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Rehabilitation is a hazardous task for a mechanical system, since the device has to 

interact with the human extremities without the hands-on experience the physiotherapist 

acquires over time. A gap needs to be filled in terms of designing effective controllers 

for this type of devices. In this respect, the paper describes the design of a model-based 

control for an electromechanical lower-limb rehabilitation system based on a Parallel 

Kinematic Mechanism. A controller observer was designed for estimating joint 

velocities, which are then used in a hybrid position/force control scheme. The model 

parameters are identified by customizing an approach based on identifying only the 

relevant system dynamics parameters. Findings obtained through simulations show 

evidence of improvement in tracking performance compared with those where the 

velocity was estimated by numerical differentiation. The controller is also implemented 

in an actual electromechanical system for lower-limb rehabilitation tasks. Findings 

based on rehabilitation tasks confirm the findings from simulations. 

Keywords: lower-limb rehabilitation; model-based control; parameter identification, 

controller-observer design, parallel kinematic mechanism 
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Introduction  

The design of electromechanical systems based on industrial robotics is continually 

expanding into other non-traditional fields, basically due to emerging needs and 

demands; for example, mechanical devices that meet human and social needs (Alcocer, 

Vela, Blanco, A Gonzalez, & Oliver, 2012). Rehabilitation devices are one such kind 

whose design and implementation focus on reducing the physical therapist's work, 

increasing the length of rehabilitation exercises, gathering information on the status of 

the patient's recovery and also enabling tele-operated devices. It seems natural to 

replace rehabilitation tasks with a mechanical device that has some degree of autonomy, 

since its implementation can reduce the physical therapist's work; however, the 

available devices are still expensive and need appropriate protocols for therapy (Díaz, 

Gil, & Sánchez, 2011). Moreover, rehabilitation is a hazardous task due to the fact that a 

mechanical system interacts with a living subject without the “experience” that the 

physiotherapist acquires over time. Thus, a gap remains to be filled in terms of 

designing effective controllers for this type of devices, specifically in terms of the 

mechanical system's ability to measure variables that can be used to learn the experience 

the task requires.  

The first generation of rehabilitation robots used the same control strategies as industrial 

robots, based on trajectory control for passive systems, evolving into forces or torque 

control in active rehabilitation robots (Cao et al., 2014). The effectiveness of these 

simple strategies was limited, so new strategies have been developed by incorporating 

some adaptation to the active participation of patients, such the assisted-as-needed 

(AAN) rehabilitation strategies (Emken, Bobrow, & Reinkensmeyer, 2005). In Bejarano 



4 

et al. (2016) there is a review of the functional requirements that control systems need to 

meet in order to improve the efficiency of rehabilitation robots. 

Most papers published in this area relate to gait rehabilitation devices, powered lower-

limb prostheses or exoskeletons for upper limb rehabilitation (Marchal-Crespo, & 

Reinkensmeyer, 2009; Jimenez-Fabian, & Verlinden, 2012; Ferreira, Reis, & Santos, 

2016). However, the use of Parallel Kinematic Mechanisms (PKM) in rehabilitation 

platforms is much more limited and has not received much attention. 

In this respect, this paper presents a model-based control of a mechanical lower-limb 

rehabilitation system based on a PKM. The control scheme has the advantage of having 

a hybrid position/force control where the velocity of the mechanism joints is obtained 

through the design of a controller-observer. In addition, the model for the controller was 

identified by customizing an approach based on identifying only the relevant system 

dynamics parameters. 

PKMs or parallel robots are the subject of numerous studies in the field of 

robotics. There is a vast amount of literature dealing with the implementation of control 

strategies based on different controls like PD/PID (Wu, Zhang, Li, & Ouyang, 2002), 

fuzzy logic (Stan, Balan, Maties, & Rad, 2009), computed torque control or inverse 

dynamic control (Yang, Huang, & Han, 2012) and adaptive control (Cazalilla, Valles, 

Mata, Diaz-Rodriguez, & Valera, 2014), to name but a few.  

In the field of rehabilitation there have been some studies on applications of 

PKMs for ankle rehabilitation (Yoon, Ryu, & Lim, 2006), (Saglia, Tsagarakis, Dai, & 

Caldwell, 2013), (Janwal, Hussain, & Xie, 2015). An overview of control strategies for 

assisted lower-limb rehabilitation was presented by Meng et al. (2015). For instance, 

position trajectory tracking control is important in the early stages of rehabilitation 
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when ‘‘passive’’ mode is required. However, in order to consider the interaction 

between living subject and device, hybrid position/force or impedance controls are 

developed. Moreover, to encourage patients' active participation, bio-signals-based 

controls obtained by EMG were included in the control scheme. 

One basic feature of the control strategies applied so far is the assumption that 

exact full state information, i.e. position and velocity, is available for feedback. In 

practice, this assumption can only partially be fulfilled in the case of velocity 

measurement. In most PKM applications velocity sensors are frequently omitted for 

reasons of cost, volume and weight (Klafter, Chmielewski, & Negin, 1989) and if, for 

example, tachometers are used, their measurements are often contaminated with a 

considerable amount of noise (Berghuis, & Nijmeijer, 1993).  

