
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/147999

Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). Novel online data allocation for
hybrid memories on tele-health systems. Microprocessors and Microsystems. 52:391-400.
https://doi.org/10.1016/j.micpro.2016.08.003

https://doi.org/10.1016/j.micpro.2016.08.003

Elsevier



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Novel Online Data Allocation for Hybrid Memories on Tele-health Systems 

Longbin Chen, Meikang Qiu1 , Wenyun Dai 

Pace University, New York, USA 

Email: {longbin.chen, mqiu, wenyun.dai}@pace.edu 

Houcine Hassan 

Universitat Politcnica de Valncia, Valencia, Spain 

Email: husein@disca.upv.es 

Abstract 

The developments of wearable devices such as Body Sensor Networks (BSNs) have greatly improved the capability of 

tele-health industry. Large amount of data will be collected from every local BSN in real-time. These data is processed by 

embedded systems including smart phones and tablets. After that, the data will be transferred to distributed storage systems 

for further processing. Traditional on-chip SRAMs cause critical power leakage issues and occupy relatively large chip areas. 

Therefore, hybrid memories, which combine volatile memories with non-volatile memories, are widely adopted in reducing 

the latency and energy cost on multi-core systems.  However, most of the current works are about static data allocation 

for hybrid memories.  Those mechanisms cannot achieve better data placement in real-time.  Hence, we propose online

data allocation for hybrid memories on embedded tele-health systems. In We present dynamic programming and heuristic

approaches.  Considering the difference between profiled data access and actual data access, the proposed algorithms use 

a feedback mechanism to improve the accuracy of data allocation during runtime.  Experimental results demonstrate that, 

compared to greedy approaches, the proposed algorithms achieve 20%-40% performance improvement based on different

benchmarks. 
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1. Introduction

Tele-health is a novel solution for efficient and long-distance health care services. According to a report by InMedica

[1], the global market of tele-health will hit 6-billion by the year 2020. Patients can start video chats with doctors across the

country and receive diagnoses remotely. Improvements in wireless sensor networks (WSNs) add more features to tele-health 

services. Patients wear intellectual physiological sensors, which detect health conditions such as electrocardiography (ECG), 

blood pressure, and glucose. A body sensor network (BSN) is a cluster of these sensors. It collects signals of sensors and 

forwards them to doctors with telecommunications. In tele-health, patients can make more flexible medical schedules while 

doctors can obtain more accurate health care information from patients. 

Embedded devices are widely used in tele-health systems due to their unmatched convenience and increasingly computing 

power. Signals collected from a local BSN can be transmitted to a mobile device of the same patient. The mobile device

processes the signals and forwards it to remote medical organizations. Patients can also schedule medical meetings and set

up remote diagnoses by using their mobile devices. All these activities are supported by wireless technologies such as WiFi 

and GPRS. 

On embedded systems, compared to single-core solutions, multi-core systems with parallelism can be more energy- 

efficient for complex tele-health applications. For example, two cores which have the same total size and energy consumption 

as a large single core can improve the performance of the single core by 40% [2]. However, energy cost is still a critical issue

for mobile devices with limited battery life, so an energy-aware design of memory hierarchies becomes important to mobile

tele-health systems. 

1 Dr. Meikang Qiu is the corresponding author 
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Embedded systems, especially those with SRAM-based cache memories, are suffered from both power leakage and space

issues [3][4][5][6]. The caches occupy about 50% of the total chip areas [7]. SRAM, as a widely used on-chip memory, has

several drawbacks: first, it consumes large on-chip area, due to its low density. SRAM uses six-transistor architecture. Sec- 

ond, SRAMs have high power leakage issues. Magnetic RAM (MRAM) [8] has been gathering wide interests for various 

appealing characteristics, such as high density, fast access speed, and excellent non-volatility [9][10][11][12]. Unlike tra- 

ditional RAMs which store information by charging, MRAM uses Magnetic Tunnel Junctions (MTJs). A MTJ consists of 

two magnetic metal layers and stores information based on the relative orientation of two layers magnetization. However,

MRAM also faces the challenge of limited writes and relatively high write latency 

Zero-capacitor RAM (Z-RAM) [13][14] is another attractive memory technology that can overcome the high cost of 

SRAM and MRAM with relatively few performance degradation. Z-RAM is equipped with only one transistor while SRAM 

uses six transistors. Therefore, it can achieve much higher density compared to SRAM. The biggest disadvantage of Z-RAM 

is their non-volatility as SRAM and DRAM, and their relatively long read/write latency. ZRAM is manufactured with only 

one transistor instead of six transistors used in SRAM. Therefore, they can afford much higher density (usually 5x) than 

SRAM. 

This work is based on a previous conference version [3]. The major contributions of this version include: 

1. We propose a hybrid on-chip memory architecture with SRAM, MRAM, and ZRAM. This is a novel combination of

memories on tele-health systems.

