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Abstract This paper presents an implementation of one of the most up-to-day al-
gorithms proposed to compute the matrix trigonometric functions sine and cosine.
The method used is based on Taylor series approximations which intensively uses
matrix multiplications. To accelerate matrix products our application can use from
one to four NVIDIA GPUs by using the NVIDIA cublas and cublasXt libraries.
The application, implemented in C++, can be used from the Matlab command
line thanks to the mex files provided. We experimentally assess our implementation
in modern and very high performance NVIDIA GPUs.

Keywords Matrix trigonometric functions, matrix cosine, matrix sine, GPU
computing, MATLAB, mex MATLAB

1 Introduction

Many engineering processes which are described by differential equations can be
solved through the computation of matrix trigonometric functions [1,2]. This func-
tions can be computed using polynomial and rational approximations with scaling
and recovering techniques [3,4,5,6,7,8]. The basic computational kernel on which
these methods are based is matrix multiplication.
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Matrix multiplication in a very costly operation that can be efficiently executed
in NVIDIA GPUs through library cublas [9]. Moreover, matrix multiplication and
the evaluation of matrix polynomials, in turn, have a high degree of parallelism that
can be exploited in different parallel contexts. The work [10] studies the evaluation
of matrix polynomials using one and two GPUs. Another work studies how to
distribute the workload corresponding to the evaluation of a matrix polynomial
among all over the GPUs and the CPU cores of a heterogeneous host [11]. We
use the experiences of these last works to extend the implementation for one GPU
presented in [12] to more GPUs. In general, performing a matrix multiplication
into several GPUs is not complicated but there exist an overhead derived from data
communications that can downgrade the application if it is not carefully tackled.

From our point of view the availability of a Matlab script capable of computing
efficiently matrix trigonometric functions is a very desirable feature required by
scientists. Thus, the challenge is twofold, exploiting several NVIDIA GPUs to
improve computations and developing an easy-to-use interface that allows the user
to execute our algorithm from Matlab. One of the main contributions is the design
of a Matlab mex file that contains our implementation. We extend here the mex

function proposed in [12] with more functionality. As a result, our mex function
provides the user with the power of using one or two NVIDIA GPUs in an easy
way. Furthermore, the mex function has also been adapted to use cublasXt, a new
feature recently included in the lasts versions of cublas library that allows to use
in the computation up to four GPUs and, in some situations, also the CPU cores.

This work also contributes with a study of computational aspects related to
the algorithms proposed in [13], which is, to the best of our knowledge, the most
recent contribution to the computation of matrix trigonometric functions that are
based on Taylor series approximations. Since that work elaborates and proposes
two algorithms for the efficient computation of these functions, we here study the
real impact on performance of the two options when the matrix size is large and
we use fast computing resources as GPUs.

The next section briefly describes the background of the maths that are behind
the method we use to compute a matrix trigonometric function. A description of
both our proposed “accelerated” implementation and the interface of the mex func-
tion is next. Section 4 shows the experimental results obtained with our software.
And, finally, we summarize some conclusions in the last section.

2 Computing Matrix Trigonometric Functions

The matrix cosine can be defined for all A ∈ Cn×n by

cos(A) =
∞∑
i=0

(−1)iA2i

(2i)!
. (1)

Let

T2m(A) =
m∑
i=0

(−1)iBi

(2i)!
≡ Pm(B), (2)

be the Taylor series approximation of order 2m of cos(A), where B = A2, then,
once the algorithm computes (2) the approximation of cos(A) is recovered by
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Algorithm 1 Given a matrix A ∈ Cn×n, this algorithm computes C = cos(A) by
Taylor series.
1: Compute polynomial powers and selection of adequate values of s and m . Phase I
2: Bi ← 4−sBi, i = 1, . . . , q.
3: C = Pmk (B) . Phase II: Compute Taylor series approximation
4: for i = 1 : s do . Phase III: Recovering cos(A)
5: C ← 2C2 − I
6: end for

means of the double angle formula cos(2X) = 2 cos2(X)− I. The same algorithm
can be used to compute de sine of a matrix given the fact that sin(A) = cos(A−π2 I).

