolicity in the normal direction,
and the equilibrium state depends on the initial condi-
tions [14, 15]. It is known that when noise is considered,
the dynamics is dominated by the stochastic drift on this
invariant manifold, and outcompetition of species due to
stochasticity can be achieved [14, 15]. In the present ar-
ticle we analyze a simplified version of the model intro-
duced in Mart́ınez et al. [4], used to quantify the within-

cell replication dynamics of (+) sense RNA viruses. This
model displays a quasineutral coexistence scenario be-
tween (+) and (-) sense RNA strands when only con-
sidering strands’ replication and competition (see [3] for
details). We analyze in detail the quasineutral dynamics
of this model, focusing on the impact of stochastic drift
on the invariant manifold which determines the fate of
viral RNAs. We provide analytical approximations for
the probabilities of achieving a given asymptotic state
as a function of the initial conditions on the manifold.
The analytical results are complemented with stochastic
simulations. Finally, we describe a novel mechanism for
noise-induced bistability.

II. MATHEMATICAL MODELS

A. Deterministic model

A simple mathematical model considering asymmetric
RNA replication modes has been recently introduced in
Ref. [3] (see also [4]). This model is given by the next
couple of differential equations:

dm

dt
= αrp

(
1− m+ p

C

)
− δm, (1)

dp

dt
= rm

(
1− m+ p

C

)
− δp, (2)

The system Eqs. (1)-(2) are deterministic rate equa-
tions of two strands of viral RNA with different polarities
(m: minus and p: plus) that compete for the available
resources and differ only in the time scales of their evo-
lution (birth and death rates) defined by the densities
amplification rates αr and r. Constant C is the carry-
ing capacity. Since we are interested in the impact of
the replication mode, we will focus our study on param-
eter α. When α = 1 replication proceeds via GR since
both strands are replicated at the same rates. The cases
α → 0 follow the SMR mode, since replication becomes
asymmetric and there is much more production of (+)
sense RNAs from the (-) one(s), which act as template(s).
The two strands’ common carrying capacity C indicates
the total number of individuals in the non-empty steady
state.

Here we focus on the case δ = 0, which gives place to
a particular topology of the phase space, given by a neu-
trally stable invariant line (see below). The deterministic
continuum description is presumably applicable when m
and p are O(C) and C >> 1. Let us, for convenience,
introduce the scaled population variables x = m/C and
y = p/C and rescale the time variables by the growth
rate r, to write the system

dx

dt
= γy(1− x− y), (3)

dy

dt
= x(1− x− y). (4)
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FIG. 1: (a) Schematic diagram of asymmetric modes of RNA amplification for single-stranded (+) sense RNA viruses. Upon
the infection by a virion, the entering (+) RNA is amplified following either the stamping-machine replication (SMR) or the
geometric replication (GR) modes. The geometric replication involves that both (+) and (-) sense strands are produced at the
same rates. Oppositely, for the SMR, a few (-) sense RNAs are used as the main template for an asymmetric replication, with a
dominance of (+) sense RNAs. (b) Phase portrait displaying the quasineutral scenario obtained from the model proposed in [3]
employed to study differential replication modes. Without degradation of RNA the equilibria states are a continuum of fixed
points (dashed line in the antiantidiagonal), and the final populations depend on the initial conditions. Here we display this
degenerate case using γ = 0.06, which is closer to the SMR model. (c) Time series (in log-linear scale) for (+) sense strands,
p(t), starting from different initial conditions with γ = 0.1 (upper panel) and γ = 1 (GR, lower panel). The vertical dashed
lines indicates the asymptotic states achieved by different initial conditions.

where the ratio of time scales is γ = (αr)/r = α.

B. Stochastic model

A first level of description involves describing stochas-
tic evolution of the integer-valued random processes Xt

and Yt. Let us consider a Markov model given by the
master equation (ME), which is obtained from the gen-
eral form:

∂P (x, y, t)

∂t
=

R∑

i=1

(
Wi(x− ri, y − ri)P (x− ri, y − ri)−

− Wi(x, y)P (x, y)
)
, (5)

where P (x, y, t) is the probability of having x and y
molecules at time t. R is the number of reactions, Wi

and ri are the transition rates (propensities) and the sto-
ichiometry of the system. The ME for the system stud-
ied here, considering negative (n) and positive (p) sense
strands can be obtained from the following reactions, af-
ter rescaling parameters:

1. Reactions for negative-sense strands:

p
γ−−−−−−→ p+ n, r1 = +1, (6)

n+ n
γ/C−−−−−−→ n, r2 = −1, (7)

n+ p
γ/C−−−−−−→ p, r3 = −1. (8)

2. Reactions for positive-sense strands:

n −−−−−−→ n+ p, r1 = +1, (9)

p+ n
1/C−−−−−−→ n, r2 = −1, (10)

p+ p
1/C−−−−−−→ p, r3 = −1. (11)

Reaction (6) denotes the synthesis of (-) sense strands
from (+) sense ones. Reactions (7)-(8) involve the de-
crease of the population (r2,3 = −1), since they represent,
respectively, competition between strands of the same
polarity (intra-specific competition in ecological terms)
and of different polarity (inter-specific competition). The
same reactions are represented for (+) sense strands in
reactions (9)-(11). Let us denote n and p as the number
of (-) and (+) sense strands and P (n, t) and P (p, t) as the
probability of having n and p strands at time t, respec-
tively. The propensities for reactions (6)-(8) are given
by W1 = γp, W2 = (γ/C)n(n − 1), and W3 = (γ/C)np;
while the propensities for reactions (9)-(11) are given by
W1 = n, W2 = C−1pn, and W3 = C−1p(p− 1).

As mentioned, we consider a Markov model where the
birth and death rates are, respectively, βY and βX and
δX [1 + (n+p)/C̃ and δY [1 + (n+p)/C̃ when Xt = n and

Yt = p, where C̃ = C/(ρ − 1) with βY /δX = βX/δY =
ρ > 1.
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This means that Pn,p = Prob{Xt = n and Yt = p} evolves according to the ME:

∂

∂t
Pn,p(t) = −(βY + δX [1 + (n+ p)/C̃]) p Pn,p − (βX + δY [1 + (n+ p)/C̃]) n Pn,p

+ βY (p− 1) Pn,p−1 + δX [1 + (n+ 1 + p)/C̃])(n+ 1) Pn+1,p (12)

+ βX(n− 1) Pn−1,p + δY [1 + (n+ p+ 1)/C̃])(p+ 1) Pn,p+1.

The low-density replication rates found in the deter-
ministic differential equations are αr = βY − δX and
r = βX − δY , and the ratio of evolution time scales is
γ = δX/δY = βY /βX . Under suitable conditions, a
diffusion approximation can be applied to the Master
Equation (12), so that the variables xt = C−1Xt/γy and

yt = C−1Yt/γy evolve according to the stochastic differ-
ential equations (SDEs):

dxt = γyt(1 − xt − yt)dt+ ε

√
γyt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dBx

t ,

dyt = xt(1 − xt − yt)dt+ ε

√
γyt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dBy

t ,

(13)

where Bx
t and By

t are independent Wiener processes and the

noise amplitude is ε = C−1/2.

III. RESULTS AND DISCUSSION

A. Deterministic dynamics

As mentioned, we will focus our study on Eqs. (1)-
(2) considering δ = 0. The parameters estimated in [4]
from experimental data using Eqs. (1)-(2) revealed that
the degradation rates of the viral RNAs were approxi-
mately between one and two orders of magnitude lower
than the replication rate. Hence, the assumption δ = 0
is a first good approach to study the simplest model of
viral strands amplification under differential replication
modes. The fixed points and their stability for the sys-
tem Eqs. (1)-(2) with δ = 0 was investigated in [3]. In
the following lines we summarize these results from the
scaled Eqs. (3)-(4). The fixed points for this system are
given by the point P ∗0 = (0, 0) and the line of fixed points
L∗ = (1− y∗, y∗). The Jacobian matrix for this model is
given by:

J =

(
−γy γ(1− x− 2y)

1− 2x− y −x

)
.

The local stability of P ∗0 and L∗ can be studied from
the eigenvalues obtained from the characteristic equation
det |J(f∗) − λI| = 0, being f∗ a fixed point and I the
identity matrix. The eigenvalues of the fixed point P ∗0 are
λ± = ±√γ. Thus the point (0, 0) is a saddle since γ > 0.
The eigenvalues tied to the equilibria of the line L∗ can be
computed by linearizing around (x∗ = 1− y∗, y∗). It can

be shown that the eigenvalues obtained from det |J(x∗ =
1− y∗, y∗)− λI| = 0 are given by

λ1 = 0, λ2 = y∗(1− γ)− 1.