2. We propose two heuristic algorithms for data allocation: simulated annealing and hill climbing.

3. We adopt a feedback mechanism to reduce the impact of inaccurate data profiling.

4. We set up simulated experiments to verify proposed algorithms.

The rest of this paper is organized as:  Section 2 describes rationale of our approaches and proposed hybrid memory 

architecture.  Section 3 gives concrete examples of the proposed algorithms.  Section 4 and 5 present the online dynamic

algorithm ODPDA. Section 6 presents the experimental results and Section 7 introduces research works related to hybrid 

memory systems. Section 8 concludes the paper. 

2. System architecture

In mobile tele-health systems, data placement means how tele-health data is stored in on-chip memories or the main

memory of mobile devices. This is based on the access number of each data item and the capacities of on-chip memories and 

the main memory. Generally, there are two types of data placement: global placement and regional placement. The global 

placement means, during the execution of a tele-health application, there is only one fixed data placement for the whole 

application.  In regional placement, the application is divided into regions which can be executed in parallel.  Before the 

execution of each region, compilers insert instructions to store data in on-chip memories. Global placement solutions have

the benefit of simpleness, but they fail to take advantage of data locality for each region. So they cannot achieve minimized 

total cost. 

Core 1     Core 2 

SPM       SPM

Core 3     Core 4 

SPM       SPM 

Memory Internet 
Hospital 1

Multi-core Mobile Device 

Local BSN 

Hospital 2 

EGG 

Multi-core Mobile Device 

Local BSN 

Figure 1: System Overview. Local body sensor networks (BSNs) and hospitals are connected via Internet. BSNs send signals to hospitals, while hospitals 

provide services. SPM stands for scratch-pad memory, which is a type of on-chip memory. 

As shown in 1, in a tele-health system, the BSNs send information of patients to embedded devices such as smart phones.

The embedded devices then process and forward the information to remote hospitals.  We propose our hybrid memories
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for the multi-core embedded systems to reduce the latency and energy cost of memory accessing. The adoption of hybrid 

memories in multi-core systems has drawn attention of researchers. A hybrid main memory with DRAM and Phase Change

Memory (PCM) was proposed in the work of J. Meza et al.  [15], where the authors used a large DRAM cache for the 

nonvolatile main memory. Their work focused on designing a fine granularity migration to reduce memory access latency.

W. Tian et al.  [16] proposed task allocation on hybrid Nonvolatile memory (NVM). Authors presented both offline and 

online heuristic allocation algorithms. They considered the size and writes of NVMs. They achieved optimal solutions with 

an integer linear programming (ILP) model. Many research works have been done on optimized data allocation for hybrid 

scratchpad memories (SPMs). M. Qiu et al. [17] proposed a hybrid SPM simulator for evaluation. Their work focused on 

application-specific single-core systems. 

As shown in Fig. 2, in a multi-core system, each core has hybrid memories which consist of SRAM, MRAM, and ZRAM. 

DRAM is used as off-chip memory. The cores are connected via an on-chip interconnection. We use local access to represent 

a core accesses data on its hybrid memories [18].  Remote access represents a core accesses data on other cores hybrid 

memories. All cores connect to the off-chip memory through a shared bus. The contentions for on-chip interconnection and 

off-chip memory access are beyond the scope of our work. Therefore, we assume the cores can access data remotely without 

being interfered by other cores. In this architecture, the time and energy costs of accessing main memory are the highest, 

while the cost of remote access is higher than the one of local access. 
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Figure 2: Hardware and software model: (a) an eight-core system with on-chip memories (b) demonstration of parallel regions. 

Profiling is a process where a compiler collects information from data segments. The compiler can use the information to 

insert data movement instructions between program regions. In our work, we profile the access numbers of each data items 

in a program. The granularity of data in on-chip allocation represents the size of each data item that the compiler will adopt 

to profile information.  A fine granularity will increase the accuracy of profiling process and consequently lead to a cost- 

efficient on-chip data allocation. However, Fine granularity also yields overheads of profiling and increases the workload of 

compilers. 

However, the granularity of profiling is another critical issue. Currently, most researchers categorize the profile process 

into two categories: global profiling and regional of data item for the whole program. The regional profiling divides the pro- 

gram into small regions and obtains the data access information for each region. The global profiling costs fewer overheads, 

but it loses the benefit of fine granularity profiling. The regional profiling takes the advantage of data locality. Hence, the

profiling result will be more accurate, and the data placement method will be more efficient. As shown in Fig. 2, when a

program is divided into regions properly, the compiler will insert data placement instructions before the execution of each 

region. 

Moreover, the profiled information of data access might not be different from the actual information during runtime. 

Feedback information will be a critical factor to minimize the inaccuracy of profiling. In our proposed algorithm, as shown

in Fig. 2, we include feedback information in the calculation of data access cost array. The feedback factor represents the

differences between profiled data access times and actual data access times for one core. We collect the feedback factor for 

each core. Before the execution of each region, we will insert instructions which consider the feedback factor to reallocate 

the position of data items.
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3. Motivations 
 

In the paper, we propose dynamic programming and heuristic approaches to minimize the number of memory access of 

programs running on tele-health systems. In our design, these programs are running on a hybrid memory system that consists 

of SRAM, MRAM, and ZRAM. 