The simplest way to solve the velocity feedback problem, also from an 

implementation point of view, is by first-order numerical differentiation of the accurate 

position signal. However, this approximation has some drawbacks, especially for low 

and high velocities (Canudas de Wit, & Fixot, 1991). Moreover, the quantization effect 

that inherently goes with this approach can produce undesired oscillations in the robot 

joint response or even cause it to become unstable (Klafter, Chmielewski, & Negin, 

1989). Other methods for real-time velocity estimation include: filtered derivative, 

alphabeta trackers, and Kalman filtering. For example, (Janabi-Sharifi, Hayward, & 

Chen, 2000) describe a class of adaptive finite impulse response (FIR) velocity 

estimation techniques for addressing the same problem and they are used to enhance the 

control of a haptic device.  

In this sense, we focus on the motion control problem of a PKM using partial 

knowledge of the state variables, i.e. only position. A straightforward approach to this 

problem follows a two-step design procedure: 1. Construct an auxiliary dynamical 
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system, known as an observer, driven by the available inputs and outputs, which 

reconstructs the missing state variable; 2. Design a state-feedback controller and replace 

the missing state variables with those reconstructed by the observer. 

In the case of linear systems, this two-step procedure can be conducted 

separately due to the separation principle (Kwakernaak, & Sivan, 1972). However, in 

the case of the PKM considered in this paper, as it is a non-linear system this principle 

cannot be assumed. In this case, a fine tuning of the observer structure with respect to 

the underlying control concept is crucial (Berghuis, & Nijmeijer, 1993). In this way, 

two practical requirements can be fulfilled. First, the observer can effectively exploit the 

structural properties of the controller, giving conceptually simple solutions to the 

velocity reconstruction problem. Second, useful stability and robustness properties can 

be provided for the controller-observer combinations. Both aspects are discussed in 

detail below. 

The following section describes the PKM for lower-limb rehabilitation, then we 

present the dynamic parameter identification procedure. After that, we develop the 

observer design model-based control of the PKM, and the controller is implemented on 

an actual electromechanical system for lower-limb rehabilitation tasks. Finally, the 

conclusions are presented.  

The Electromechanical Lower-limb Rehabilitation System 

In previous works, the authors have developed a PKM with 3 degree of freedom (DoF) 

(Vallés, Díaz-Rodríguez, Valera, Mata, & Page, 2012). Figure 1-a shows the PKM as a 

lower-limb rehabilitation system which consists of three legs connecting the moving 

platform to the base. Each leg has a slider attached to the base by an actuated prismatic 

joint (P), a coupler connected to the slider by a passive rotational joint (R) and to the 

platform by a passive spherical joint (S). Although the 3PRS PKM is affected by 
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parasitic movements (Carretero et al., 2000), these are not considered relevant to the 

application, especially considering that the subject's leg will have additional degrees of 

motion that would prevent the possibility of damage caused by these small, uncontrolled 

parasitic motions. 

The center of the moving platform of the PKM presents one translation (height) and two 

rotations (pitch and roll) as DoF. A load cell is installed at the platform's center so that 

the forces being applied to the subject can be measured (see Figure 1-b). Kinematic 

motion of the platform can be estimated through photogrammetry. The mechanism has 

already been tested for ankle rehabilitation tasks (Valles et al., 2015) within the research 

stream of methodologies for designing biomechatronic systems which is currently 

ongoing at Universitat Politècnica de València (https://mebiomec.ai2.upv.es/). 

Aerotech BMS465 AH brushless servomotors and Aerotech BA10 power amplifiers 

provide direct-drive to the ball screws that give the linear motion to each prismatic joint 

[q1, q6, q8]. These DC motors are equipped with incremental encoders with a resolution 

of 1000 pulses per revolution. A sinusoidally commutated brushless DC motor has the 

same linear relationship between current and torque as Cetinkunt's brush-type DC motor 

(2015). The torque current constant can be selected from the datasheet 

(https://www.aerotech.com/media/854170/bms.pdf) or through experiments. According 

to the findings from (Valles, Díaz-Rodríguez, Valera, Mata, & Page, 2012) the current-

torque relationship is linear for the prescribed operating range of the motors. The 

relationship was verified through experiments that were conducted. 

An industrial PC has been used to implement the control architecture of the parallel 

robot. It is a high performance 4U Rackmount industrial system with 7 PCI slots and 7 

ISA slots. It has a 2.5GHz Intel® Pentium® Core 2 Quad/Duo processor and 4 GB 
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SDRAM. This architecture has the advantage of having an open control system, 

allowing us to design controllers that are capable of dealing with a hazardous task such 

as rehabilitation in which a mechanical system interacts with a living subject. 

The industrial computer has 3 AdvantechTM data acquisition cards installed: 2 PCI-1720 

cards and 1 PCL-833 card. The first of these supply the control action for each parallel 

robot actuator, providing four 12-bit isolated digital-to-analog outputs for the Universal 

PCI 2.2 bus, multiple output ranges (0~5V, 0~10V, ±5V, ±10V), programmable 

software and an isolation protection of 2500 VDC between the outputs and the PCI bus. 

The PCL-833 card is used to obtain the actuators' positions. It is an ISA card that 

includes four 32-bits quadruple AB phase encoders and an on-board 8-bit timer with a 

wide range time-based selector. 