Note that for y∗ ∈ [0, 1] and γ ∈ (0, 1] λ2 < 0, there
exists a continuous line of marginally stable fixed points.
Hence, the equilibria forming the line L∗ have a neutral
eigenvalue (λ1, which is not locally attracting) and a neg-
ative eigenvalue (λ2, which is locally attracting). This
gives place to a so-called normally hyperbolic invariant
manifold [16]. These features involve that the initial con-
ditions outside the line L∗ are attracted towards it and
once they achieve the line they stop and remain there in
forward time.

These dynamical characteristics can be visualized in
Fig. 1. Figure 1b displays a phase portrait (obtained nu-
merically using the 4th order Runge-Kutta method) for
a case close to the SMR, using γ = 0.06. Note that dif-
ferent initial conditions end up in different places on the
line L∗ place on the antiantidiagonal of the phase space
[0, 1]× [0, 1]. The changes in the mode of replication are
also important as shown in Fig. 1c. Here different initial
conditions for (+) sense strands achieve equilibrium val-
ues on L∗ within the range 0.8 . p(t→ +∞) < 1 for the
SMR (γ = 0.1), while for the GR (γ = 1) the equilibrium
values are found within the range 0.5 . p(t→ +∞) < 1.

B. Stochastic dynamics

In the previous section we have shown that L∗ is a neu-
tral attracting line. It is known that this neutrality i.e.,
orbits achieving an invariant quasineutral line, is broken
under the presence of noise [14, 15]. This means that, un-
der stochasticity, the orbits are fastly attracted towards
the line L∗, but then stochastic fluctuations make the
orbits to move along L∗, ultimately achieving one of the
two opposite states, given by either the point (1, 0) or
(0, 1) in the system studied here.

1. Stochastic simulations and asymptotic dynamics

The dynamics of the master Eq. (12) is simulated using
the Gillespie algorithm [17, 18] applied to reactions (6)-
(11). Specifically, we will use small values of the carrying
capacity to determine the role of stochastic fluctuations
in the time evolution on L∗. The Gillespie simulations
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FIG. 2: Stochastic dynamics along the quaineutral line L∗. (a) Phase space with stochastic trajectories obtained from the
initial condition m(0) = p(0) = 0.75 using C = 500 with γ = 0.1 (black) and γ = 1 (red). The trajectories rapid approach
to the line L∗ (yellow line) and diffuse along this line due to the stochastic fluctuations. The dashed lines in the phase spaces
display the deterministic trajectories obtained numerically also for γ = 0.1 (black) and γ = 1 (red) from Eqs. (3)-(4). We also
display how several runs from a biologically-meaningful initial condition approach to the line, starting with a single (+) sense
and a single (-) sense strand, with γ = 1 (panel (a), with C = 500); and γ = 0.5 in (panel (b), with C = 103). The small panels
at the right display the probability of achieving the state of dominance of positive-sense strands Py(z), with (x∗ = 0, y∗ = 1)
using C = 500 computed from 5000 replicas using: γ = 0.1 (a.1); γ = 0.5 (a.2); γ = 1 (a.3). (b) Same as in (a) using C = 103

and 2500 replicates to compute Py.

reveal that the initial dynamics of both strands typically
follows the deterministic trajectories. Once the dynam-
ics is settled into the quasineutral line, stochastic fluctua-
tions can drive the populations towards one of the corners
of the phase space (x, y), involving the dominance of one
of the strands over the other.

Panels (a) and (b) in Fig. 2 display the stochastic dy-
namics of the strands under two different values of γ and
different carrying capacities (C = 500 in panel (a); and
C = 103 in panel (b)). For C = 500 and γ = 0.1 (black
trajectory in Fig. 2a) the stochastic trajectory follows
the deterministic orbit (red dashed line in Fig. 2a) and
once it achieves L∗, it evolves towards the corner (0, 1)
in the phase space, which involves the dominance of the
(+) sense strands over the population of (−) strands. A
similar result is observed for γ = 1 (GR), but the stochas-
tic trajectory ends up in the opposite corner, where (-)
strands dominate over the (+) sense strands.