Algorithm 1 depicts the most important steps to compute the cosine of a matrix
using our method based on Taylor series. In Phase I, the polynomial degree m (2)
and a scale factor s are calculated so that the Taylor series approximation of the
matrix can be computed in the most efficient way possible.

Phase II consists of computing the Taylor series approximation (2). The total
number of matrix products to compute a matrix polynomial can be reduced using
the Paterson-Stockmeyer method [14]. Using the same notation as in [6], we have
that the Taylor matrix polynomial approximation (2), expressed as Pm(B) =∑m
i=0 piB

i, B ∈ Cn×n, can be computed with optimal cost by using this method
provided m = mk, where mk is one of the values shown in Table 1 (see [15] for
a complete description). The algorithm computes firstly, in Phase I, the matrix
powers B2, B3, . . . , Bq, being q an integer divisor of mk with value q =

⌈√
mk

⌉
or q = b√mkc. As stated in [15] using these values for q results in the same
cost when evaluating formula (2) using the Paterson-Stockmeyer’s method. This
method consists of computing the following [16],

Pmk(B) = (((pmkB
q (3)

+ pmk−1B
q−1 + pmk−2B

q−2 + · · ·+ pmk−q+1B + pmk−qI) ·Bq

+ pmk−q−1B
q−1 + pmk−q−2B

q−2 + · · ·+ pmk−2q+1B + pmk−2qI) ·Bq

+ pmk−2q−1B
q−1 + pmk−2q−2B

q−2 + · · ·+ pmk−3q+1B + pmk−3qI) ·Bq

. . .

+ pq−1B
q−1 + pq−2B

q−2 + · · ·+ p1B + p0I.

Table 1 shows the values selected of q = qk, which are in our case qk =
⌈√

mk

⌉
.

Definitely, we should seek in Table 1 the proper pair of values mk and qk which
gives as a result the minimum number of matrix products needed to evaluate the
polynomial that is the best approximation to (2). As shown in [15, pp. 72–74] the
cost of evaluating (2) by means of (3) in terms of matrix products is k.

Finally, Phase III is necessary to obtain the cosine of matrix A from cos(4−sB)
computed previously in Phase II.

The difficulty of the algorithms based on Taylor series is to find appropriate
values mk and s such that cos(A) is computed accurately taking into account
computational costs and the truncation and rounding errors. In [13] we make a
thorough analysis to determine the best values for the Taylor series approximation
order mk and the scaling factor s. One of the main conclusions is that, follow-
ing [17], the final selection of mk is the maximum order mk ∈ {9, 12, 16} giving
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Table 1 Values of qk = d√mke for several values of mk.

k 1 2 3 4 5 6 7 8 9 10 11 12
mk 2 4 6 9 12 16 20 25 30 36 42 49
qk 2 2 3 3 4 4 5 5 6 6 7 7

also the minimum cost. This selection provides the minimum scaling parameter s
over all selections of mk that provide the minimum cost. In this paper we use the
two algorithms proposed in [13] to obtain the order mk and the scaling factor s.
The main difference between both algorithms is in the use of estimation of the
norms of the matrix powers [18]. The algorithm that uses norm estimation can
return lower values for mk and s than if no norm estimation is used so resulting in
a fewer number of matrix products. Norm estimation, however, is a costly process.

3 The “accelerated” version and the Matlab interface

We have implemented a version of Algorithm 1 that can use either one or two
GPUs. In particular, we work with NVIDIA GPUs and the CUBLAS library to
perform matrix multiplications, which is an implementation of library BLAS for
NVIDIA devices. The accelerated version was developed with the aim of being
not only efficient but also easy to use and easy to modify. Efficient means that
fully exploits the capabilities of the existing GPUs in the system. We consider that
the implementation is efficient if the performance achieved is equal or near to the
performance obtained with the CUBLAS matrix multiplication, since the matrix
multiplication is by far the most demanding computational kernel of Algorithm 1.