In this section, we illustrate the proposed algorithms with simple examples. Too make the examples more understandable, 

we include greedy algorithm.  As shown in Table 1, the data capacity of SRAM, ZRAM, and MRAM are 2, 4, and 2 

respectively. In the example, we assume DRAM has sufficient memory spaces for all data items. The read latency of SRAM, 

ZRAM, MRAM, and DRAM are 0.58ns, 0.71ns, 0.85ns, and 8.5ns respectively while the write latency of these memories 

are 0.58ns, 4.5ns, 1.4ns, and 12ns respectively. Since energy consumption for memory access is in proportional to latency, 

we only consider memory latency in this example. 

 
 SIZE READ(ns) WRITE(ns) 

SRAM 2 0.58 0.58 

ZRAM 4 0.71 4.5 

MRAM 2 0.85 1.4 

DRAM INF 8.5 12 

 
Table 1: The access latency of each type of memory 

 

 
The proposed work is based on multi-core systems and every running program is divided into several regions with feed- 

back factors. However, in this section, for simplicity, only one region and a single core is considered. In Table 2, 15 data 

items are used for data allocation. The number of reads and writes for each data item are listed in the table. 
 

 A B C D E F G H 

Read 14 18 23 5 14 4 9 8 

Write 18 2 1 19 9 2 24 16 

 I J K L M N O  

Read 5 26 21 24 8 8 15  

Write 22 10 13 23 11 1 18  

 
Table 2: The number of reads and writes for each data item 

 

 
 

In a greedy approach, the data item with most read/write will be placed on the on-chip SRAM. The rest data items will 

be placed on SRAM based on the order of number of write.  Therefore, data L will be placed on SRAM first and data G 

will be the second one placed on SRAM. The process continues until no space left on SRAM. Then MRAM is used to place 

data items with most write access. After that, the rest data items will be placed on ZRAM until no space is left on ZRAM. 

Eventually, the data items remaining are stored on the main memory, which is the DRAM. 

The eventual data allocation of this greedy approach is shown in the following table. For example, the memory access 
cost for data item L can be calculated as: data L = 24 × 0.58ns + 23 × 0.58ns = 27.26ns. 

 
 Data Items Total memory access cost 

SRAM L, G 1.7ms 

ZRAM D, I 3.8ms 

MRAM A, H, O, K 5.9ms 

DRAM B, C, E, F, J, M, N 24.8ms 

 
Table 3: A greedy data allocation 

 

 
In the proposed dynamic programming, for each data item, the possible data placement and the cost of the placement are
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calculated and stored in a ”dictionary”. The each data placement and its cost can be reused directly in the calculation of the 

next data item. In this manner, no redundant calculation will occur. Therefore, the computing time can be largely reduced. 

In this example, data item A is the first one to be calculated. The latencies of placing data A on SRAM, ZRAM, MRAM, 

or DRAM are calculated and stored in a multiple dimensional array.  For the next data B, since each memory has enough 

space left, it can be placed on SRAM, ZRAM, MRAM, or DRAM. The latencies of data item B on each memory can be 

expressed as: LTEB = LTEA,S + LTEB,S or LTEA,S + LTEB,Z or,..., or LTEA,D  + LTEB,D , where LTEA,S and LTEB,Z mean 

the latency of placing data A on SRAM and placing data B on ZRAM. Therefore, the minimum latency of allocating data A 

and B is: Min(LTEA,S  + LTEB,S ,LTEA,S + LTEB,Z ,..., LTEA,D  + LTEB,D ). 

 

 A B C D E F G H 

SRAM 14 18 23 5 14 4 9 8 

ZRAM 18 2 1 19 9 2 24 16 

MRAM 5 26 21 24 8 8 15  

DRAM 22 10 13 23 11 1 18  

 
Table 4: The cumulative table for dynamic programming 

 

 

As shown in Table 4, for i ∈ 1, 2, 3,..., N, the memory latency for i data items is stored in a latency ”dictionary”, which 

is a multiple-dimensional array in this section. Therefore, the minimum latency for i data items will be the minimum sum of 

the pre-calculated latency of i - 1 data items and the latency of current data item. 

 
3.1. Heuristic Approach 

In the proposed heuristic approach, initially all data items are placed by their occurring order.  Data item A and B are 

placed on SRAM, C, D, E and F are placed on ZRAM, while G and H are placed on MRAM. The rest data items are placed 

on Main Memory - the DRAM. The initial time latency of this data allocation T can be calculated as: T = Tr,s × ar + Tw,s × 
aw + ... + Tw,mm  × ow = 0.58ns × 14 + 0.58ns × 18 + ... + 8.5ns × 15 + 12ns × 18. 

After the initialization, the data allocation DA will be stored as the best solution. Then a copy of DA will be created. 