The probability of achieving a given state (x(t� 1) =
1 and y(t � 1) = 0 or x(t � 1) = 0 and y(t � 1) = 1)
has been computed as a function of the initial condition
within the whole phase space x ∈ [0, 1]× y ∈ [0, 1]. Here,
for each initial condition sampled regularly in the phase
space we have computed the probability Py from a set of
different replicates, computing the number of replicates
achieving the state x(t � 1) = 0 and y(t � 1) = 1 over
the total number of replicates. The results are displayed
in panels a.1-3 (using C = 500) and panels b.1-3 (setting
C = 103) in Fig. 2. For replication modes close to the
SMR (panels a.1 and b.1) the values of Py are close to 1
in a wide region of the phase space (orange-red gradient)
for x(0) ≈ 0.5, displaying the maximum values at the left-
upper corner of the phase space, where the initial number
of (+) sense strands is large and of (-) sense ones low. As
the replication mode approaches to the GR, the region
where Py ≈ 1 remains confined to the corner with initial

http://dx.doi.org/10.1101/272906
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

f

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

-1 -0,5 0 0,5 1
0

0,2

0,4

0,6

0,8

1

cba

ed

determine whether the curve Py(z) is above or below the

determine whether the curve Py(z) is above or below the

y(z) is above or below the y(z) is above or below the y(z) is above or below the

y(z) is above or below the y(z) is above or below the y(z) is above or below the

< 0
d2u

dz
=

dP

dz[

> 0
d2u

dz
=

dP

dz[
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in Eq. (24). The z0 value indicates the change of sign of d2u/dz = dP/dz (see Eq. (23)). For negative values of the second
derivative Py(z) is convexe (gray regions in panels), while for positive values this function is concave (yellow areas).

conditions larger than y(0) ≈ 0.6 and x(0) ≈ 0.6. This
results indicate that under strong stochasticity the SMR
model would ensure the production of (+) sense strands,
assuming that the initial conditions in the infection of a
cell would involve x(0) = 0 and y(0)� 1.

As mentioned, the dynamics for dynamical systems
with a quasineutral line in their deterministic limit in-
volves a fast approach to the line L∗. This feature also
happens in the stochastic regime, although once L∗ is
achieved, noise involves drift along this line. In the pre-
vious analyses we have mainly focused on the behavior
of trajectories starting outside the invariant line. A way
to determine the dynamics on the line is to define a join
variable given by zt = xt − yt [14]. By doing so one
can simplify the problem and find analytical approxima-
tions for the probabilities of achieving one of the possible
asymptotic states as a function of z. For example, the
probability of dominance of (+) sense strands as a func-
tion of z, labeled Py(z). This calculations are developed
in the next Section. Before entering into detail on these
calculations, we will here estimate Py(z) using the Gille-
spie simulations. The goal of these analyses is twofold.
First, we will determine how Py(z) behaves for differ-
ent replication modes. Second, the simulations will allow
us to check if the analytical derivations provide a good
approximation for Py(z) for the system studied in this
article.

The probability of achieving the state zt = −1, with

dominance of (+) sense strands, Py(z), has been com-
puted for several values of γ, computing the number of
replicates achieving zt = −1 for a given z value over a to-
tal number of 25×103 independent runs. For replication
modes close to the SMR, Py(z) remains above the an-
tiantidiagonal in the space (z, Py(z)), meaning that (+)
sense strands experience highest fitness (see Fig. 3a with
γ = 0.1). This effect is observed also for γ = 0.2, γ = 0.3.
For γ ' 0.4 the curve for Py(z) starts crossing the antidi-
agonal, the intersection being at z < 0. The increase in γ
towards the GR model makes the intersection to happen
at z = 0. We note that for some values of γ, the curve
Py(z) also intersects the antidiagonal for values close to
z = 1 or to z = −1. For instance, for γ = 0.1, Py(z)
intersects the antidiagonal at z ≈ 0.7. This phenomenon
takes place on the line z at the corners of the phase space.
In the next Section we discuss and interpret this change
in the shape of Py(z). The vertical red lines correspond
to the theoretical predictions for the crossing values of
the antidiagonal by Py(z) (see next section for further
details).

