Document downloaded from:

http://hdl.handle.net/10251/148011
This paper must be cited as:

Martinez Martinez, F.; Rupérez Moreno, MJ.; Martinez-Sober, M.; Solves Llorens, JA.;
Lorente, D.; Serrano-Lopez, A.; Martinez-Sanchis, S.... (2017). A finite element-based
machine learning approach for modeling the mechanical behavior of the breast tissues
under compression in real-time. Computers in Biology and Medicine. 90:116-124.
https://doi.org/10.1016/j.compbiomed.2017.09.019

The final publication is available at

https://doi.org/10.1016/j.compbiomed.2017.09.019

Copyright E|sevier

Additional Information



Accepted Manuscript

Computers in Biology
and Medicine

A finite element-based machine learning approach for modeling the mechanical
behavior of the breast tissues under compression in real-time [
EE i
F. Martinez-Martinez, M.J. Rupérez-Moreno, M. Martinez-Sober, J.A. Solves-Llorens,
D. Lorente, A.J. Serrano-Lopez, S. Martinez-Sanchis, C. Monserrat, J.D. Martin-

Guerrero

PII: S0010-4825(17)30317-7

DOI: 10.1016/j.compbiomed.2017.09.019
Reference: CBM 2790

To appearin:  Computers in Biology and Medicine

Received Date: 14 December 2016
Revised Date: 25 September 2017
Accepted Date: 25 September 2017

Please cite this article as: F. Martinez-Martinez, M.J. Rupérez-Moreno, M. Martinez-Sober, J.A. Solves-
Llorens, D. Lorente, A.J. Serrano-Lépez, S. Martinez-Sanchis, C. Monserrat, J.D. Martin-Guerrero, A
finite element-based machine learning approach for modeling the mechanical behavior of the breast
tissues under compression in real-time, Computers in Biology and Medicine (2017), doi: 10.1016/
j-compbiomed.2017.09.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.compbiomed.2017.09.019

A finite element-based machine learning approach for modeling the
mechanical behavior of the breast tissues under compression in real-time

F. Martinez-Martinez®*, M. J. Rupérez-Moreno®, M. Martinez-Sober?, J. A. Solves-Llorens®, D. Lorente?,
A. J. Serrano-Lépez?®, S. Martinez-Sanchis®, C. Monserrat®, J. D. Martin-Guerrero®

@Intelligent Data Analysis Laboratory (IDAL), University of Valencia, Av. de la Universidad s/n, 46100 Burjassot
(Valencia), Spain
bCentro de Investigacidn en Ingenieria Mecdnica (CIIM), Departamento de Ingenieria Mecdnica y de Materiales,
Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
¢Departamento de Sistemas Informdticos y Computacion, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022
Valencia, Spain

Abstract

This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast
tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed
up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due
to the displacement of two compression plates was simulated off-line using the finite element (FE) method.
Three machine learning models were trained with the data from those simulations. Then, they were used
to predict in real-time the deformation of the breast tissues during the compression. The models were a
decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two
different experimental setups were designed to validate and study the performance of these models under
different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those
extracted from the FE simulations was calculated to assess the performance of the models in the validation
set. The experiments proved that extremely randomized trees performed better than the other two models.
The mean error committed by the three models in the prediction of the nodal displacements was under 2
mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is
sufficiently short to allow its use in real-time (<0.2 s).

Keywords: Breast biomechanics, finite element methods, machine learning, modeling, breast compression

1. Introduction for detection and diagnosis, from projection X-ray
mammography (XRM), magnetic resonance imaging
(MRI), and ultrasound (US), to the more recent tech-
nologies such as digital breast tomosynthesis (DBT),
positron emission mammography (PET) and ultra-
sound tomography (UST) [2]. However, each imag-
ing modality displays the information in a different

way and in consequence, undetectable tumors in one

Breast cancer is one of the major causes of mor-
tality and morbidity in women today. Its mortality
is related to the tumor size and the time of detection
[1]. A wide range of imaging methods are available
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modality can be detected by other modalities, and
lesions considered to be suspicious in one modality
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can be classified as healthy by others [3]. Radiolo-
gists have found that a combination of various imag-
ing methods together with the histopathological in-
formation of a lesion can lead to a more effective
diagnosis [4, 5]. However, performing such a mul-
timodality analysis is a complex task. The breast
is a highly deformable structure that adopts differ-
ent forms depending on the patient’s positioning in
each one of the imaging modalities. The patient is in
prone position during an MRI acquisition, standing
up during an XRM or in supine position during an
US scanning process. Moreover, the breast is com-
pressed by the mammographic plates in an XRM or
by the US probe during an US scanning process. It
is also immobilized by plates during some types of
biopsies such as MRI-guided biopsy. This compli-
cates the visual comparison of the imaging modalities
for the purposes of breast screening, cancer diagnosis
(including image guided biopsy), tumor staging, as
well as for treatment monitoring, surgical planning
and simulation of the effects of surgery and wound
healing, etc. [2]. Therefore, the development of non-
rigid registration algorithms based on the simulation
of the biomechanical behavior of the breast tissues
is nowadays an active field of research (see [2] for
a review). These algorithms allow the fusion of in-
formation from different breast imaging modalities.
However, some limitations in the simulation of the
breast biomechanical modeling have prevented the
rapid transition of fusion algorithms to clinical prac-
tice. These limitations include establishing a realistic
constitutive model for the breast tissues, obtaining
their patient specific elastic constants, using the ad-
equate boundary conditions, or achieving clinically
acceptable levels of computational cost.