In order to establish force control, the system has been equipped with the Delta 

SI-330-30 ATI sensor, which is capable of measuring forces and torques in the XYZ 

axes using a monolithic instrumented transducer. The maximum range of forces is 

±3700 N for X and Y, and ±10000 N for the Z axis. The maximum range of torque is 

±270 N·m for X and Y, and ±400 N·m for the Z axis.  

The programming language used to control the mechanical system is C++. The 

PC uses the Linux Ubuntu operating system, patched with Xenomai (a real-time kernel) 

to give it real-time characteristics. The real-time middleware Open RObot COntrol 

Software (OROCOS) combined with the Robot Operating System (ROS) middleware 

has been used in order to implement model-based control (Vallés, Cazalilla, Valera, 

Mata, Page, 2013). 

Dynamic Parameter Identification 

Effective model-based control of a mechanical system relies on the accuracy with which 
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the model dynamic parameters are obtained, which is generally performed by 

identification techniques. Approaches for dynamic parameter identification were first 

introduced for Serial Kinematics Mechanism (SKM) about thirty years ago (Atkeson, 

An, & Hollerbach, 1986; Gautier, & Khalil, 1988), and then for PKMs about twenty 

years ago (Gautier, Khalil, & Restrepo, 1995; Codourey, & Burdet, 1997). Since then, a 

vast amount of literature has been published, but the field still remains open, for 

instance (Janot, Gautier, M., Jubien, & Vandanjon, 2014; Janot, Vandanjon, & Gautier, 

2016) for SRs, and (Briot, & Gautier, 2015) for PKM. One of the characteristics of an 

open research field, especially PKMs, is that each of these systems has particular 

characteristics that are difficult to include in order to develop a general method. For 

instance, the dynamic model can consider whether or not the layout of the mechanism 

presents symmetry. In addition, since a PKM has passive joints, friction in those joints 

adds another factor to take into account when identifying the model. In the end, the 

analyst has to customize general algorithms to the specific case he or she is dealing with. 

As common ground in identification techniques, only a sub-set of parameters 

called Base Parameters (BP) can be identified by measuring joint torques and positions. 

Furthermore, only a smaller subset of essential parameters (EP) contributes significantly 

to the system dynamics (Pham, & Gautier, 1991). Díaz-Rodríguez, Mata, Valera, Page 

(2010) proposed an approach that not only identifies the essential parameters, but also 

verifies whether or not the smaller subset of parameters are feasible. The smaller subset 

of essential and also feasible parameters was named relevant parameters. This approach 

tackles most of the specific characteristics when dealing with the identification of a 

particular case of PKM (a parallel manipulator), offering some hints so that the analyst 

can customize the identification model for the system being studied. Since the lower-

limb rehabilitation system is based on a PKM architecture, we have applied the Diaz-



10 

Rodriguez (2010) approach for identifying the relevant parameters. The following 

paragraphs summarize the specific details and results for the case of the 

electromechanical rehabilitation system. 

Linear model in Base Parameters 

By applying the Denavit-Hartenberg convention to the parallel manipulator, a 

set of 9 generalized dependent coordinates has been obtained, as can be seen in Figure 2. 

The active generalized coordinates ݍଵ, ଺ݍ  and ଼ݍ  are associated with the actuated

prismatic joints (P), and the passive generalized coordinates, ݍଶ, ଻ݍ  and ݍଽ  are

associated with the revolute joints (R). The coordinates q3, q4 and q5 only correspond to 

one of the spherical joints (S). The spherical joint has been modeled by means of three 

mutually perpendicular revolute joints. Those generalized coordinates are grouped in a 

vector q . 

The equation of motion of a PKM modeled through a set of dependent generalized 

coordinates can be written as follows,  

૎ሻ,ܙሺۻ ∙ ሷࢗ + ,ࢗሺ࡯ ሶࢗ , ࣐ሻ ∙ ሶࢗ + ሻ࣐,ࢗሺࢍ = ࣍ − ࢀࡶ ∙ ࣅ (1)

where ࢗሶ , ሷࢗ  are the generalized velocities and accelerations, ࡹ is the mass matrix of the

system, ࡯ the matrix of centrifugal and Coriolis terms, ࢍ the vector of gravitational 

terms, ࣍ the vector of generalized forces, ࡶ the Jacobian matrix obtained by deriving the 

constraint equations with regard to all the generalized coordinates and ࣅ the vector of 

Lagrange multipliers. The vector ૎ includes all the inertial terms of the mobile links of 

the PKM, so that, for the i-th mobile link, the mass ݉௜, the first moment of masses݉ݔ௜, ,௜ݔݔܫ ௜ and the terms of the inertia matrixݖ݉,௜ݕ݉ ,௜ݕݕܫ ,௜ݖݖܫ ,௜ݕݔܫ ,௜ݖݔܫ ௜, are allݖݕܫ

expressed with regard to local and non-centroidal reference systems, which are located 
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at the joint of each link. 