Then in the copy, two data items are swapped randomly. For example, data O is swapped from main memory to ZRAM and 

data F is swapped from ZRAM to main memory. The time latency of the new data allocation is re-calculated. Since the new 

data allocation has less total latency, we save the new data allocation and its latency as the best solution. 

To minimized duplicate operations, we keep a list of the recent swapped data items. For example, data O and F are kept in 

the list after the previous steps. In the next N steps, data O and F are excluded from swapping, where N can be parameter to 

tune the performance of the algorithm. In this example, we simply repeat the swapping process for a large number of times, 

such as 10000. In heuristic approaches, the repeating number is a key parameter for tuning performance. We can improve 

the efficiency of our approach by adding another condition: if a solution is the best data allocation for a consecutive number 

of C, we conclude that this solution is the best solution. 
 

 
4. ODPDA Algorithm 

 

In this section, we present our Online Dynamic Programming for Data Allocation (ODPDA) algorithm in detail. We will 

first build an allocation cost table, which presents the time latency of each data item when it is placed on different memory 

locations. Then, with the help of this table, we describe the procedures of ODPDA algorithm. After that, we will explain the 

core idea of this algorithm in detail. 

 
4.1. Data Access Cost 

The ODPDA algorithm tracks the access cost of each data item. In this paper, we use fixed values to present local cost and 

remote cost for data items. The fixed values are obtained from HP Labs [19]. If the the data item is located in main memory, 

then each core has the same high access cost for the data. If the data item is stored in a core, then the access cost consists of 

local cost and remote cost. In hybrid memories, even inside the same core, the access cost might be different. It depends on 

the different type of memory where the data item is stored. We use a two-dimensional array named CST to represent the cost 

distribution among memories. The rows of the array consist of data items, while the columns mean the memories on each
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core. For example, CST (i,j) represents the total access cost of data i when it is allocated on core j. CST (i,j) includes the 

local access cost of core j and the remote access cost of other cores. With this cost array, we can directly obtain the total cost 

of an individual data placement. 

 
4.2. Dynamic Programming 

Even though we build the cost array that reflects the cost distribution of all possible data allocation solutions. It is still 

a complex problem to achieve the minimized total access cost of all data items, since the number of placement combination 

grows in a exponential way as the numbers of data item and core increase. To reduce the cost of our mechanism, we apply a 

dynamic programming in our solution. Dynamic programming is widely used to solve complex problems. The key concept 

of it is to break a problem into smaller subproblems, and use the results from subproblems to obtain the final solution. 

In the proposed method, we assume a function dataAlloc represents the final result of the data allocation, which is the 

allocation with minimized total data access cost. Function can be expressed as: dataAlloc(Di , C1,S ,C1,M ,...,Cn,Z ), where 

Di  represents a set of i number data items.  C1,S , C1,M , and Cn,Z  mean the available space slots on core 1’s SRAM, 

core 2’s MRAM, and core n’s ZRAM, respectively. In dynamic programming, the function dataAlloc can be expressed as: 

dataAlloc(Di ) = dataAlloc(Di−1 ) + CSTi , where dataAlloc(Di−1 ) is the smaller subproblem and CSTi  is the cost of ith data 

item. 

In this equation, dataAlloc(Di , C1,S ...) means the optimized data allocation for the first i  1 data items when data i will 

be placed on core 1s SRAM, and CSTi,1  represents the cost of allocating data i on core 1. Our algorithm will calculate all 

possible solutions recursively and obtain the minimum solutions. One critical feature of the dynamic programming is that we 

can reuse the results from subproblems. 

 
4.3. Feedback Factor 

 

Algorithm 4.1 Feedback function 

Require:   Program region N, data access cost function CST(i, m), profiled data access number PRF(d, c), actual data access 

ACT(d, c) 

Ensure: : Feedback factor for each core FBF(i, c) 

1:  while N ≥ 0 do 

2:       for Cj  ∈ cores do 
3:            FBF(i, c) = PRF(i, c) / ACT(i, c) 

4:       end for 

5:  end while 

6:  return Feedback factor FBF() 
 

 

As we mentioned, all data placement instructions are based on the profiled information such as data access times. How- 

ever, during the execution, there might be differences between the profiled numbers and the actual numbers.  To improve 

the accuracy of our algorithms in real-time, we propose a feedback mechanism in our method. The feedback factor FBFi,j 

= PrfCi,j /ActCi,j , where FBFi,j , PrfCi,j , and ActCi,j  represent the factor for data i on core j, the profiled number, and 
the actual number respectively. For example, for data 1 on core 1, if the profiled access number is 20 and the actual access 

number is 32, then the feedback factor of core 1 is 0.625. In the next region, when the compiler estimates the data access 

number of core 1, it will include the factor. 

To continue reducing the inaccuracy of data placement, we use a weighted feedback factor mechanism.  We assign 

different weights to finished regions and achieve the final feedback factor for the next region. Assuming there are factors of 

core 1 from the finished four regions: FBF1 , FBF2 , FBF3 , FBF4 , we assign the weights of 1, 1, 2, and 4 to them respectively. 