The finite element method (FEM) is one of
the most common numerical methods employed in
Biomechanics to model deformation of the soft tis-
sues. FEM approximates a discrete solution of the
equations associated with a mechanical behavior on
a complex discrete geometry called mesh (formed by
nodes and elements) [6]. FEM has been used to
simulate the breast compression by many authors
[7, 8, 9, 10, 11, 12, 13] and more (see [2] for a re-
view) due to the considerable interest in capturing
the transformation of the breast among the different

imaging modalities and among the breast images and
the physical space of an intervention such as biopsy or
surgical resection. For example, in [13] very good re-
sults were obtained for the registration between MR
breast images and X-ray images. The committed er-
ror for the detection of small lesions suspicious to be a
tumor was about 5 mm, which is very low and it is ac-
cepted clinically. One of the main challenges in tran-
sitioning the simulation methods to clinical practice
is the computation time. The computational cost of
FEM is proportional to the size and complexity of the
finite element (FE) mesh, as well as the complexity
of the problem to solve. As an example, a computa-
tion time of approximately 120 minutes was needed
in [11] and [13] to perform a FE simulation of the
breast tissue deformation under compression. This
is not practical for diagnosis, where the radiologists
need a faster answer in the comparison of different
image explorations. The same occurs for planning an
intervention or for a computer-aided surgery, where
it is crucial to calculate tissue deformations in real-
time.

Admittedly, real-time FEM has already been pro-
posed by different authors; it combines pre-computed
deformations [14] or/and uses parallel processing
[15, 16, 17]. Currently, fast GPU-based FE solvers
have been proposed in the literature. For instance,
NiftySim. NiftySim is a GPU-based nonlinear finite
element package for simulation of soft tissue biome-
chanics [18]. NiftySim has been applied to the simula-
tion of the soft tissue interactions with other organs
and instrumentals. For instance, Eiben et al. [19]
aimed to improve the results of registration of breast
MRI from a prone to a supine patient position. In
their experiments, the algorithm required 19 simu-
lations to converge both from the supine and prone
configurations to the zero-gravity reference configu-
ration. The simulations took on average 80 and 83
s on an nVidia GeForce GTX 580 for meshes with
10,455 and 10,741 nodes, respectively. Another ex-
ample can be found in [20] where an algorithm was
presented for recovering suitable material parameters
from MR images for the accurate modeling of breasts
undergoing large deformations. The algorithm was
used to estimate material parameters for up to four
different types of tissue within a model: fat, fibro-



glandular, muscle, and tumor tissue. The inputs were
the following: a segmented image of the initial and
final configurations, and a set of initial guesses for
the material parameters that were obtained from the
literature. Individual simulations took 19 s to com-
plete with NiftySim, compared with 104 min with
ABAQUS standard and 312 min with ABAQUS ex-
plicit on an Intel dual-core 3.4 GHz CPU with a
GeForce GTX 285 GPU.

On the other hand, the Simulation Open Frame-
work Architecture (SOFA) is another FE-based solver
to work in real-time. An example of the computa-
tional needs of SOFA can be found in [21]. In this
study, the authors present a prostate model that in-
corporates the anatomy of the male pelvic region.
The model was used to simulate the prostate de-
formation during needle insertion and it was imple-
mented in SOFA. SOFA simulations were compared
with experimental results for two scenarios: inden-
tation and needle insertion. An experimental phan-
tom was developed using anatomically accurate mag-
netic resonance images and populated with elasticity
properties obtained from ultrasound-based Acoustic
Radiation Force Impulse imaging technique. Mark-
ers were placed on the phantom surface to identify
the deformation during indentation experiments. Re-
garding indentation, the needle guide was pushed 5
mm towards the rectal wall with a velocity of 0.5
mm/s. The indentation simulation was performed
with a time-step of 0.01 s and the total simulation
was computed in 80 s. The needle insertion experi-
ment was performed with an insertion velocity of 1
mm/s. For the needle insertion simulation, a time-
step of 1 s was used without compromising the model
accuracy. The computation time for the total simu-
lation was 60 s.

These two GPU-based FE solvers are very fast and
accurate. However, machine learning techniques are
a viable alternative to reduce even more these low
computational times, as this paper will show.

Other researchers proposed model reduction tech-
niques for dimensional reduction of FE models [22,
23, 24]. The main problem of this technique is that
it is still not able to work in real-time for non-
linear/complex models. For instance, it cannot model
contact problems such as the compression of a breast

due to the contact with the plates of the imaging de-
vices.