We implemented mex files in CUDA and C++ mainly of those parts of the
original Matlab function that are good candidates to be accelerated. The Matlab
interface of the mex function is the same independently of the number of GPUs.
The strategy of implementation consisted of doing the matrix multiplication in
the GPUs while leaving when possible the low cost operations to the host CPU.
There are, however, some low cost operations implemented for the GPU with the
aim at avoiding to download too many data from the GPU to the host. This is
the case, for instance, of the operation to obtain the 1-norm of a matrix.

We decided to use only one mex function to implement all the different opera-
tions because some data must remain in the device memory between consecutive
calls, and this is accomplished only if calling repeatedly to the same mex func-
tion. Thus, one mex function is called at different times in order to do different
things. The Matlab mex function, called call_gpu, executes different operations
depending on the arguments with which it is called. Data in both host and device
memories are persistent all along the time the Matlab application is running. This
feature is a key factor to allow versatility in our implementation, i.e. only those
computationally expensive parts of the whole algorithm are carried out into the
device, leaving the other parts to the Matlab script. Furthermore, this character-
istic minimizes the overhead in which frequently incur these algorithms due to the
amount of data transferred between the CPU and GPU subsystems.

The first argument of the mex function call_gpu is a string, named command
tag, that labels the action to do. The rest of the arguments depend on the action to
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B2

B = A2

. . .

Bq

GPU memory

A

call gpu(’unscale’,s)

call gpu(’scale’,s)call gpu(’power’)

call gpu(’init’,A)

call gpu(’finalize’)

call gpu(’norm1’,n)

call gpu(’get’,n)call gpu(’eval’,p) Returns Bi to the host.with matrix powers Bn

Evaluates a Taylor series

and coefficients p.

Initializes GPU system.

Uploads A.

First call.

Computes B = A2 at the first call

Computes Bi at call i.

Returns Bi to the host if

called with return argument.

Computes ||Bn||1 in GPU.

Downloads the computed cos(A) to the Host.

Performs the double

angle formula.

Lines 4-6 of Alg 1.

Scales matrix B

with s.

Line 2 of Alg. 1.

Fig. 1 Matlab interface of the mex function call gpu.

be performed. For example, call_gpu(’init’,A)), which actually is the first call
that must be written in the code, allocates memory into the device to host some
matrices like, e.g. the input matrix A or the resulting matrix C, among others.
Under this command, matrix A is also transferred from the Matlab working space
in the host memory to the device memory. The rest of the actions that can be
carried out only after initialization are (Fig. 1):

– call_gpu(’scale’,s): Computes Phase I (line 2 of Algorithm 1).
– call_gpu(’unscale’,s): Performs the loop specified in lines 4–6 of Algo-

rithm 1 or Phase III.
– call_gpu(’finalize’): Allocates memory in the Matlab working space and

transfers the resulting matrix containing the cosine of matrix A from the device
to the host. This must be the last call to the function.

– call_gpu(’power’): Computes a matrix power. For the sake of simplicity, the
power index is omitted in the routine arguments and is calculated according to
the number of times the mex function has been called with this command tag.
At the first call, computes B = B1 = A2; at the second one computes B2 = B2

1 ;
and so on. This operation can optionally return the matrix power calculated if
required, i.e. if the mex function has been called with a return argument, e.g.
M=call_gpu(’power’). This is useful in case the user wants norm estimation
to obtain mk and s. It must be note that, in this case, the matrix is explicitly
downloaded from the GPU to the host.
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Algorithm 2 Interface of class cosmtay.

1 class cosmtay {
2
3 private:
4 ... variables ...
5
6 public:
7 cosmtay( int n, double *A );
8 ~cosmtay( );
9 void power( );

10 double norm1( int q ) const;
11 void scale( int s );
12 void evaluate( int m, double *p );
13 void unscale( int s );
14 void finalize( mxArray **plhs );
15 void get( int i, double *A ) const;
16
17 };

– call_gpu(’eval’,p): Evaluates the polynomial using the Paterson-Stockmeyer
method explained through Eq. 3. This command implements entirely Phase II.
Argument p represents the array with the mk coefficients of the polynomial.