Hence, when calculating the 5th region for core 1, we use a factor: FBF5 = 1/8 × FBF1 +1/8 × FBF2 + 1/4 × FBF3 + 1/2 × 
FBF4 . The key principle in our mechanism is that we depend more on the most recently finished feedback factor. 

 
4.4. ODPDA 

We propose a two-phase algorithm. In the first phase, we create the feedback factors for each region. In the second phase, 

we use the dynamic programming model to obtain the optimized data allocation for each region. We consider the feedback 

factors in the calculation of data access cost array.
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Algorithm 4.2 Online Dynamic Programming for Data Allocation 

Require:   Program region N, data access cost function CST(i, m), Feedback factor for each core FBF(i, c), profiled data 

access PRF(D, C), minimum time cost function Min() 

Ensure: : Optimized data allocation for each region 

1:  while N ≥ 0 do 

2:       for Di  ∈ PRF(D,C) do 
3:            for Cj  ∈ PRF(D,C) do 
4:                 CST(D, M) = FBF(D, C) × CST(D, M) 

5:            end for 

6:       end for 

7:       dataAlloc(D, C...) 

8:       if Di  = 1st data item then 

9:            TM M ← CST(Di , MM) 
10:            TS 1 ← CST(Di , C1,s ) 
11:            TZ 1 ← CST(Di , C1,z ) 
12:            TM 1 ← CST(Di , C1,m ) 
13:            ... 

14:            TZn  ← CST(Di , Cn,z ) 

15:            return Min(TM M, TS 1, TZ 1,..., TZ n) 
16:       else 

17:            TM M ← dataAlloc(Di−1 , C1,s ,...,Cn,z ) + CST(i, MM) 

18:            if C1,s - 1 ≥ 0 then 
19:                 TS 1 ← dataAlloc(Di−1 , C1,s - 1,...,Cn,z ) + CST(i, C1,s ) 
20:            end if 

21:            if C1,m - 1 ≥ 0 then 
22:                 TM 1 ← dataAlloc(Di−1 ,C1,s ,C1,m  - 1,...,Cn,z ) + CST(i, C1,m ) 
23:            end if 
24:            if C1,z - 1 ≥ 0 then 
25:                 TZ 1 ← dataAlloc(Di−1 ,C1,s ,C1,z - 1,...,Cn,z ) + CST(i, C1,z ) 
26:            end if 

27:            ... 

28:            if Cn,z  - 1 ≥ 0 then 
29:                 TZ n ← dataAlloc(Di−1 ,C1,s , C1,z ,...,Cn,z  - 1) + CST(i, Cn,z ) 
30:            end if 

31:            return Min(TM M, TS 1, TZ 1,..., TZ n) 

32:       end if 

33:  end while
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According to the built recursive formulations, we describe scribe the Online Dynamic Programming Data Allocation- 

(ODPDA) algorithm in Algorithm 4.2. The input of the ODPDA algorithm is N data blocks obtained by profiling tools, the 

constructed allocation cost table, and the total cost table. The output of the algorithm is the minimum total cost (latency or 

energy consumption) for the N data blocks. 

In line 1, a while loop is used for each region of the running program. In Line 4, we calculate the feedback factor FBF(i, 

Cj ), where i and Cj  means the data item i and core j respectively. The PRF(i, Cj ) represents core js profiled access number of 

data i. In Line 1-6, we revise the data access cost table CST with the feedback factors from function FBF(D, C), where D, M, 

and C means the data item, the type of memory, and core respectively. Thereafter, in Line 7-21, we perform our main function 

dataAlloc() recursively. In Line 7-13, we initialize the situation when the first data item is allocated. In Line 15-20, we break 

the original data allocation into smaller data allocation.  Time complexity:  We can see that the time complexity of this 

algorithm is determined by the recursive part, which is O(N × size(C1,S ) × size(C1,M ) × size(C1,Z ) × · · · × size(CN,Z )). 
Due to the limited on-chip memory space of the CMP system, the size of each hybrid memory is generally small. Assuming 
the size for each memory is M, for the system with P cores, the time complexity approximates O(N × K3M  ). Since M and 

P are constant for the given architecture, the algorithm can be solved in polynomial time. 
 

 
5. Heuristic  Data Allocation Approaches 

 

Although dynamic programming can provide optimal data allocation on embedded systems, it also requires polynomial 

time complexity for calculating optimal data allocation. In practice, even polynomial time complexity can cause extra large 

latency to the program. Besides, the temporary memory space required by dynamic programming is also large. Therefore, in 

this paper, we propose two heuristic algorithms (Simulated Annealing and Hill Climbing) to allocate data items onto different 

memory slots. 

In the Simulated Annealing, we use profiled data as the input of the function. For example, we use a constant such as 

0 as the frozen temperature, the profiled number of data access as the frozen temperature, and the number of data items 

as the freezing speed. There is an initial data allocation for all data items.  To calculate a near-optimal solution, we swap 

the positions of two random data items. Then the total energy and time costs of two data allocations are compared. If the 

swapped one yields less energy and time cost, it will be kept as the current optimal solution. We repeat this process until 

certain constraints are reached. The details of this algorithm is shown in Algorithm 5.1. 