Machine learning (ML) is a field that focuses on
models and algorithms that are able to learn and
to make predictions from data [25]. During a pro-
cess called training, ML models learn a function that
maps inputs and outputs without previous knowledge
of the problem. The main advantage of ML models is
that once the mapping function is estimated off-line,
they are able to predict solutions in real-time. This
situation opens a possibility to use FEM to generate
data off-line that ML models can use to estimate a
function that maps inputs (mechanical properties, ge-
ometry mesh, boundary conditions, ...) and outputs
(nodal displacements and stresses). Once the map-
ping functions are estimated, ML models can make
predictions for complex biomechanical behaviors in
real-time.

FEM-based ML approaches have been recently pro-
posed in the literature to build models that pre-
dict deformations of internal organs such as the liver
[26, 27], the stomach [28] or the prostate [29]. These
approaches used the organ geometry from a unique
patient and recursively simulated the deformations
caused by loads with different directions and magni-
tudes in order to obtain the data that fed the ML
model. As a result, a ML model was obtained that
was specific for a unique geometry, but able to pre-
dict deformations caused by loads that were not used
during training. The approach is useful for surgical
planning or guidance but it implies to build a differ-
ent model for each patient.

This paper presents a data-driven method to sim-
ulate, in real-time, the mechanical behavior of the
breast under compression. The aim of this work is to
model the biomechanical behavior of the breast tis-
sues in some image-guided interventions such as biop-
sies, resections or radiotherapy dose delivery as well
as to speed up multimodal registration algorithms.
As far as the authors know, the only similar work
was performed by our research group in an applica-
tion dealing with liver deformations [30].

Ten real breast images were used in this work.
Their deformation due to the displacement of two
plates was performed off-line using FEM. Three ma-
chine learning models were trained with the data



from those simulations. Then, they were used to pre-
dict in real-time the deformation of the breast tissues
under compression. The mean error committed by
the three models in the prediction of the nodal dis-
placements was very low and the breast compression
prediction took less than 0.2 s, thus proving that the
three models could be suitable for clinical practice.

2. Methods

This work presents a data-driven method to sim-
ulate in real-time the breast compression due to
two plates that could be from an X-ray mammo-
gram or the plates of a MRI-guided biopsy device.
The method answers the question of how well a ma-
chine learning approach can estimate the FE simu-
lation of the breast compression. Figure 1 shows an
overview of the proposed method. First, the breast
tissues were segmented from MR images. FE meshes
were generated from those segmented images and
the breast compression was simulated using FEM.
The calculated displacements after the simulation,
namely, the plate displacement, the fraction of skin,
fat, and glandular tissue from each breast and fea-
tures from the meshes (the nodal coordinates and
the number of elements from skin, fat, and glandu-
lar tissue to which each node belongs) were used to
train several machine learning models. During train-
ing, these models learned the relationship between
the mesh features and the nodal displacements, thus
being able to predict in real-time deformed states of
the breast that were not used during training.

2.1. Image acquisition

MR images of ten real breast were obtained in
DICOM format. These images were acquired with
a PHILIPS ACHIEVA 1.5 T scanner. The T2 se-
quence was selected because of its ability to clearly
display the breast structures (with less internal noise
than other sequences), its number of slices, and be-
cause it does not employ any signal suppression to
mask tissues. T2 was configured with TR = 5,000
ms, TE = 120 ms, ip angle = 90°, slice thickness of
2 mm, image size of 512 x 512 pixels corresponding
to 0.78x0.78 mm, and a matrix size of 448x512. It
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Figure 1: Flow chart of the proposed method to simulate in
real-time the breast compression in mammogram.

had 80 slices with a separation of 2 mm and 65,535
different gray levels.

2.2. Breast tissue segmentation

MR segmentation was performed following the pro-
cess presented in [13]. MR segmentation begins with
an image preprocessing that removes the background
noise that does not belong to the breast and re-
moves the pectoral muscle. The background noise is
erased with the skin segmentation method. The pec-
toral muscle is detected and removed using a Hessian-
based filter with eigenvalues in order to differentiate
a specific geometrical structure in 3D images [31] (in
this case, the pectoral muscle).

In this application, a method that uses a Curvature
Flow filter, which was presented in our previous work



[32], was implemented to segment the skin as accu-
rately as possible. After the Curvature Flow filter,
a cluster analysis with K-Means was performed us-
ing four clusters dividing the image into four groups:
background (the darkest pixels), fatty tissue (brighter
pixels), and two clusters (the brightest pixels) that
mix skin and glandular tissue. Pixels that belong to
these last two clusters were reclassified with a new
K-Means analysis, revealing pixels that surround the
breast (the skin layer). Since some pixels of glandular
tissue were still considered to be skin near the nip-
ple region, a dynamic search was used at the breast
boundary. The final pixels that were classified as skin
were used as a mask to separate the breast of inter-
est from background and to segment breast tissue
with no skin [13]. At the end of the MR image seg-
mentation process, a segmented DICOM image was
obtained with the breast of interest segmented into
three types of tissues: glandular tissue, fat, and real
skin.