Finally, following the approach in [14], we computed
the dependence of the mean extinction times (MET, di-
vided by the carrying capacity) on z from the Gillespie
simulations. These analyses have been performed using
two carrying capacities, C = 500 and C = 103 (Fig. 4).
The same results have been obtained for both values of
C. The METs have been computed from the extinction
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FIG. 4: Mean extinction times (MET) divided by the carrying capacity, C, as a function of z computed from 104 replicas using
C = 500 (a) and C = 103 (b). Ten curves obtained increasing γ are displayed with different colors (from upper to lower):
γ = 0.1 (black curve) to γ = 1 (green curve) with γ increments of 0.1.

times (either for xt�1 = 0 or yt�1 = 0) obtained from 104

independent runs. Figure 4(a), with C = 500 indicates
that the METs are symmetric for γ = 1. This means that
there is a maximum at z = 0 and that for increasing and
decreasing z values from z = 0, the METs decrease simi-
larly (giving place to a parabola-like shape). These times
decrease as z grows above or below 0 because the initial
conditions approach to the vertices of L∗. As we already
saw in some of our analyses, the switch from GR to SMR
involves longer extinction times, since the amplification
kinetics shifts from purely exponential to subexponen-
tial. This can be clearly seen in Fig. 4, where a decrease
in γ involves longer METs. Interestingly, the maximum
of the parabola displaces towards z > 0. This indicates
that the METs decrease faster from the maximum of the
parabola as z → 1 i.e., with larger x0 values. This phe-
nomenon, arising from the replication model close to the
SMR model denotes the fitness advantage of SMR models
for (+) sense strands.

2. Random dynamics on the quasineutral line

The stochastic dynamics on a quasineutral line of fixed
points has been considered previously by both Lin et al.
[14] and Kogan et al. [15]. Both approaches are pred-
icated upon the assumption that, once the initial tran-
sient during which the system fastly settles on to the
quasineutral line, fluctuations away from the quasineu-
tral line quickly relax back to it. By comparison, the
dynamics on the quasineutral line, characterized by the
variable

zt = xt − yt ∈ [−1, 1], (14)

is much slower, and it thus contains the relevant infor-
mation regarding the long time behaviour of the system.
In particular, we here consider the method proposed by
Lin et al. [14], who assumed that the relaxation of the

fluctuations away from the quasineutral line occurs along
the mean-field trajectories. Such assumption allows us to
write a reduced dynamics only in terms of the variable zt
(see [14] for a detailed account). The resulting random
drift-and-diffusion dynamics proceeds until the system
hits one of the two boundaries, z = ±1.

Consider an initial condition (x0, y0) on the line of fixed
points L∗. Under the action of random noise the state of
the system is altered so that we can write the new state
of the system as (x′, y′) = (x0 + φa, y0 + ηb), where φ
and η are random variables such that 〈φ〉 = 〈η〉 = 0 and
〈φ2〉 = 〈η2〉 = 1 [14]. In order to be consistent with the
noise terms in the SDEs given by Eq. (13), a and b are
so that:

a ∼ ε
√

2γx0
ρ

ρ− 1
y0dt (15)

and

b ∼ ε
√

2γx0
ρ

ρ− 1
x0dt. (16)

After such perturbation, the system relaxes back to the
quasineutral line following the mean-field flow: x2 −
γy2 = cnt. to a position given by (x0 − ξ, y0 + ξ). Since
zt = xt−yt, the total displacement along the co-existence
line, ∆zt, is given by x = −2ξ. Therefore, the drift, v(z),
and diffusion, D(z), are v(z) = −2〈ξ〉/∆t and D(z) =
4〈ξ2〉/∆t, where 〈·〉 represents averaging over the distri-
butions of η and φ. In order to find explicit expressions
of 〈ξ〉 and 〈ξ2〉 as a function of the coordinate z along the
coexistence line, we consider that ξ = εξ1 + ε2ξ2 +O(ε3)
and we use the equation of the mean-field trajectory:
(x0 − ξ)2 − γ(y0 + ξ)2 = (x0 − φa)2 − γ(y0 + ηb)2. After
averaging over the probability distribution functions of φ
and η, we obtain that:
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v(z) = ε2
2γ

1 + γ + (γ − 1)z

ρ

ρ− 1
(17)

(
(γ − 1)(1− z2)

1 + γ + (γ − 1)z
+ 2z

)
,

D(z) = ε2
ρ

ρ− 1

2γ(1− z2)

1 + γ + (γ − 1)z
(18)

Equations (17) and (18) allow us to write the steady-
state backward Kolmogorov equation:

D(z)
d2u

dz2
+ v(z)

du

dz
= 0, u(−1) = 1, u(+1) = 0, (19)

whose solution is the probability of absorption at the
boundary z = −1 starting from initial condition z.