In line 1-3, an initial data allocation is generated by a random function. Each data item is assigned to a memory slot by 

the function. The memory slots can be SRAM, ZRAM, MRAM, or the main memory. In line 4-6, the time cost of the initial 

data allocation is calculated by a function called TIME. The initial time cost is stored in two variables for further steps. In 

line 7-8, the initial temperature and frozen temperature is obtained as the input of the algorithm. 

The main part of the proposed simulated annealing algorithm is consisting of two loops from line 9-27. In the outer loop, 

the pseudo temperature is decreasing by a factor of SP until the pseudo temperature reaches the threshold of f.  The inner 

loop is used to make sure sufficient comparison and swap operations to find the best solution in a reasonable amount of time. 

In line 11-12, two data items are selected by a random function RAND. Then the memory locations of the two data items are 

swapped. In line 14-24, the time cost of the new data allocation is re-calculated. The difference between new time cost the 

current time cost is stored in a variable. A probability prb is generated by random function RAND. 

In line 17, if new time cost is less than current time cost, then the new data allocation is the better solution. Then new 

time cost will replace current time cost in line 18. In another case, if the new time cost is worse, a random probability prb is 

used to compared with the probability number generated by function EXP. If the probability prb is smaller, then worse time 

cost will be kept. In line 19-21, if the current time cost is less than the best time cost, the best time cost is updated and the 

new data allocation replaces current data allocation. In line 25-26, the initial temperature declines by a speed of SP and the 

best data allocation and time cost are returned when all loops are finished. 

In line 1-3, similar to Algorithm 5.1, an initial data allocation is generated randomly. In line 4, the time cost of the initial 

data allocation is calculated by a function called TIME. The initial time cost is stored in two copies for further steps. In line 

5, the initial data allocation is kept. 

The core part of the proposed hill climbing algorithm is consisting of a single loop from line 6-18. The loop number N 

is a parameter can be adjusted for better performance. In line 7-11, two data items are selected randomly. If those two data 

items have been swapped recently, the random process will repeat until a new pair of data items satisfies the constraints. The 

new time latency is calculated in line 12. Two data items are recorded as recent swapped items. In line 14-17, if the new time 

latency is lower than the old one, it will be kept. And the new allocation is stored as the best solution. If no better solution is
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Algorithm 5.1 Simulated annealing data allocation 

Require:   The set of data item D, data access cost function CST, profiled data access number PD, Feedback factor FDF, 

initial Temperature T, frozen temperature F, freezing speed SP, tuning loop N, random function RAND swap function 

SWAP, time calculation TIME, E power function EXP 

Ensure: data allocation DA, time cost TC 

1:  for Di  in Set D do 

2:       data allocation DA ← Init(Di ) 
3:  end for 

4:  curr, best ← TIME(DA); 

5:  copy ← DA; f, t ← F, T 

6:  while t ≥ f do 
7:       for  l ≤ N do 

8:            Di , Dj  ← RAND(D) 

9:            SWAP(copy, i, j) 

10:            Get new latency: new ← TIME(copy) 

11:            Get latency difference: dlt ← new - curr 

12:            Get a probability: prb ← RAND() 

13:            if dlt ≤ 0 or EXP(-dlt ÷ t) ≥ prb × FDF then 

14:                 curr ← new 

15:                 if curr ≤ best then 

16:                      Keep best results: best ← curr, DA ← copy 

17:                 end if 

18:            end if 

19:       end for 

20:       t ← t × SP 

21:  end while 

22:  TC ← best 

23:  return DA, TC
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Algorithm 5.2 Hill climbing 

Require:   The set of data item D, data access cost function CST, profiled data access number PD, Feedback factor FDF, 

tuning loop N, consecutive number C, random function RAND swap function SWAP, time calculation TIME 

Ensure: data allocation DA, time cost TC 

1:  for Di  in Set D do 

2:       Init data allocation DA ← Init(Di ) 
3:  end for 

4:  Calculate time latency: best, curr ← TIME(DA) 

5:  copy ← DA 

6:  for  l ≤ N do 

7:       Get two data items: Di  Dj  ← RAND(D) 

8:       while Di  and Dj  are swapped recently do 
9:            Get another pair: Di , Dj 

10:       end while 

11:       SWAP(copy, i, j) 

12:       new ← TIME(copy) 

13:       Record data item i and j 

14:       if curr ≤ best then 

15:            best ← curr 

16:            DA ← copy 

17:       end if 

18:       if No better solution for C loops then 

19:            quit and return DA, TC 

20:       end if 

21:  end for 

22:  return DA, TC 
 

 
found for a consecutive time, then the algorithm will terminate the loop and return current data allocation in line 19. In line 

18, C means the number of consecutive loops. When the loop finishes, the best data allocation is returned in line 22. 
 