2.3. Mesh generation

The first step for generating the virtual compres-
sion of the breast is to obtain a finite element mesh
from the segmented MR image. The external soft-
ware, Simpleware®! v5.1, was used to build that
mesh. Before building the mesh, the segmented MR
images were smoothed with an Island Removal Filter
and a Gaussian Filter; the parameters for those op-
erations were obtained experimentally (5 for Island
Removal and 0.75 for the sigma value). This ensured
that the FEM model could be built and guaranteed
the convergence of the FE model. Simpleware pro-
vided a mesh of tetrahedrons for three types of tis-
sues: glandular tissue, fat, and skin. The constructed
meshes had a mean of 313,000 elements and 62,000
nodes with an average tetrahedron edge size of 2 mm.
The compressed meshes were exported to ANSYS®
v13.0. ANSYS? is a commercial finite element soft-
ware package that was used to obtain the deforma-
tions produced in the process of mammogram com-
pression.

Lhttps://www.simpleware.com
2http:/ /www.ansys.com

2.4. Biomechanical model of the breast tissues

The physical behavior of the breast was described
by the material model and the boundary conditions.
Obtaining the true material model for each dataset
from a patient is not a feasible task. In the applica-
tion presented in this paper, the material model was
the same for all patients and their elastic constants
were constant for each type of tissue. To simulate the
physical behavior of the breast tissues under compres-
sion, the hyperelastic model proposed in [33] for the
glandular and fatty tissues of the breast was used in
this paper. For the skin tissue, the model proposed
in [34] for the human skin (which was also assumed
as hyperelastic) was used. For the three tissues, the
model was a Mooney-Rivlin model, whose strain en-
ergy potential, W, is defined by Equation(1) [35]:

_ — 1
W = Cio(Iy = 3) + Co1(Is — 3) + =(J — 1)?

y (1)

where I, Is and I3 stand for the invariants of the de-
formation tensor in the three dimensions of the space,
Co1 and Cg are material constants, J stands for the
determinant of the deformation gradient, and d is the
incompressibility parameter. The used elastic con-
stants for each tissue are shown in Table 1.

Table 1: Elastic constants used for each tissue ([33, 34])) for
the simulation of the breast compression.

tissue Co1 (MPa) Cio (MPa) d (MPa~—1)
skin 0.0040 0.0020 3.36
fat 0.0020 0.0013 6.04
glandular 0.0035 0.0023 3.45

2.5. FE simulations of the breast compression

ANSYS was used to simulate the compression of
the breast (Figure 2). In a cranio-caudal projection
during an X-ray mammogram, the breast is com-
pressed due to the vertical movement of a superior
plate that pushes the breast against a second plate
that is fixed. The breast mesh was located between
two rigid bodies that emulated the two plates of an
X-ray mammogram. The movement of the breast
nodes that belonged to the chest wall was restricted



in the anterior-posterior direction. The movement of
two other sets of nodes was restricted to avoid rigid
motion of the breast: the displacements of the nodes
initially in contact with the superior plate were re-
stricted in the lateral direction and the nodes closest
or in touch with the inferior plate were constrained in
all directions. Finally, the upper plate was displaced
in the direction of the lower plate along the longitudi-
nal axis while the lower plate was totally fixed. The
problem was solved as a non-friction contact problem
between a rigid body (both plates) and a deformable
body (the breast).

2.6. Dataset generation

Ten healthy patients signed an informed consent
form to use their clinical data. The average age of
these patients was 56.8 years, ranging between 34 and
90 years old. MR images from 10 breasts were used
for the experiments. The volume of skin, fat, and
glandular tissue for each breast as well as the total
volume is reported in Table 2. Ten corresponding
meshes were obtained by the methodology explained
in Section 2.3. A displacement that corresponded to
the 20% of the breast height in the longitudinal axis
was applied to the upper plate. ANSYS solved the
problem in several load steps obtaining a simulation
of the deformation at each one. These load steps were
automatically chosen by ANSYS for each breast for
the sake of convergence. Table 3 shows the number
of nodes for the ten breast meshes and the number
of steps used to simulate breast deformations. After
this procedure, a total of 162 deformations were ob-
tained from the 10 breast meshes. Fach instance of
the dataset corresponded to one node from the 162
deformations; finally, the dataset contained a total of
9,816,283 instances.

In this work, the data used to train the models
were the results from the FE simulations of the breast
compression. In particular, the data set consisted of
11 features (input variables):

— The three nodal Euclidean coordinates from each
breast mesh.

— The fraction (unit basis) of skin, fat, and glan-
dular tissue of each breast. These values were
estimated from Table 2 as Equation(2) shows:

‘/tissue
‘/skin + Vfat + Vgland

~
V;fissue =

(2)
where Viissue stands for the volume of skin, fat
or glandular tissue.