– call_gpu(’norm1’,n): Computes the 1-norm of the polynomial matrix Bn in-
side the device, and returns the result to the host.

The software developed keeps track of actions carried out to avoid repeated actions
of some commands, e.g. ’init’ can not be used twice or more times before calling
the mex function with the command tag ’finalize’.

This solution provides easiness for the user. To use the GPUs, the original
Matlab code is modified with very few commands, i.e. only replacing few lines in
the code with calls to the mex function with the appropriate tag command. This
can be carry out by a non expert user on GPUs and/or on CUDA programming.
The user who implements the Matlab code must be aware that once matrix A has
been uploaded to the GPU, the derived matrices from A, i.e. the polynomial powers
B1, B2, . . . , will be stored only into the device. We have provided the mex function
with another auxiliary command (call_gpu(’get’,n)) that returns matrix Bn.
This operation, not necessary for the computation, is used for debugging purposes.

For the implementation of the mex function we used C++ language. We de-
signed a C++ class (cosmtay) that implements all the tag commands through
methods (Algorithm 2). All matrices allocated in GPU, among other objects, are
members of the class. The object oriented programming style provided us with
many facilities such as, for example, the reusability of code or the capacity of do-
ing readily modifications. In particular, the version for 2 GPUs follows the same
scheme: there exists one class that implements the basic structure, and another
class, named gpu, that represents each one of the devices. The main class creates
two objects of type gpu at the initialization step, and implements the same methods
than the class of the version for 1 GPU (Algorithm 2). In this case, each method
launches two threads using the OpenMP directive sections and each thread calls
the same method over each instance of the class gpu, respectively. This way, both
GPUs do the same work on their own partition of the data.

In the implementation of the algorithm for 2 GPUs, the matrix multiplica-
tions are split into two partitions. On each multiplication, one of the matrices is
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partitioned into two equal pieces that are mapped onto each GPU in turn. The
multiplication uses these matrices as one factor, while the other matrix is com-
pletely replicated on both GPUs. Some matrices, like e.g. matrix A, must be full
stored on the two GPUs, but other matrices, like matrix powers B1, B2, . . . , are
half stored into each GPU. The benefit of the version for 2 GPUs is twofold: shorter
execution time and the ability to solve problems of larger dimension. Notice that
the amount of device memory is usually scarce, compared with the main mem-
ory of the current workstations. The downside of the version for 2 GPUs falls in
the fact that there exists some data to be interchanged between the two devices.
The GPUs used in our experiments are all attached to the host through a PCIe
(Peripheral Component Interconnect Express) link. The PCIe bandwidth is lower
than that between CPU processor and RAM memory in a host computer. Thus,
the time consumed to move data from/to host to/from the device is not negligible
and must be taken into account. In order to save time, we have exploited the possi-
bility of doing this interchange through the PCIe directly between the two devices
without host intervention, i.e. bypassing the host RAM memory, and exploiting
the full duplex capability of the PCIe. In more detail, this has been carried out
using CUDA Streams and the asynchronous copy routine cudaMemcpyPeerAsync.

Our mex function call_gpu can also execute on three and four NVIDIA GPUs.
The cublasXt API of cublas exposes a multi-GPU capable computer that further
accelerates BLAS Level-3 routines by dynamically routing BLAS calls to one or
more NVIDIA GPUs. There exists the ability to use the CPUs as well for some
routines. In order to exploit configurations with more than two GPUs we imple-
mented a cublasXt version of our algorithm, keeping the Matlab interface designed
for the former implementations. We note that when using this API the application
only needs to allocate the required matrices on the host memory space. Thus, to
implement this version we simply modified the version for 1 GPU replacing the
corresponding cublas calls to the counterpart in cublasXt keeping all objects into
the host memory. This option provides easiness and the capability of using very
large matrix objects that do not fit into the GPUs memory.