For identification purposes, the last term of equation (1), the generalized internal forces, 

is inconvenient, so it could be avoided by multiplying both terms of the equation (1) by 

an orthogonal complement (García de Jalón and Bayo, 1991), ࡾ. In such a way, the 

equation of motion written in a suitable way for identification purposes can be obtained, 

ࢀࡾ ∙ ,ܙሺۻ ૎ሻ ∙ ሷࢗ + ࢀࡾ ∙ ,ࢗሺ࡯ ሶࢗ , ࣐ሻ ∙ ሶࢗ + ࢀࡾ ∙ ሻ࣐,ࢗሺࢍ = ࢀࡾ ∙ ࣍ (2)

Now considering the relationship between all the generalized coordinates and the active 

ones, equation (3) can be re-written as follows, 

∗ࡲ࢞ࡲۻ ሺܙ,૎ሻ ∙ ሷࢗ ∗૚࢞ࡲ + ∗ࡲ࢞ࡲ۱ ሺࢗ, ሶࢗ ,࣐ሻ ∙ ሶࢗ ∗૚࢞ࡲ + ∗૚࢞ࡲ܏ ሺࢗ,࣐ሻ = ૊ࡲ࢞ࡲ∗  (3) 

F being the number of degrees of freedom of the parallel robot, and the new vectors ࢗሶ ∗, ሷࢗ ∗		 correspond to the active generalized velocities and accelerations. From equation

(3), the rigid body dynamics can be written as linear in the so-called base parameters 

(Gautier and Khalil, 1988), 

,ܑܙሺࢃ ሶܙ ܑ, ሷܙ ܑሻ ∙ ૎ = ૊∗ܑ (4)

where ࢃሺ࢏ࢗ, ሶࢗ ,࢏ ሷࢗ ሻ is the observation matrix, which is a function of the generalized࢏

coordinates, the velocities and the accelerations for the i-th pose of the PKM. For the 

robot considered, equation (4) constitutes an undetermined linear system; however, over 

a prescribed trajectory, equation (4) can be applied to a set of n poses in order to build 

an overdetermined linear system. For a general mechanical system, the columns of the 

new observation matrix, corresponding to each robot pose, are not independent ones 

because some of the inertial parameters have no effect on the dynamic behavior of the 
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system or they affect in linear combination. A set of base parameters (Gautier, 1991) 

has to be found such that, 

,ࢗሺࢃ  ሶࢗ , ሷࢗ ሻ ∙ ࡮࣐ = ૌ (5)

where ࢃ  is now the global observation matrix, ૌ  the vector collecting the mapped 

generalized forces for the different robot poses, and ࣐࡮  the vector including linear

combinations of the inertial parameters grouped in ࣐ . Then, the dynamic base 

parameters can be found through Least Squares (LS) or Weighted Least Squares (WLS) 

as follows, 

ሾሺࢀࢃ ∙ ࡿ ∙ ሻି૚ࢃ ∙ ࢀࢃ ∙ ሿࡿ ∙ ࡮࣐ = ૌ (6)

where ࡿ is a suitable weight matrix computed from the standard deviation of measured 

torques. The size of the minimal combination for ࣐࡮ depends on the kinematic topology

of the mechanism. The relationship can be found using the SVD technique (Gautier, 

1991) as follows, 

࡮࣐ = ࢇ࣐ + ࡮ ∙ ࡮࣐ = ૌ (7)

where ࣐ࢇ and ࣐࢈ are subsets of ߮ and ܤ is a matrix obtained after applying the SVD

technique to matrix	ࢃ. 

The linear combination ࣐࡮ can be generated in different ways depending on the

subset of parameters ࣐࢈ that are selected. The approach proposed by Gautier (1991) for

serial robots suggests that ࣐࢈ should be selected by starting with the first row of the

subset of the matrix providing a linear relationship of the parameters; this approach has 

been implemented in the open source OpenSYMORO packages (Khalil et al., 2014). 

Diaz-Rodriguez (2010) noted that the selection of ࣐࢈  affects the conditioning of
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matrix	ࢃ. In order to reduce the impact of noise in the parameters solution, we have to 

search for the set of parameters that provides the lowest condition number. As an 

example, we present here two of the possible combinations for the 3 DOF PKM, set 1:, ሾ݉ଵ,݉ଶ,݉ଷ,݉ସ,݉ହ,݉଺, ሿ , and set 2: ሾ݉ଵ, ,ଷ,݉ହ,݉଻ݔ݉,ଷ,݉ଷݕݕܫ ሿ . The sampling

trajectories for computing the condition number of each matrix ࢃ with regard to the set 

of parameters were obtained using the optimal trajectory approach based on the goal 

attainment method (Díaz-Rodríguez, Iriarte, Mata, & Ros, 2009). The mean value for 

the condition number using subset 1 was about 50, and for subset 2 it was about 110. 

Therefore, we selected subset 1 for identification purposes. 

In addition to rigid body dynamics, additional coefficients for friction modeling 

are included in the identification process; the condition is that those models are linear in 

the coefficients to be identified. It must be mentioned that before assembling the PKM, 

each actuator was tested independently and it was apparent that the improvement of 

using a non-linear friction model did not justify its application compared with the 

benefits of keeping the whole identification model linear in parameters (Farhat, Diaz, & 

Mata, 2007). The selected friction model provides the j-th joint friction torque function 

considering two parameters, 

௙߬ೕ = ௖ܨ ∙ ሶ௝൯ݍ൫݊݃݅ݏ + ௩ܨ ∙ ሶ௝ݍ (8) 

where ܨ௖ represents the coefficient of Coulomb friction, and ܨ௩ viscous friction for each

joint. Equation (8) is applied only to the actuated joints. It is important to point out that 

although friction may not be relevant at low speeds, the type of linear actuator used in 

this PKM has a high Coulomb friction component, and considering that sudden changes 

in the sign of the actuator motion occur during a rehabilitation path, that friction 

component cannot be ignored. 
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Physical Feasibility 

The 3-DOF PKM consists of three legs in a symmetrical layout. Due to manufacturing 

and assembly methods, it is difficult for the legs to be identical; however, the 

differences can be considered small, so their contribution to the system dynamics will 

remain small. We considered having identical leg geometry as a valid assumption. 