 
6. Simulated Experiments 

 

In this section, we set up simulated experiments to verify the performance of our algorithms.  We build customized 

simulator to obtain memory traces for selected benchmarks. The details about the simulated environment and benchmarks 

are introduced in Section 6.1.  We compare the performance of proposed algorithms with a greedy data allocation.  Our 

experiments include the following: 
 

1. The read and write latency of each benchmark.  We apply greed, ODPDA, simulated annealing, and hill climbing 

algorithms on each benchmark 

2. The computing time of each algorithm. Time complexity is a key parameter in evaluating an algorithm. We calculate 

the computing time of each algorithm on our simulator. 

 
6.1. Experiment setup 

In the experiment, we analyze the performance of our algorithm on benchmarks from MiBench [20].  The experiment 

contains two major parts: first, we run these workloads on customized simulator and obtain the memory traces for these 

benchmarks; second, we use those memory traces as inputs for the proposed algorithms.  As a comparison, we also run 

the benchmarks on a greedy algorithm. We collect memory access parameters from CACTI [19]. The parameters include 

memory read and write latency. 

There are two sets of comparisons: 8-core and 16-core. Each core has a hybrid on-chip memory with SRAM, ZRAM, 

and MRAM of 4KB, 8KB, and 8KB respectively. The read and write latency of each type of memories are listed in Table 5 

As shown in Table 5, SRAM has the lowest read and write latency but it also has the disadvantage of low density and 

leakage issues. ZRAM has higher memory density and relatively low read latency but it write two times slower than SRAM.
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 SRAM ZRAM MRAM Main 

Read 0.58ns 0.85ns 0.71ns 10ns 

Write 0.58ns 1.4ns 4.5ns 20ns 

 
Table 5: Read and write latency of each memory type 

 
 
 

MRAM can minimize energy leakage problem but it has the highest write latency except DRAM. In this experiment, we 

assume DRAM has sufficient memory space for all benchmarks. 

We integrate these parameters into our customized simulator. To verify the effectiveness of our proposed ODPDA algo- 

rithm, we select the following benchmarks from MiBench: qsort, fft, crc32, dijkstra, adpcm, patricia, gsm, and sha. 

 
6.2. Result Analysis 

 

 
 

 
(a)                                                                                                                            (b) 

 

 
 

Figure 3: (a) The time latency of each algorithm on each benchmark, (b) The computing time for each algorithm on each benchmark 

 
As shown in Figure 3a, we run each benchmark on customized simulator.  The input data size of each benchmark is 

around 1KB. For each benchmark, we calculate the total latency of read and write operations. The number of memory access 

varies among selected benchmarks, hence the total latency of each benchmark is different. However, we can still observe that 

greedy approach results in the most memory latency in average while dynamic programming approach minimizes the total 

latency of benchmarks. Two heuristic algorithms, simulated annealing and hill climbing, achieve lower latency compared to 

greedy algorithm. The part of the simulation shows that dynamic programming can achieve the best solution while heuristic 

approaches can yield near-best solutions. 

A major advantage of heuristic approaches is that they can achieve near-optimal solution in a relatively short compu- 

tational time.  In Figure 3b, the computing time of each approach is calculated.  For a small data input (1KB), dynamic 

programming consumes the smallest computational time of 0.59ms for SHA benchmark, and the largest computing time of 

1.29ms for FFT algorithm. As a contrast, heuristic and greedy approaches consume less computing time. Although the com- 

puting time varies among benchmarks, we can observe that dynamic programming require more computing time in average 

compared to heuristic and greedy approaches. 

To further verify the time complexity of proposed algorithms, we select Quicksort algorithm as a single benchmark and 

assign it with different input data. The sizes of the input data are in the range from 1KB to 4KB. The results in Figure 4(a) 

shows that dynamic programming approach consumes less computing time compared to other methods. 

Memory is still sparse resource on embedded systems. The proposed dynamic programming requires memory space of M 

× N, where M is the number of memory slots and N is the number of data items. In this experiment, we run qsort benchmark 

on the customized simulator with 4 cores. If each core has on-chip memory slots of M, then the total memory space needed 

for computation is 4MN. For heuristic approaches, simulated annealing needs three arrays with the size of N, where N is the 

number of data items. Hill climbing requires two of such arrays to store data allocation during computation. Hence, simulated
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(a)                                                                                                                            (b) 

 

 
 

Figure 4: (a) The computing time for qsort benchmark, (b) The extra memory space for computing qsort benchmark 

 

 
annealing requires memory spaces of 3N while hill climbing requires memory spaces of 2N only. The greedy approach only 

consumes one such array to sort the data items by write times. 

As shown in Figure 4b, we increase the size of input data items, the space growth of greedy approach is nearly N. 

The space growth rates of simulated annealing and hill climbing are approximately 3N and 2N. The dynamic programming 

approach consumes almost 16 times of memory space. As a conclusion, the trade-off of these approaches is that dynamic 

programming can provide a better solution but consumes more computational time and space.  Heuristic approaches can 

reduce computing time and space, but they might yield worse data allocation. 
 