4 Experimental Results

The experiments have been performed in two different computers. The first one is a
host equipped with an Intel QuadCore i7-3820 (3.6Ghz) processor, to which there
are two NVIDIA GPUs attached of type K20c (Kepler architecture). Each GPU
has 13 multiprocessors with 192 cores each, resulting in a total of 2496 CUDA
cores. Each device features 4800 MBytes of RAM memory. This equipment is
representative of many workstations that, equipped with two GPUs devoted to
scientific computing, provide a high performance capacity at a medium price. The
second host, far more expensive and powerful, represents one of the most up-to-
day high performance workstations that a researcher can use. This computer is
equipped with two processors Intel Xeon CPU E5-2698 at 2.20 GHz featuring 20
cores each. Attached to the PCI of this board there are four NVIDIA Tesla P100
SMX2 (Pascal architecture) with 16 GB of memory each. One of these GPUs
contains 56 multiprocessors with 64 CUDA cores each, resulting in a total of 3584
CUDA cores. The four GPUs are interconnected in turn through NVIDIA NVLink.
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Fig. 2 Comparison of execution time among the CPU, the 1 GPU, and the 2 GPUs imple-
mentations, respectively.

The first experiment, carried out in the first host, is aimed at the selection of
the best implementation according to its speed, i.e. the implementation that uses
only the CPU (the Matlab script), 1 GPU or the 2 GPUs (Fig. 2). In general, it
can be stated that the overhead incurred by data transference through the PCIe
bus in implementations that use GPUs is too weighty in small problem sizes. The
raw Matlab implementation for CPU is faster than the implementation for 1 GPU
if the matrix size n is < 640, and faster than two GPUs if n < 520. The use of two
GPUs is always better than using only one for matrices of size n > 60.

Our next analysis deals with the use or not of 1-norm estimation when using
GPUs, i.e. the two algorithms of [13]. In our experiments we use Demmel [19],
which are upper triangular Toeplitz matrices with just one eigenvalue (−1). Dem-
mel matrices are generated using the Matlab script demmel demo.m provided by
the software EigTool [20]. With these matrices we can better observe the different
behaviour when norm estimation is used or not since they are specially sensitive
to this feature. To highlight the role of norm estimation with Demmel matrices,
Table 2 shows the number of matrix products produced by the code for a given
set of matrix sizes ranging from 3000 to 9000. According to the last two columns,
clearly norm estimation produces fewer products.

In CPU, norm estimation always provides a performance improvement thanks
to the reduction in the total number of matrix products. However, things are

Table 2 Polynomial degree (m), scale factor (s), and total of matrix products of Algorithm 1
for Demmel matrices.

m s Total products
n No Est. Est. No Est. Est. No Est. Est.

3000 16 16 10 7 17 14
4000 12 12 11 8 17 14
5000 12 16 11 8 17 15
6000 16 16 11 8 18 15
7000 12 16 12 8 18 15
8000 12 12 12 9 18 15
9000 12 16 12 9 18 16
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Table 3 Comparison in execution time between using norm estimation (Est.) or not (No
Est.), and the use of 1 or 2 GPUs of both architectures Kepler and Pascal.

Phase I Phase II Phase III Total

n No Est. Est. No Est. Est. No Est. Est. No Est. Est.

1
G
P
U

K
e
p
le
r 3000 0.62 0.92 0.18 0.19 0.57 0.41 1.38 1.51

4000 1.06 1.48 0.29 0.29 1.46 1.07 2.81 2.84
5000 1.70 2.23 0.55 0.81 2.82 2.07 5.07 5.11
6000 2.55 3.66 1.35 1.35 4.74 3.47 8.63 8.49
7000 3.72 5.24 1.44 2.13 8.20 5.51 13.36 12.91
8000 5.16 6.88 2.10 2.10 12.06 9.09 19.33 18.14
9000 7.05 9.47 2.98 4.43 17.19 12.95 27.22 26.83