Therefore, ݉ଵ =	݉ସ =	݉଺, ீࡵమ = 	 ఱீࡵ = ೔ being the inertia matrix with regardீࡵ ,ళீࡵ

to a reference system attached to the i-th bar and located in the center of gravity and ݉ݕଶ = ହݕ݉	 = ଻ݕ݉ ≈ 0 . Moreover, if we also consider that the geometry of the

platform is cylindrical with a small width, we can obtain the parameters shown in Table 

1. 

Table 1 shows the subset of relevant parameters ࣐࡮ , before applying the

reduction process considering feasibility. In the table, ݈௥ is the distance ܤ௜, ௜ܲ	from the

spherical to the revolution joint (see Figure 2), ݈௠  is the distance ௜ܲ , ௝ܲ  between two

adjacent spherical joints at the platform, ܽ = ݈௠ ∙ ܾ ,ሺ120°ሻ݊݅ݏ = ݈௠ ∙ ሺ120°ሻ, andܿݏ݋ܿ = ݈௠. From ࣐࡮, ݉ଷ can be obtained given the values of ݉ଵ and ݉ଶ. After that, the

remaining parameters can be found with respect to the values of the three masses and 

the identified parameters grouped in vector ࣐. The equation of feasibility can be written 

as 

మீࡵ = ݂ሺ߮,݉ଵ,݉ଶሻ > యீࡵ0 = ݂ሺ߮,݉ଵ,݉ଶሻ > 0݉ଷ = ݂ሺ߮,݉ଵ,݉ଶሻ > 0 (9)

In order to solve the above equations, we can define lower and upper bounds of ݉ଵ and ݉ଶ so that at each step in the reduction process we can search at least for a

discrete value within the bounds, so that we are able to find a set of feasible ீࡵమ, .య,݉ଷீࡵ

Based on the geometry of the link and the density of the material, we set the bounds for 
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the platform mass ݉ଷ  to ሾ5 15ሿ  kg and ሾ0.1 5ሿ	kg for ݉ଵ  and ݉ଶ , respectively.

Friction parameters are considered positive values only, as is the rotational inertia of the 

screw driving system.  

The identification process starts by measuring positions and torques when the 

PKM follows an optimal trajectory. Then, equation (5) and (8) are used to obtain the 

regressor matrix ࢃ, and after that the relevant parameters are found through equation 

(2). At this point we check whether the parameters are feasible or not, so that we can 

decide whether to reduce our model. The process continues until a model with a feasible 

parameter is found. 

Observer Design for Model-Based Control 

Model-Based Position Control 

The velocity observer design problem consists of constructing an auxiliary dynamic 

system that asymptotically reconstructs the velocity signal from input-output 

measurements, i.e. torque (�) and position (q), respectively. A number of strategies have 

been developed to tackle this design problem. For instance, (Canudas de Wit, & Slotine, 

1991) present sliding mode velocity observers for industrial robots, which are based on 

the concept of variable structure systems.  

One useful feature of these observers is their good robustness to uncertainties in 

rigid body dynamics, which is caused by the presence of switching terms in the observer 

dynamics. Unfortunately, these switching terms also generate high-frequency chattering 

in the velocity estimate, which in a closed loop may produce undesirable effects such as 

excitation of unmodeled high-frequency dynamics and fatigue of system actuators. This 

is a major practical drawback of sliding mode observers. The observer design proposed 

by (Berghuis, Löhnberg, & Nijmeijer, 1991) starts as follows: 
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ቐ ௗௗ௧ ෝࢗ = ࢠ + ࢊࡸ ∙ ௗௗ௧										෥ࢗ ࢠ = ,ࢗ૚ሺିࡹ ሻࣂ ∙ ൫࣎ − ,ࢗሺ࡯ ሶࢗ ૙, ሻࣂ ∙ ሶࢗ ૙ − ,ࢗሺࡳ ሻࣂ + ૚࢖ࡸ ∙ ෥൯ࢗ + ૛࢖ࡸ ∙  ෥  (10)ࢗ

where ሾࢗෝࢀ		ࢀࢠሿ is the observer state, ࢗෝሶ  represents the estimated velocity, ࢗ෥ ≡ ࢗ − ෝ isࢗ

the observer position estimation error, ࢊࡸ = ࢀࢊࡸ > 0, ૚࢖ࡸ	 = ࢀ૚࢖ࡸ ≥ ૙, ૛࢖ࡸ = ࢀ૛࢖ࡸ ≥ ૙
and ࢗሶ ૙ = ෝሶࢗ − ઩૛ࢗ෥ with ઩૛ = ઩૛ࢀ.