a. Measures of fitness Given the functional form of
v(z) and D(z), a full analytical solution of Eq. (19) in
closed form becomes cumbersome. It is still possible,
however, to define quantities that are informative regard-
ing fitness that can actually be calculated analytically. If
the two strands were neutral, the absorption probability
would be u(z) = 1 − z. If the actual curve u(z) is such
that u(z) > 1 − z, i.e. the probability of absorption ex-
ceeds the neutral value then the fitness of z = −1 is larger
than that of z = 1. If on the contrary, u(z) < 1− z, the
fitness of z = −1 is smaller than that of z = 1. Since the
boundary conditions of Eq. (19) fix the value of u(±1),

it is straightforward that u(z) > 1 − z if d2u
dz2 < 0 and

u(z) < 1 − z if d2u
dz2 > 0. The value of the coordinate

z0 where d2u
dz2 |z0 = 0 marks the boundary between the

regions of higher and lower fitness.
We consider the cases γ = 0 and 0 < γ ≤ 1 separately.
b. γ = 0 This case is not biologically meaningful

but will help to understand the dynamics of the system
under stochasticity. When γ = 0, x(t) = cnt ≡ x0. The
Itô differential equation is then given by

dyt = x0(1− x0 − yt)dt+ ε

√
x0

(
ρ+ 1

ρ− 1
+ x0 + yt

)
dByt ,

with y ∈ [0, 1 − x0]. The drift and diffusion for the re-
duced process yt determine the associate statistical fea-
tures of the competitive exclusion dynamics. Indeed, let
τ(y) = inf{t : |zt| = 1 | z0 = z}. Then the probability
that xt reaches 0 starting from x0 before yt starting from
z, i.e., the probability of domination of the Y-species over
the X-species, is

u(y) ≡ Prob{yτ = 0|y0 = x0}.

This probability satisfies the boundary value problem

D(y)
d2u

dy2
+V (y)

du

dy
= 0, u(0) = 1, u(1−x0) = 0. (20)

It is easy to see that D(y) = ε2x0

(
ρ+1
ρ−1 + x0 + y

)
and

V (y) = x0(1− x0 − y). Then, we obtain

d2u

dy2
= −

(
ρ+ 1

ρ− 1
+ x0 + y

) 2
ε2

( 1
ρ−1+2x0)

e−y/ε
2

−(1−x0−y).

(21)
Let us now focus on the case 0 < γ ≤ 1. Here we

recover the reduced process obtained with z(t) in Eq.
(14). Since

du

dz
= P0 exp

(
−
∫
u(z)/dz

)
, with P0 < 0, (22)

can not be solved analytically, we restrict our calculations
to solve d2u/dz2 = 0. This calculations will allow us to
determine whether the curve Py(z) is above or below the
antiantidiagonal in the space (z, Py(z)). It can be shown
that

d2u

dz
=

dP

dz
= P0(1− z2)γρ/(ρ−1)

[
(1− γ) + 2γρ

ρ−1z(1− z
2)−1((1 + γ) + (1− γ)z)

((1 + γ) + (1− γ)z)2

]
.

(23)

From the previous expression we can obtain the value
for which Eq. (23) crosses the antiantidiagonal in the
space (z, Py(z)) by setting V (z)/D(z) = 0. The crossing
value z0 is given by:

z0 =
γ1 ±

√
γ21 + 4(γ0 + κ)κ

2(γ0 + κ)
, (24)

with γ0 = γ − 1, γ1 = 1 + γ, and κ = (1−γ)(ρ−1)
2γρ . The

results for Eq. (23) are displayed in Fig. 3, overlapped
to the outcome of the Gillespie simulations. If we check
the prediction provided by z0 on the crossing point the
results display a perfect agreement, since for γ = 1, Eq.
(24) predicts Py(z) crossing at z = 0. These predictions
hold for decreasing values.

We note that Eq. (24) predicts two crossing values, al-
though for the range z ∈ [1,−1] only one crossing value is
found. As mentioned in the previous Sections, the com-
putation of Py(z) from the Gillespie simulations resulted
in some cases with more crossing values close to the cor-
ners (0, 1) and (1, 0) of the phase space. Two possible
reasons for this deviation from the theory could be given
by: (i) a statistical sampling effect in the computation of
Py(z) in the corners; (ii) a dynamical deviation from the
mean-field model.