— The normalized volume of each breast, which is
estimated by means of Equation (3):

ViV
g

)

(3)

!

where V;, V and o stand for the total volume
of breast ¢, the mean volume, and the standard
deviation estimated over the 10 breasts respec-
tively.

— The normalized number of skin, fat, and glandu-
lar elements from the mesh to which each node
belongs. The values were estimated as in the
case of Equation (2), ensuring that the sum of
skin, fat, and glandular elements was equal to
the unity.

— The value of the plate displacement in each step.

The prediction of the breast compression was
tackled by a multi-output approach, where the
nodal displacements in the three Euclidean co-
ordinates di,ds,ds were considered as the tar-
get variables. Figure 3 shows the histogram of
the norm of the nodal displacements described
in Equation(4) for the whole dataset and the de-
viation estimated over the 162 deformations.

2.7. Real-time predictions of the breast compression

Several machine learning models from Scikit Learn
0.17 [36], a package for Python 3.5, were used to
predict the breast compression in real-time. A pre-
liminary study with a set of regression models was
performed. A dummy model (used as a baseline)



Figure 2: Sagittal view of the breast before (left) and after (right) the FE simulation of the compression.

Table 2: Volume of skin, fat, and glandular tissue and total volume of each breast.

Volume (em?)

breast skin fat
#1 26.39 152.61
#2 25.59 149.17
#3 29.11 229.16
#4 83.15 464.00
#5 29.55 507.12
#6 30.03 235.53
#7 29.07 239.45
#8 29.33 321.86
#9 78.62 839.73
#10 82.21 979.03

glandular tissue total
38.18 217.18
48.85 223.61
50.57 308.84
60.74 607.89
69.48 606.15
47.21 312.77
39.50 308.02
172.99 524.19
44.82 963.17
43.19 1,104.43

that always returns the mean value, a linear regres-
sion model, artificial neural networks, a decision tree
model, and two tree-based ensemble methods (ex-
tremely randomized trees and random forest) were
used. The conclusion of the study was that tree-based
ensemble methods provided the best results and this
is why the rest of the experimentation was focused
on them. For this reason, the following three models
were used to predict the deformations: decision tree
(DT) [37], random forest (RF) [38] and extremely
randomized trees (ERTs) [39].

DT is a supervised learning algorithm that predicts
values of a target variable by learning simple decision

rules from the data. RF and ERTSs are tree-based en-
semble methods, i.e., they combine several trees to
improve results over a single estimator; they are con-
sidered as state-of-the-art methods in machine learn-
ing [40]. In particular, these two methods create a set
of estimators and add randomness to them, giving as
final predictions the averaged predictions of each esti-
mator. The main difference between both is the way
they select the best split during the construction of
the tree. RF selects the best split among a random
subset of the features using the most discriminative
threshold. ERTSs also selects the best split from a
random subset of features but using the best thresh-



Table 3: Number of nodes for the ten breast meshes and the
number of steps chosen by ANSYS to simulate breast defor-
mations.

breast number number of
mesh of nodes simulations
#1 31,745 15
#2 46,248 19
#3 29,930 14
#4 121,210 11
#5 58,507 15
#6 55,999 24
F#7 37,772 15
#8 77,507 21
#9 84,649 10
#10 80,376 18
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Figure 3: Histogram of the norm of the displacement || d ||
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normalized, i.e., the accumulated sum is equal to 100%. The
mean displacement £ standard deviation is superimposed in
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old from a randomly generated set of thresholds for
each feature in the subset.

The hyperparameters used to train DT, RF and
ERTs are the following:

— All the features were used for each decision split.

— The nodes of the tree/s were expanded until all
leaves contained less than two samples.

— At least two samples were required to split an
internal node.

— Mean Squared Error was used as the function to
measure the quality of the splits.

— A total of 20 trees were used to build RF and
ERTs.

3. Experiments

The dataset was split into training and validation
sets. The training set was used by the models to learn
the relationship between the input and output data
spaces. The validation set was used to assess the
models’ performance on new or unseen data. This
strategy guarantees the correct generalization of the
model avoiding overfitting (a typical problem that ap-
pears when a model provides a perfect score in sam-
ples from the training set but fails predicting unseen
data).

In this work, two experiments based on differ-
ent partition approaches were carried out to evalu-
ate the performance of the three models: leave-one-
deformation-out and hold-out validation. The first
experiment is a geometry-based partition, while the
second one is not. A geometry-based partition means
that an entire geometry is taken for training or vali-
dation but never split. In contrast, hold-out valida-
tion is an instance-based partition, i.e., the geometry
is not considered during partitions so it may happen
that some nodes of a given geometry may belong to
the training set with others belonging to the valida-
tion set.

3.1. Hold-out validation

In this experiment the dataset was randomly split
into two partitions: 70% of the data was used to train
the models and the remaining 30% to validate them.
As previously mentioned, the geometry of the breast
was not considered for data splitting. As one of the
main limitations of working with medical data is the
amount of available data, this experiment gives in-
sight about how the model would scale and behave
with an extensive breast dataset when we leave a
whole breast geometry for validation. This approx-
imation is a standard approach in machine learning
framework and it was designed aimed to assess the
performance of the models in a real scenario with
many breasts available for modeling.