The computed torque controller can be defined as ࣎ࢉ = ,ࢗሺࡹ ሻࣂ ∙ ࢇ + ,ࢗ൫࡯ ෝሶࢗ , ൯ࣂ ∙ ෝሶࢗ + ,ࢗሺࡳ ࢇሻࣂ = ሷࢗ ࢊ − ࢊࡷ ∙ ൫ࢗෝሶ − ሶࢗ ൯ࢊ − ࢖ࡷ ∙ ࢋ
(11) 

where ࢗෝሶ  represents the velocity estimate. This estimate is obtained from the nonlinear

open-loop observer. In order to tune the observer more finely with respect to this control 

strategy, assume Lp1=0 and Λ2=0. Then the observer systems become:݀݀ݐ ෝࢗ = ࢠ + ࢊࡸ ∙ ݐ෥݀݀ࢗ ࢠ = ,ࢗ૚ሺିࡹ ሻࣂ ∙ ቀ࣎ − ,ࢗ൫࡯ ෝሶࢗ , ൯ࣂ ∙ ෝሶࢗ − ,ࢗሺࡳ ሻቁࣂ + ૛࢖ࡸ ∙ ෥ࢗ (12) 

Combining these equations: 

ݎ݈݈݁݋ݎݐ݊݋ܥ ቊ࣎ࢉ = ,ࢗሺࡹ ሻࣂ ∙ ࢇ + ෝሶࢗ,ࢗ൫࡯	 , ൯ࣂ ∙ ෝሶࢗ + ,ࢗሺࡳ ሻࣂ (13a)ࢇ = ሷࢗ ࢊ − ࢊࡷ ∙ ൫ࢗෝሶ − ሶࢗ ൯ࢊ − ࢖ࡷ ∙ ࢋ (13b)

ݎ݁ݒݎ݁ݏܾܱ ቊࢗෝሶ = ࢠ + ࢊࡸ ∙ ሶࢠ෥ࢗ = ࢇ + ૛࢖ࡸ ∙ ෥ࢗ   (14) 

An interesting feature of the observer part is that it is rendered linear by the 

control input, which is a consequence of the feedback linearizing property of the 

computed torque method. To explain this, remember that the computed torque controller 

results in the linear system: ࢗሷ = ࢇ
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For the stability analysis, define ࢟ࢀ = ഥሶࢗൣ ෥ሶࢗ		ࢀഥࢗ		ࢀ ൧ࢀ෥ࢗ		ࢀ  where the observer

tracking error  ࢗഥ ≡ ࢋ − =ሺ	෥ࢗ ෝࢗ ሻ, and choose as a Lyapunov function candidate aࢊࢗ	−

function that consists of two separate parts: one for the observer tracking error dynamics 

and another for the observer error dynamics (Berghuis, Löhnberg, & Nijmeijer, 1991). 

With this function the closed-loop system is locally exponentially stable.  

Through simulations, the following figures show the PKM response obtained 

with the controller-observer for the first joint. Figure 3 shows the reference and the ݍଵ
position. Figure 4 shows the velocity and its estimation. The results point to the 

conclusion that the controller was able to generate very good tracking performance. 

Notice that the mass matrix, centrifugal and gravitational terms of equation (10) can be 

obtained in terms of identified relevant parameters.  

Figure 5 shows the error between the PKM velocity and the velocity estimation. 

The velocity estimation is also very good, providing a mean error of 0.372 mm/s.  

As was mentioned in the Introduction, velocity sensors may not be available in 

the electromechanical system, and even when they are available, noise is usually a 

problem, as is the case with tachometers. Sensor noise places limits on controller gains, 

resulting in larger tracking errors. 



18 

Joint velocities can be determined by first-order differentiating position 

measurements obtained with a potentiometer or optical encoders. Usually, an optical 

encoder has a large signal-to-noise ratio; with differentiation, however, even low levels 

of noise in the position signal may produce unacceptably large velocity noise. 

In order to verify this, using the same PKM model and the same inverse 

dynamics controller with the same gain values, two simulations have been executed. In 

the first simulation the velocity estimation is obtained by first-order differentiating 

position measurements. In the second, the velocity observer has been used.  

The position responses of both controllers are very similar, obtaining good 

trajectory tracking performance. However, there are differences in the control actions 

obtained in these simulations. Figure 6 shows the control actions (torque) applied to the 

first joint of the PKM. 

Note the low level of chattering obtained with the velocity observer compared 

with the estimation calculated by first-order differentiating positions, which reduces the 

possibility of exciting unmodeled higher frequency dynamics of the PKM. Another 

advantage of this reduced chattering in the action control is less mechanical wear and 

lower energy consumption. 

To verify experimentally the efficiency of the velocity observer with respect to 

the first-order position differentiation, these controllers have been implemented and 

tested in the actual electromechanical system shown in Section 2 (Figure 1a). 

Figure 7 shows the reference and the ݍଵ position. Figure 8 shows the velocity

estimations, and Table 2 shows the results of the comparison between the different 
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approaches. We have compared: the generalized joint coordinate ݍଵ, and its velocity.

The results obtained with the remaining active coordinates (ݍ଺ and ଼ݍ) are similar.

As regards the position variable, we calculated the difference with the reference 

value and the actual PKM joint ݍଵ. This difference is described by three parameters: i)

the mean error, which quantifies the bias; ii) the std of the error, which quantifies the 

error amplitude around the reference value and; iii) the average lag between the real 

variable and reference, which evaluates the phase error. This value was calculated as 

described in (Ramsay & Silverman, 2006), 180º corresponding to the value of two 

signals in antiphase. The variables mean of error and std of error are expressed in both 

absolute magnitude and as a percentage of the signal range. 