To check whether hypothesis (i) explains the devia-
tion from the theoretical predictions we have computed
again Py(z) in the corner 0.5 ≤ z ≤ 1 by using 5 × 106

replicates to have more statistical power. These analysis
have been carried out for the same values of γ explored
in Fig. 3. The same shape of Py(z) is found using more
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FIG. 5: (a) Probability of dominance of (+) sense strands as a function of z, Py(z), for γ = 0.4 (same panel as in Fig. 3c).
Notice that the curve crosses the antiantidiagonal at z ≈ 0.73. (b) Values of Py(z) in the region 0.5 ≤ z = 1 computed using
5 × 106 replicates. The other two panels show the same results for (b.1) γ = 0.6; and (b.2) γ = 0.8 (triangles) overlapped with
γ = 1 (open circles) also using 5 × 106 replicates. Note that increasing the number of replicates to compute Py(z) does not
involve a change in the shape. (c) Four stochastic trajectories with x0 = y0 = 0.75 displayed in the phase space (xt, yt) using
γ = 0.2. The solid black line displays the deterministic orbit. In (d) and (e) we display the dynamics of the four trajectories
(black, red, dark green, and blue) displayed in (c) plus six other trajectories for (-) and (+) sense strands, respectively. The
solid black line also corresponds to the deterministic dynamics. In (f) we display the same as in (c) using x0 = 0.98 and
y0 = 0.45 as initial conditions also with γ = 0.2. The time series for (-) and (+) sense strands are displayed, respectively, in
panels (g) and (h).

replicates. Figure 5a displays the same plot of Fig. 3c
(Py(z) computed from 25 ×103 replicates for γ = 0.4,
and Fig. 5b displays the value of Py(z) in the framed
region computed from 5 × 106 replicates. Notice that
the shape does not change and Py(z) crosses the antian-
tidiagonal. The same results have been obtained using
γ = 0.6 (Fig. 5b.1); γ = 0.8 (triangles) and γ1 (open
circles) in Fig. 5b.2; and γ = 0.1 and γ = 0.2 (results
not shown). The previous results suggest that these de-
viations are not due to a statistical problem since the
crossing of z is still found.

According to hypothesis (ii), deviations from the
mean-field model trajectories in the corners could explain
why the theoretical prediction for z0 fail. To check this

hypothesis we have compared the time dynamics for ini-
tial conditions far away and close to the corner of the
phase space. The simulations performed using as initial
conditions x0 = y0 = 0.75 reveal that the stochastic tra-
jectories follow the deterministic dynamics. For example,
in Fig. 5(c) we plot four stochastic trajectories in the
phase space (xt, yt) overlapped to the deterministic orbit
setting γ = 0.2. The stochastic trajectories follow the de-
terministic dynamics and once they reach the line z they
fluctuate until the point (0, 1) is achieved. The time se-
ries displayed in Fig. 5d,e show this good correspondence
with the deterministic dynamics. The same results using
x0 = 0.98 and y0 = 0.45 as initial conditions display a
clear deviation from the deterministic dynamics (see Fig.

http://dx.doi.org/10.1101/272906
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

-1 -0,5 0 0,5 1
0

0,05

0,1

-1 -0,5 0 0,5 1
0

0,04

0,08

0,12

-1 -0,5 0 0,5 1
0

0,05

0,1

0,15

zt zt

0 500 1000 1500 2000
-1

-0,5

0

0,5

1

zt

time

0 200 400 600 800
-1

-0,5

0

0,5

1

time

zt

0 200 400 600 800
-1

-0,5

0

0,5

1

time

zt

d
iff
er
en
t
m
o
d
es

o
f
re
p
li
ca
ti
o
n
.

P
(z
;t
)

t = 10

t = 25
t = 50

t     1≫

a

t = 1

t = 2

t = 5

zt

cb

FIG. 6: Probability of finding the population of strands at position z on the line at time t, P (z; t), for different times (indicated
with the same colors in the three panels). The histograms display the values of P (z; t) obtained from 103 replicates with initial
conditions x(0) = y(0) = 0.5 for each replicate. Here we set C = 500 and: (a) γ = 0.1; (b) γ = 0.5; and (c) γ = 1. Note
that along time the replicates split into two possible asymptotic states with full dominance of (+) sense strands (zt�1 = −1,
transparent orange regions) or of (-) sense strands (zt�1 = 1, blue transparent regions). Below each panel we display six
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5f and Figs. 5g,h). Note that the stochastic trajectories
clearly deviate from the mean-field prediction, suggest-
ing that the theory developed in this Section cannot be
applied in models with complementary replicators. This
theory was able to explain the quantity Py(z) in com-
peting two-species models with self-replication, not with
complementary replication, of the form [14]:

ẋ = γx(1− x− y) and ẏ = y(1− x− y). (25)

The theory developed in [14] to compute Py(z) was ac-
curate for −1 ≤ z ≤ 1 in Eqs. (25).