2
G
P
U
s
K
e
p
le
r 3000 0.34 0.58 0.11 0.11 0.44 0.31 0.89 1.01

4000 0.58 0.92 0.17 0.17 1.01 0.74 1.77 1.83
5000 0.93 1.33 0.32 0.45 1.85 1.36 3.10 3.13
6000 1.39 2.31 0.74 0.74 2.98 2.18 5.09 5.28
7000 2.02 3.28 0.80 1.15 5.02 3.37 7.84 7.81
8000 2.79 4.19 1.16 1.16 7.27 5.47 11.23 10.82
9000 3.78 5.79 1.63 2.36 10.16 7.65 15.57 15.79

1
G
P
U

P
a
sc
a
l 3000 0.38 0.57 0.04 0.04 0.14 0.11 0.57 0.74

4000 0.54 0.85 0.06 0.06 0.34 0.26 0.95 1.19
5000 0.76 1.24 0.12 0.17 0.64 0.49 1.53 1.85
6000 1.01 1.90 0.28 0.28 1.05 0.79 2.35 3.04
7000 1.33 2.48 0.30 0.45 1.80 1.24 3.44 4.25
8000 1.73 3.04 0.44 0.44 2.64 2.01 4.80 5.59
9000 2.18 3.82 0.63 0.92 3.73 2.85 6.56 7.65

2
G
P
U
s
P
a
sc
a
l 3000 0.25 0.37 0.03 0.03 0.11 0.08 0.39 0.53

4000 0.35 0.61 0.04 0.04 0.23 0.18 0.64 0.79
5000 0.46 0.75 0.07 0.10 0.40 0.31 0.93 1.18
6000 0.65 1.27 0.15 0.15 0.64 0.48 1.42 2.05
7000 0.81 1.78 0.17 0.24 1.06 0.73 2.06 2.70
8000 1.03 1.90 0.24 0.24 1.53 1.16 2.79 3.42
9000 1.31 2.86 0.34 0.49 2.11 1.62 3.73 4.82

different when using the GPU implementations as it can be observed in Table 3.
The last two columns show the execution time when no norm estimation is used
(No Est.), and when it is used (Est.), respectively. There is not a direct correlation
between the number of products and the execution time. To better understand the
reason behind this behavior we have studied each part of the algorithm separately
according to the three phases in which Algorithm 1 is partitioned.

Phase I involves matrix powers (B2, B3, . . . ) and, in case norm estimation
is used, each computed power must be downloaded from the GPU to the CPU
to figure out values mk and s in this case into CPU. This transference time is
not negligible. On the contrary, this transference is unnecessary in case no norm
estimation is used. The figures representing the time used on Phase I in Table 3
show a significant difference. In the Kepler GPUs this overhead ranges from 30% to
50% for one GPU, and is always above 50% when using two GPUs. This overhead
is more dramatic for the Pascal GPUs being close to 90% for some matrix sizes and
one GPU, and reaching 120% with 2 Kepler GPUs. The good point here is that
the performance obtained with two GPUs is very high. The efficiency is always
above 90% for the Kepler GPUs if no norm estimation is used and around 80% if
norm estimations is used. For the Pascal GPUs the efficiency is around 80% if no
norm estimation is used and slightly lower when we compute norm estimation.

The computational cost of Phase II (for simplicity, Step 2 and 3 are both
merged in this stage) is only influenced by the degree (mk) of the polynomial to
be evaluated. The polynomial degree is different whether norm estimation is used
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Fig. 3 Performance of the CPU implementation in time (left) and Gflops (right) for Demmel
and random matrices with and without norm estimation (Intel QuadCore i7-3820).

or not (see Table 2), and so the time used to evaluate the polynomial. In general,
this phase of the algorithm does not contribute too much to the total cost since,
thanks to the use of the Paterson-Stockmeyer method and the particular value
selected for q, the number of matrix products is as small as possible.