With respect to the derivatives, we have compared the estimated velocities with 

the derivative of the reference variable. This derivative has been calculated using a 

smoothing procedure based on B-splines bases (Ramsay and Silverman, 2006). The 

optimal level of smoothing was defined according to the criteria of no correlation of 
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residuals (Page et al., 2006). The comparison parameters are the same as in the case of 

the variable ݍଵ.

As shown in the table, the two methods give a very low mean error, which 

means that the system works without bias, as regards both the position variable and its 

derivative. However, there are differences in terms of the oscillations around the error 

value and in the phase error. Thus, for the FOD estimation the error is about twice that 

found with the Observer method. A larger lag is also seen, although both are practically 

negligible. 

The differences are much more pronounced for the velocities. Indeed, in the case 

of the FOD method, the error around the reference is 7.29% of the amplitude, but when 

the Observer estimation is used, this error decreases to 1.98%. The differences are also 

very pronounced with respect to the phase error, which is three times higher for the 

FOD method. 

Hybrid Force/Position Control 

Industrial controllers support the development of automation programs that 

perform a sequence of movements. Due to their versatility, PKMs are quite a flexible 

solution. However, while standard PKM motions are position controlled only, force 

control permits flexible adaptation with respect to inaccuracies in human interaction. 

As mention before, the PKM for lower-limb rehabilitation has three degrees of 

freedom: the height (z) of the platform and the pitch and roll orientation (� and �). The 

hybrid force/position control of Figure 9 has been developed for the PKM. Conceptually, 

the control scheme is based on the work of Raibert and Craig (1981). The PKM controls 

the force applied by the platform to the environment considering the force reference ࢊࢌ.

For the position/orientation control, the scheme uses the Cartesian 

references	ሾࢊࢠ, ,ࢊࢽ .ࢀሿࢊࢼ
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In this architecture, the position references ࢊࢗ are computed and sent to the joint

space system controller (“Position Controller” block). These references are obtained 

from the output of the “Inverse Kinematics” block (ࢗෝࢊ ) and ∆q, the output of the

integral of the Jacobian function.    

For the calculation of ∆q, a force control algorithm is programmed. In this work

it is an explicit PID force control that uses the error signal between the force reference ࢊࢌ and the force measured on the mobile platform ࡲ:ࢌ = ࢖ࡷ ⋅ ሺࢌd − ሻࢌ + ࡵࡷ ⋅ dࢌሺ׬ − ሻࢌ ⋅ dt + ࢊࡷ ⋅ dtࢊ ሺࢌd − ሻ  (15)ࢌ

The effect of the three parameters of a PID controller is well known and has 

been widely addressed in the literature (Aström, & Murray, 2010). The integral term 

assures zero tracking error. The function of the derivative term is to damp the system. 

Finally, the position controller compares the ࢊࢗ	references and the PKM joint

positions ࢗ and calculates the control actions to apply to the system. These control 

actions are obtained by means of the controller-observer based on the feedback 

linearization of equations (13-14). 

The following figures show the system response for the hybrid force/position 

control. The pitch orientation is based on the walking motion reference for the gait cycle 

and it corresponds to dorsiflexion/plantar flexion ankle movements. The roll orientation 

corresponds to the reference for eversion/inversion ankle movements. In this case, the 

reference for this roll angle is 0. Finally, the reference force corresponds to the force 

when the human foot is resting on the ground. These Cartesian references are based on 

(Yoon, Ryu, & Lim, 2006). 

Figure 10 shows the reference and the PKM response for the pitch orientation, 

and Figure 11 represents the roll orientation. The position control results present very 
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good tracking performance. Figure 12 shows the force control results and, as in the 

previous cases, the response was also very good. 

Lower-Limb Exercises with Electromechanical Rehabilitation Systems 

In order to rehabilitate or strengthen injured lower limbs, different exercises can be 

performed with the PKM proposed in this work. These exercises can be passive or 

active. Passive exercises are performed without any voluntary movement by the patient, 

while active exercises are performed with voluntary movement by the patient. In order 

to show how the mechanism operates, a series of exercises have been performed with 

healthy subjects. 

In passive exercises, the mechanism is programmed to follow a specific position 

reference prescribed by a specialist. Thus, using the PKM, a number of references have 

been generated to rehabilitate the lower limbs. In this case, the forces and torques 

applied to the ankle are being monitored all the time in order to avoid dangerous 

overexertion. 

In active exercises, there are several types of active movements, such as active-

resistive or active-assistive exercises. In the first case (strengthening or resistive 

exercises) the patient has to overcome a resistance imposed by the specialist. Active-

assistive exercises are usually done at an early stage in the rehabilitation process where, 

for example, the patient is not able to carry out the movement against gravity by him or 

herself. For this reason, external help is needed to perform them correctly. 

In this work, different rehabilitation exercises have been proposed using the 

PKM and its open control unit. The position controller has been developed using the 

inverse dynamics control algorithm of equation (13). Because the PKM has no velocity 

sensors, the velocity observer of equation (14) was also implemented. The controller-

observer operates at a frequency of 100 Hz (Ts=10 ms). The following figures show the 
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response for an active-resistive application. The aim is to keep the platform of the 

parallel manipulator in a horizontal position by applying opposed torques to the motion 

of the platform.  