3. Stochastic dynamics on the quasineutral line drives to
noise-induced bistability

Some of our previous analyses indicate the presence
of noise-induced bistability in our system. A dynamical
view of this phenomena is displayed in Fig. 6, where the
fate of multitude of replicates is displayed as a function
of time. To perform these analyses we have monitored
how different replicates (n = 103) evolve in time starting
from the same initial condition on z0 = 0, here setting
x0 = y0 = 0.5. Then, we have computed for all of the
replicates the probability of inhabiting a given region of
the line z (which has been discretized) at time t, prob-
ability labeled P (z; t). Figure 6a displays the results for

a replication strategy close to the SMR, setting γ = 0.1.
Here, for initial times, the population is concentrated at
the center of line z, and as time advances the distribution
of P (z; t) decreases and widens, finally splitting into to
well-defined states for which the population can achieve
one of the corners of the simplex (red distributions with
large t). Hence, noise drives the population to two pos-
sible asymptotic states.

Below panel a of Fig. 6 we display six trajectories on
the line z, three of them achieving zt = 1 and other three
achieving zt = −1. Note that for γ = 0.1 there is a domi-
nance of P (z; t) towards the region of z → −1, indicating
that a larger fraction of replicates involve the dominance
of (+) sense RNAs, as expected for a replication strategy
close to the SMR. This effect is reversed at increasing γ
(see Fig. 6b and Fig. 6c which considers GR). In agree-
ment with Fig. 4, the transients for γ = 0.1 are much
longer than the ones for the GR model.

IV. CONCLUSIONS

In this article we have analyzed a simple model consid-
ering differences in the mode of RNA replication. Direct
[4] and indirect [5–8] evidences from real RNA viruses
indicate that they might amplify their genomes following
different strategies. On one hand, for single-stranded,
(+) sense RNA viruses, the so-called stamping machine
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replication (SMR) involves that the entire progeny of
RNAs is mainly synthesized from one or few (-) sense
templates produced after the initial infection with the
(+) sense strand. On the other hand, the so-called ge-
ometric replication (GR) involves that all synthesized
templates have the same chances of becoming templates
for further replication. The evolutionary [1, 2] and dy-
namical [3, 21] implications tied to different replication
modes have been mainly investigated using deterministic
approaches, although some works have used MonteCarlo
simulations to explore the impact of the mode of repli-
cation on important evolutionary aspects such as error
thresholds [1, 20] or co-infection dynamics [20].

Viral infections are usually initiated by a tiny amount
of RNA molecules, and thus demographic fluctuations
may have a strong impact on the dynamics of RNA am-
plification. In this article we have investigated the im-
pact of stochasticity during replication under differential
replication modes. Particularly, we have focused on an
interesting phenomenon given by so-called quasineutral
coexistence. This phenomenon, which involves the pres-
ence of a neutral equilibrium state achieved with a fast
dynamics, has been described in two-species replicator
systems without decay [14] as well as in the competition
of strains in disease dynamics [15]. Following the theory
developed by Lin and co-workers [14], we provide analyt-
ical approximations for the probability of dominance of
(+) sense strands. Scenarios favoring the accumulation
or the dominance of these strands might result advanta-
geous for (+) sense RNA viruses, which need to package
the (+) sense genomes for further infection. Interestingly,
we found that such a theory, developed for a model with
non-complementary replication, was not accurate enough
to describe the stochastic dynamics on the quasineutral
line near the boundaries of the phase space in the system

studied here.

Our results also reveal a novel type of noise-induced
bistability. It is known that random fluctuations can gen-
erate novel behavior in dynamical systems, for instance,
stochastic resonance [22], noise-induced transitions
[23, 24], or the so-called noise-enhanced stabilization
[25, 26]. More recent discoveries have provided different
mechanisms giving place to the so-called noise-induced
bistability. Noise-induced bistability is typically found in
dynamical systems which display a single asymptotically
stable state in its deterministic limit, but being able to
achieve different alternative states due to stochasticity.
Different examples of noise-induced stability, which can
also be understood in terms of noise-enhanced stability
typical from metastable systems (see Refs. [30, 31]
for examples on cancer stochastic systems) have been
described in many different systems [29, 32–34].
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