 
7. Related works 

 

Hybrid memory systems take the advantage of volatile and non-volatile memories.  Many research works have been 

done in hybrid memory systems. Besides proposed memories including MRAM, SRAM, and ZRAM, phase-change memory 

(PCM) is a new promising non-volatile memory technology to improve the performance and efficiency of on-chip memory 

systems [21, 22]. PCM has the advantage of high density and low power leakage compared to DRAM. Many researchers 

have applied PCM on embedded systems for better performance. 

In the work of M. Qiu et al. [23], the authors applied PCM on green clouds. They presented a genetic-based optimiza- 

tion algorithm for chip multiprocessor systems on greed clouds. Their algorithm scheduled tasks on multi-core systems and 

balanced the efficiency and performance of PCM. In the work of L. E. Ramos et al [24], the authors proposed a new hybrid 

design that features a hardware-driven page placement policy. The policy relies on the memory controller (MC) to monitor 

access patterns, migrate pages between DRAM and PCM, and translate the memory addresses coming from the cores. Pe- 

riodically, the operating system updates its page mappings based on the translation information used by the MC. They also 

proposed simulations of 27 workloads to show that their system is more robust and exhibits lower energy-delay than state-of- 

the-art hybrid systems. [25] presented an evaluation method to study the impacts of inaccurate execution time information 

to the performance of resource allocation. The authors proposed a systematic way to measure the robustness degradation of 

the system and evaluate how inaccurate probability parameters may affect the performance of resource allocations on CMP 

systems. Furthermore, they also compared the performance of three widely used greedy heuristics when using the inaccurate 

information with simulations. 

M. K. Qureshi et al. [26] proposed an on-chip hybrid memory architecture with PCM and DRAM. In their work, PCM 

acts as the major storage while DRAM functions as a small buffer. The authors evaluated the benefits of such an architecture 

by analyze memory access latency.They conducted an experiment with a baseline system of 16-cores with 8GB DRAM. 

Their results showed that PCM can reduce page faults by 5X and provide a speedup of 3X in average. 

Energy consumption has been one of the most critical issues in the Chip Multiprocessor (CMP). Using the Dynamic 

Voltage and Frequency Scaling (DVFS), a CMP system can achieve a balance between the performance and the energy- 

efficiency. M. Qiu et al. [27] proposed a three-phase discrete DVFS algorithm for a CMP system dedicated to applications 

where the period of the applications’ task graph is smaller than the deadline of tasks.  In these applications, multiple task
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graphs are unrolled and then concatenated together to form a new task graph. The proposed DVFS algorithm is applied to the 

newly formed task graph to stretch tasks’ execution time, lower operating frequencies of processors and achieve the system 

power efficiency. 

Resource scheduling is one of the most important issues in mobile cloud computing due to the constraints in memory, 

CPU, and bandwidth.  High energy consumption and low performance of memory accesses have become overwhelming 

obstacles for chip multiprocessor (CMP) systems used in cloud systems.  In order to address the daunting memory wall 

problem, hybrid on-chip memory architecture has been widely investigated recently. A recent research work has been done 

for hybrid memories on mobile systems [28]. In their paper, the authors presented a novel hybrid on-chip memory system that 

consists of a static random access memory (RAM), a magnetic RAM (MRAM), and a zero-capacitor RAM for CMP systems 

by fully taking advantages of the benefits of each type of memory. To reduce memory access latency, energy consumption, 

and the number of write operations to MRAM, they also proposed a novel multidimensional dynamic programming data 

allocation (MDPDA) algorithm to strategically allocate data blocks to each memory. 

Three-dimensional chip architecture is an interesting topic that has drawn many research attentions. CMP architectures 

with 3D chips provide more functionalities and higher performance.  However, the high temperature on chip is a critical 

issue for the 3D architecture. To address this issue, J. Li et al.  [29] proposed an online thermal prediction model for 3D 

chips.  Using this model, they also proposed novel task scheduling algorithms based on rotation scheduling to reduce the 

peak temperature on chip.  They also consider data dependencies, especially inter-iteration dependencies that are not well 

considered in most of the current thermal-aware task scheduling algorithms. 
 

 
8. Conclusion 

 

Tele-health technologies are promising solutions to future medical services. Hybrid memories can take the advantage of 

features including high density, low power leakage, and fast read speed. Embedded systems with hybrid memories can bring 

energy-efficiency and low latency to tele-health systems.  In this paper, we investigated the efficiency of adopting hybrid 

memories in tele-health embedded systems. The proposed hybrid memories consist of ZRAM, SRAM, MRAM, and DRAM. 

Data allocation for the hybrid memory system is a major challenge. In this paper, we proposed dynamic programming and 

heuristic algorithms for data placement on hybrid memories. Dynamic programming can achieve efficient data allocation in 

polynomial computing time while heuristic approaches can reduce computing time and space. The experimental results have 

shown that we can significantly reduce the latency and energy cost compared to greedy algorithms. 
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