3.2. Leave-one-deformation-out validation

A unique deformation from the 162 simulations
performed in ANSYS was used for validation, and
the remaining deformations were used for training.
This experiment was performed for the 162 defor-
mations. This experiment is closer to the clinical
practice, where the models are trained with a set
of breasts and deformations and then used to pre-
dict the behavior of a new state of deformation for a
whole breast geometry. However, this is a challeng-
ing experiment due to the number of deformed states
(162 in our particular case). In this experiment, the
models were validated with one deformation from a
breast mesh that was used during training.

3.3. Error estimation

A metric must be considered to evaluate the perfor-
mance of the models. In this work, the error at each
node was calculated as the 3D Euclidean distance be-
tween the predicted displacement by the models (d*)
and the observed displacement after the FE simula-
tion of the breast deformation (d), as shown in Equa-
tion (5):

The mean of the error over all the nodes from the
validation set, Equation (6), as well as the percentage
of nodes with error € greater than 1 mm, 2 mm and
3 mm were calculated to present the results. These
thresholds were considered to assess the feasibility
of applying the models in real clinical practice. In
particular, 3 mm is an acceptable threshold for the
committed error, 2 mm a good threshold and 1 mm
corresponds with an extremely accurate prediction.

N
e(d,d*) = — Z (d,d*) (6)

where €, stands for the error € of the n-th node, and
N is the total number of nodes.

4. Results

It must be emphasized that all results presented in
this paper are referred to the validation data set, this
giving an indication of the performance of the model
on unseen data different from those used for training.

4.1. Results of hold-out experiment

Table 4 shows the results obtained by the three
models in the hold-out validation experiment. The
lowest errors correspond with ERTs: there were no
nodes with errors greater than 2 mm and 3 mm for
this model and only 0.03% of the nodes had an error
higher than 1 mm. The mean nodal error was equal
to 0.046 mm; it corresponds to the 0.066% of the
maximum nodal displacement from the whole dataset
(69.69 mm), to the 0.4% of the mean displacement
(11.58 mm) and to the 0.43% of the standard devia-
tion (10.62 mm).

Table 4: Percentage of nodes with errors larger than 1 mm,
2 mm and 3 mm committed by each model in the hold-out
validation. The error at each node is calculated by means of
Equation (5). The mean error (€) is estimated over all the
nodes from the validation set

% of nodes % of nodes % of nodes

model with with with €(mm)

e >1mm € >2mm € >3mm
DT 0.41 0.03 0.01 0.123+0.167
ERTs 0.03 0 0 0.046+0.067
RF 0.08 0.01 0 0.064+0.094

Figure 4 shows the histograms of the error € com-
mitted by the three models in the hold-out validation
experiment. In order to compute the histograms, €
was uniformly quantified in the interval [0, 1] mm
with a bin width equal to 0.1 mm (a total of 10
bins). Each histogram was normalized by dividing
each height bin by the number of nodes in the vali-
dation set, i.e., the cumulative sum of each histogram
was equal to 1. Finally, the histograms were multi-
plied by 100 to provide percentages. The histograms
show that there are practically no nodes with errors
greater than 0.5 mm for any of the three models.
They also show that ERTSs yield a better performance



than DT and RF. Almost 90% of the nodes from the
validation set show an error smaller than 0.1 mm for
ERTs.

90

T T
! —DT
80 frrrasen ] —-ERTsH
H ....RF

_ 70t .
®?

0 60 F il
()
8

<50 Bl
ks

S40} -
i)
<

g3or .
g

20+ 4

101 | I _I_I i

0 . ——
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
error (mm)

Figure 4: Distribution of the errors committed by Decision
Tree (DT), Extremely Randomized Trees (ERTs) and Random
Forest (RF) in the hold-out validation.

Figure 5 compares the norm of the observed dis-
placements from the validation set || d || described
in Equation (4) with the norm of predicted displace-
ments || d* ||. The nodes were sorted by the displace-
ment in ascending order for the sake of clarity.

Figure 6 (left) shows the error e defined in Equa-
tion (5) committed by the three models using the
same sorting displacement strategy as in Figure 5.
Since the error may be smaller for small deforma-
tions and larger for large deformations, the relative
errors € were also estimated, as shown in Equation

(7):
e(d, d*)

Tl g

The relative errors € take values between 0 and
1 while € <|| d || . Figure 6 (right) shows the rela-
tive errors and it can be appreciated that their values
were larger for small displacements, while the models
performed better for large displacements.

ad, d*)

4.2. Results of leave-one-deformation-out experiment

This experiment was carried out 162 times, one for
each deformation. Table 5 shows the errors commit-
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ted by the three models. For the sake of simplicity,
the table shows the errors averaged over the 162 de-
formations. On average, there was only a 2.72% of
nodes with an error greater than 3 mm for the best
model, ERTSs, that obtained a mean nodal error av-
eraged over the ten deformations equal to 0.624 mm.
This value corresponded to the 0.89% of the maxi-
mum plate displacement, to the 5.39% of the mean
displacement and the 5.88% of the standard devia-
tion.