The last stage, Phase III, is the most critical because it accounts for the most
part of the computational cost. The norm estimation highly contributes to reduce
the number of matrix products taking place in this part due to the reduction of
the scale factor (s) (See lines 4-6 of Algorithm 1). The scale factor when norm
estimation is used is three (even four in one case) units smaller than when no
norm estimation is used (see Table 2). This clearly explains the reduction in time
of the two versions in this phase of the algorithm. The savings are around 35%
for all sizes and 49% for n = 7000. These savings are a little lower for the Pascal
GPUs. This phase of the algorithm is efficient (≈ 80% for n ≥ 6000) when two
GPUs are used, even the fact that, for the two devices can cooperate to recover
the cosine at this stage of the algorithm, a data swapping between them is needed
at each iteration of the loop. In the NVLink machine, this efficiency is around 3
points better, probably not too much as expected provided the high theoretical
difference in performance between PCIe and NVLink.

We now introduce randomly generated matrices in our analysis. Figure 3 shows,
on the left, the time spent in the host CPU with random and Demmel matrices
and, on the right, the performance in Gflops, using norm estimation or not. Norm
estimation reduces the execution time due to the fewer matrix products. Demmel
matrices are a particular case in which norm estimation produces as a result a lower
parameter s. However, this is not the case with randomly generated matrices,
in which norm estimation does not produce a fewer number of products so, as
conclusion, norm estimation should be use only in cases where it is known that
this technique can effectively reduce the total number of matrix products.

Figure 4 shows the execution time for randomly generated and Demmel matri-
ces with and without norm estimation in 1 and 2 Kepler GPUs. Norm estimation
slightly reduces the execution time for Demmel matrices though, for of 2 GPUs it
is impossible to appreciate any difference. Clearly, for randomly generated matri-
ces it is better not to estimate. On the right, we show the performance in Gflops
with 2 GPUs which actually achieves the theoretical maximum of 2 Tflops (the
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Fig. 4 Performance of the GPU implementation in the Kepler architecture. (Left) Time with
1 or 2 GPUs of Demmel and random matrices with and without norm estimation. (Right)
Gflops achieved with 2 GPUs.
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Fig. 5 Comparison in Tflops of using cublasXt with 1, 2, 3 or 4 GPUs (left), and plus cublas
version with 1 or 2 GPUs (right), all in the Pascal GPUs host.

theoretical peak performance for 1 NVIDIA K20 GPU is 1 Tflop). We should no-
tice here that, contrary to many other algorithms, the performance measured in
flops does not perfectly relates with the best algorithm version, as it happens for
Demmel matrices. It is also significant to observe that the performance without
norm estimation outperforms the performance with norm estimation due to the
smaller number of data transferences through the PCIe bus.

Finally, we show the results obtained with our cublasXt version in Fig. 5 on
the Pascal GPUs. These tests have been taken with randomly generated matrices.
There are two main observations. The first one is that there exists a certain degree
of scalability that allows to use several GPUs without too much programming effort
(Fig. 5, left). The second observation is easlily deduced from the figures on the
right of Fig. 5. Clearly, in order to obtain a good performance of the algorithm the
programmer must be strongly aware about where data are stored at each step to
avoid as many transferences as possible. Downloading matrices to the host after
each matrix multiplication results in a very poor performance, even in the case of
compute bound applications like this one.
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5 Conclusions

Algorithms based on Taylor series that compute the sine and cosine of a matrix
use intensively matrix multiplication. This feature makes them good candidates to
exploit one or more GPUs. The cublasXt API to cublas allows to use up to four
GPUs but with less performance due to the large amount of data transferences.
Our implementation for one or two GPUs is efficient since it is aware of where
data is stored (host or device) at each step of the computation. We have shown
that it is possible to readily access to several NVIDIA GPUs by means of a mex

function, whose interface is independent of the underlying version to be used.
Our application uses a very competitive and up-to-day algorithm to compute this
matrix functions. The analysis regarding norm estimation allows to conclude that,
as long as we do not know any particular feature of the matrix, the matrix is large
and/or the computing device is more powerful, it is better not to estimate.
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