For this exercise there are two stages. In the first one (from t=0 s to 9 s) a 

position control is established. There is a smooth movement reference to position the 

PKM platform at the height (0.144 m) required by the physiotherapist. The second stage 

(from t=9 s to 90 s) establishes a force control. The force reference is a low-frequency 

sinusoidal (pi/2 rad/s) force reference, with an amplitude of 60 N. The parameters of the 

force reference are chosen by the physiotherapist according to the patient's condition. 

Figure 13 shows the reference and the force applied by the patient. In this 

exercise, the patient can follow the force indicated by the therapist without any problem. 

According to the force error and the platform orientation reference, the joint 

references are calculated in real time by the Jacobian of the mechanism. Figure 14 

shows the reference and the response for the first joint of the system. Because the 

position control is a model-based controller, it presents a very good response, with a 

very small error (see Figure 15). 

Conclusions 

This paper has presented a controller-observer model-based control design for an 

electromechanical lower-limb rehabilitation system. The control scheme is based on a 

model-based controller that uses the dynamic parameters obtained by means of an 

identification process. Because it is assumed that there are no velocity sensors, the 

controller has a velocity observer to obtain its estimation. 

The controller-observer has been tested in simulations and in an actual 

electromechanical system: a PKM. The control unit has an open architecture based on 

an industrial PC running open software and control middleware: OROCOS and ROS. 
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This control architecture has several advantages: it is a very economical system and it 

enables different control strategies to be implemented using different sensors, such as 

potentiometers, force sensors and machine vision cameras, to name but a few. In order 

to demonstrate the performance of the developed system, a hybrid position/force 

scheme has been also developed. This scheme makes it possible to carry out different 

lower-limb rehabilitation exercises. 

Finally, the velocity observer results in a smooth implementation, which reduces 

the possibility of exciting unmodeled higher frequency dynamics of the 

electromechanical system, reducing the chattering in the applied control torque and 

leading to less mechanical wear and lower energy consumption. 
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 (a)    (b)  

Figure. 1: Electromechanical Lower-limb Rehabilitation System 
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Figure 2. Kinematic diagram of the 3-PRS parallel robot, type of joints and generalized 

coordinates. 
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Figure. 3: Position for the q1 joint of the simulated PKM. 
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Figure. 4: Velocity for the q1 joint of the simulated PKM. 
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Figure. 5: Velocity estimation error 
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Figure. 6: Torques obtained in a simulation when using velocity estimation by the 

numerical method and using the controller observer. 
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Figure. 7: Position for the q1 joint of the actual PKM. 
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Figure. 8: Velocity for the q1 joint of the actual PKM. 



37 

Figure. 9: Hybrid force/position control scheme. 
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Figure. 10: Pitch orientation for mobile platform. 
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Figure. 11: Roll orientation for mobile platform 
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Figure. 12: Force applied by the platform. 
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Figure. 13: Reference and force applied in the exercise. 
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Figure. 14: Position of the q1 joint of the actual PKM for the rehabilitation exercise. 
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Figure. 15: Joint position error for the rehabilitation task of the actual system. 
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Table 1. Base parameters considering that all the legs have identical geometries.  

 Base Parameter ࣂ

௫௫ଷܫ 1 − ܾଶ ∙ ሺ2݉ଵ + 2݉ଶ +݉ଷሻ
௫௬ଷܫ 2 + ܽ ∙ ܾ ∙ ሺ2݉ଵ + 2݉ଶ +݉ଷሻ
௫௭ଷܫ 3
௬௬ଷܫ 4 − ܾଶ ∙ ሺ2݉ଵ + 2݉ଶ +݉ଷሻ + ܽଶሺ݉ଵ +݉ଶሻ
௭௭ଷܫ 5 − ܿଶሺ݉ଵ + ݉ଶ + ݉ଷሻ
ଷݔ݉ 6 − ܾሺ2݉ଵ + 2݉ଶ +݉ଷሻ + cሺ݉ଵ +݉ଶሻ
ଷݕ݉ 7 − ܽሺ2݉ଵ + 2݉ଶ + ݉ଷሻ
ଷݖ݉ 8
ଷݖݖܫ 9
௭௭ଶܫ 10 − ݈௥ଶ ∙ ሺ2݉ଵ + 2݉ଶሻ
ଶݔ݉ 11 − ݈௥ଶ ∙ ሺ݉ଵ + ݉ଶሻ
௭௭ଶܫ 12 − ݈௥ଶ ∙ ሺ2݉ଵ + 2݉ଶ +݉ଷሻ
13 3݉ଵ + 3݉ଶ +݉ଷ
଻ݔ݉ 14 − ݈௥ ∙ ሺ2݉ଵ + 2݉ଶ +݉ଷሻ
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Table 2. Performance comparison between velocity estimations. 

FOD estimation Observer estimation 
Variable Comparison  

Parameter 
Absolute % of range Absolute % of range 

Position q1 Mean of error -3.2 × 10-4 -0.26 -2.9 × 10-4 -0.24 
Std of error 2.0 × 10-3 1.68 0.93 × 10-3 0.78 

Lag (º) 0.88 - 0.41 - 

Velocity Mean of error 1.4 ×10-5 <0.01 1.0 × 10-4 <0.05 

Std of error 0.016 7.29 0.004 1.98 

Lag (º) 16.8 - 4.9 - 