Table 5: Percentage of nodes with errors larger than 1 mm,
2 mm and 3 mm committed by each model in the leave-one-
deformation-out validation. The error at each node is calcu-
lated by means of Equation (5). The results are shown aver-
aging over the 162 deformations.

% of nodes % of nodes % of nodes

model with with with €(mm)

€ >1mm € >2mm € >3mm
DT 45.85 20.96 11.37 1.594+2.755
ERT's 20.64 6.43 2.72 0.624+0.881
RF 45.58 20.66 10.90 1.5251+2.647

Figure 7 shows the histograms of the error e
committed by the three models in the leave-one-
deformation-out validation experiment. The his-
tograms were computed as explained in Section 4.1
for the hold-out validation experiment. The only dif-
ference is that here e was uniformly quantified in the
interval [0, 10] instead of [0, 1]. The histograms
show that there were practically no nodes with er-
rors greater than 5 mm for any of the three models.
Around 80% of the nodes from the validation set com-
mitted an error smaller than 1 mm for ERTs.

DT and RF predicted worse than ERTs. The fact
that DT performed worse than ERTs was expected
because ERTSs is an ensemble method, i.e., it is more
complex since combines a set of simple DTs. The dif-
ference between the performance of the two ensemble
methods (ERTs and RF) was not that expected al-
though there are several reasons that could explain
why ERTs performed better than RF in this partic-
ular case. The first reason is that during training,
ERTs built a more complex ensemble. The mean
depth leaf, estimated as the average of the depth
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Figure 5: Sorted norm of the displacements observed after the FE simulations of the breasts from the hold-out validation and

the norm of predicted displacements for the three models.

leaves over all the trees in the ensemble and the
162 trained models (one for each validation deforma-
tion), was ~12% larger for ERTs. The mean num-
ber of nodes was also larger for ERTS, specifically
~37% larger. This also occurred during training in
the hold-out experiment, but the error differences
between models were less pronounced, since as ex-
plained in Section 3.2 leave-one-deformation-out ex-
periment was more difficult to be modeled due to the
limited amount of deformed states (162 in our case).
The second reason is the extra-randomness added by
ERTSs selecting the best split thresholds.

4.8. Summary of results

It is concluded that the best models’ performance
was achieved in hold-out validation, as expected.
Although this is the typical ML approach, is far-
ther away from the clinical practice than leave-one-
deformation validation experiment given the nature
of our problem, where each instance within the
dataset (nodal features) is part of something big-
ger (an organ geometry). Focusing on leave-one-
deformation-out experiment, which is a geometry-
based partition method and closer to the clinical
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practice, the results show that the performance is
worse, but still acceptable. This experiment is highly
recommended since it is very important validating
with unseen plate displacement (something that will
also occur in clinical practice). It gives a lot of in-
formation about the real performance of the mod-
els since forces the model to interpolate and produce
outcomes for a truly unseen scenario. In this ex-
periment ERT outperformed DT and RF drastically,
something that was not visible in the hold-out exper-
iment.

The time that took the prediction of the breast
compression was measured using an equipment with
2.60 GHz Intel (R) Xeon (R) CPU and it was com-
puted as the sum of CPU time, I/O time and the
communication channel delay. On average, the pre-
diction of a whole deformed breast took 0.02 s, 0.10
s and 0.15 s with DT, ERTs and RF, respectively.

Pogorelov et al. [41] defined the term ‘near to real-
time’ if a system is able to process 10 frames per sec-
ond, which corresponds to a computation time of 0.10
s. According to this, our best model (ERTSs) provides
the same value, while DT is below and RF above. In
our case, we consider real-time if our system allows
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Figure 7: Distribution of the errors committed by Decision
Tree (DT), Extremely Randomized Trees (ERTs) and Random
Forest (RF) in the leave-one-deformation-out validation.

the decision making in a real clinical environment
(t<1s).

On the other hand, the time that took to train
a model was around 127 s on average. This com-
putation time is still considerable smaller than FEM-
based approaches, which can take about 2 h for breast
compression [11, 13].
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5. Discussion

It has been demonstrated that it is crucial to test
the model for loads (plate displacement for breast
compression simulation) not used during training,
since the applied loads are highly correlated with the
obtained deformations.

The presented study has shown the feasibility to
use machine learning models to predict in real-time
the biomechanical behavior of the breast, concretely
the deformation that the breast experiences under
compression, due to two reasons: the mean error
committed by the method was under 0.2 mm and 2
mm for the hold-out and leave-one-deformation-out
experiments, respectively, and the breast compres-
sion prediction took 0.1 s on average with ERTs (the
most complex of the three models). Besides, there
were practically no nodes in the whole validation set
with errors greater than 2 mm and 5 mm for hold-
out and leave-one-deformation-out, respectively. The
best results were achieved in the hold-out validation
experiment with ERTs, where the average error was
equal to 0.046 mm, and there were no nodes with
errors greater than 2 mm.

The compression of the real breasts was limited to
20% in order to avoid convergence problems of the Fi-
nite Element (FE) solution. In fact, we found conver-



gence problems for some breast meshes when higher
compression ratios were applied. The problems were
related to distorted elements and these might easily
appear when the skin layer is considered. This is
mainly due to the small size of the skin; as a result
of this, the elements are very small and few elements
define the layer. Therefore, under large deformations
some of these elements are distorted and then, the
FE solution does not converge. In order to obtain a
deformed state for each one of the real breasts, we
decided to limit this deformation to 20%. This does
not mean that non-linearity is not taken into account,
since the effects of non-linearity appear at around 5%
of the deformation for the soft tissues [42].

It should be emphasized that this is not a limita-
tion of the ML models that can reproduce this so-
lution in real time with a very low error, but rather
a problem of the FE model used to virtually simu-
late the breast compression. It is true that simpler
models that allow compression rates above 20% can
be chosen (without the skin) to make the registration
between MRI and X-ray [7, 11, 12, 13]. However, they
do not provide clinically acceptable errors (between
11mm-15mm in the localization of lesions suspicious
to be a tumor).

Our aim was to obtain a specific model for the
mammogram compression but generic for the geom-
etry. It was not designed to generalize for a different
deformation but for new patients. Our approach has
been based on using several geometries during train-
ing in order to generalize for new patients. Once the
model is constructed, there is no need to re-train the
model for a new patient.

The most realistic experimental setup should con-
sist of testing the models in completely new patients,
not previously seen by the model. The only reason
that prevented us from doing it is the limited number
of breasts (only 10) that form our data set; a leave-
one-patient-out validation would involve to test the
model obtained in the previous nine patients with the
remaining one, that may have very different charac-
teristics, and thus, the model may not have enough
information to provide a correct prediction. Obvi-
ously, if the number of breasts was higher (as we
expect in the near feature) we would evaluate the
model that way. Our point is that the experimenta-
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tion shown in this paper is a fair estimation of the
accuracy of the models leaving one patient out in a
scenario with many breasts.

Biomechanical modeling of the breast tissues has
been used for a great number of registration meth-
ods, namely: registration of prone MRI to PET,
PET/CT, registration of prone MRI to supine MRI,
registration of prone MRI to supine surgical sur-
face/depth data, MRI to X-ray registration, and reg-
istration of ultrasound CT and X-ray mammography
[2]. However, despite these developments, the accu-
racy of biomechanical modeling as well as the high
computational costs of the algorithms have limited
its applicability in clinical practice. Obtaining accu-
rate material models is an ongoing research topic in
this field; in particular, more accurate patient-specific
constants for the model as well as more adequate
boundary conditions are needed. The high computa-
tional cost involved in obtaining numerical solutions
for those models can be approached by the ML meth-
ods presented in this work due to their great modeling
capabilities.

The realism of the FE simulations depends on
many factors such as, the process of segmentation,
the constitutive model assumed to characterize the
mechanical behavior of the tissues, the boundary con-
ditions chosen to solve the problem, etc [2]. It is true
that these simulations were used as ground truth in
this work. However, we used the same database used
in [13] for the registration between the X-ray mam-
mogram and MRI, which provided an error under 5
mm in this process. The simulations of the mammo-
gram compression lasted about two hours in this ap-
plication. Therefore, the high reduction of the com-
putational time is a remarkable contribution of this
work. The main goal of the approach presented in
this paper is to provide a methodology able to acceler-
ate FE simulations of the mammogram compression
for applications like this, thus improving its usability
in clinical practice.

The orientation or the pose of the patient has not
been considered as an input parameter of our model
since we are accelerating the FE simulation of the
breast compression during a mammogram or a MRI-
guide biopsy. It is true that new machine learning
models could be constructed simulating the defor-



mations that the breast undergoes for different load
states. This is an important challenge for our future
work.

6. Conclusions

This paper has described a method to estimate in
real-time the deformation undergone by the breast
under compression. The finite element method was
used to perform off-line simulations of the breast de-
formation caused by two compression plates. Three
machine learning models were used to learn the re-
lationship between inputs (geometry, breast tissues,
and loads) and outputs (nodal displacements) from
the simulations. A study was performed by means
of two experiments to assess the performance of the
three models, concluding that extremely randomized
trees provided the best performance. Nevertheless,
the other ML approaches used in this work also pro-
vided a mean error under 2 mm, which is an accept-
able performance for clinical practice.
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Highlights

= Machine Learning (ML) models were used to simulate in real-time the
biomechanical behavior of the breast.

=  Three ML models (decision tree, extremely randomized trees and random forest)
were trained with data from Finite Element (FE) simulations.

* Four experiments were designed to validate and study the models’ performance.

* The mean error in the prediction of the nodal displacements was under 3 mm.

» The time needed for breast compression prediction was under 0.5 s.



