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Abstract 

Carbon nitride (CN) is considered a promising semiconductor for water-splitting 

photoelectrochemical cells owing to its low price, tunable band gap, suitable energy-

band position, stability to harsh chemical conditions and environmentally benignity. 

However, despite CN promising performance in various fields such as photo-, and 

electrocatalysis, its exploitation in photoelectrochemical cells is hindered by the 

limited poor charge-separation and hole-extraction efficiency of the unordered 

structures which are the result of current deposition methods. Here we report a simple 

method to grow a closely-packed, crystalline CN layer directly on a conductive 

substrate. A layer of melamine is first grown on a pre-seeded conductive substrate by 

the nucleated growth of melamine crystals. Upon calcination, the melamine crystals 

turn into a highly-ordered, low-defect CN layer, which is intimately connected to the 

conductive substrate.  The CN film exhibits excellent charge-separation properties. 

detailed (photo)electrochemical and transient absorption measurements indicate an 

efficient hole extraction (up to 50%), a long electron lifetime and a lack of defect 

states below the CN conduction band. Consequently, the CN photoanode exhibits a 
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markedly low overpotential of 0.25 V versus reversible hydrogen electrode (RHE), 

which is comparable with the state-of-the-art metal-based photoanodes, a good 

photocurrent density of 116 µA/cm2 at 1.23 V versus RHE in an alkaline solution 

without sacrificial agent, as well as excellent stability over a wide pH range (0-14). 

This work opens new opportunities in photoelectrochemistry and other energy-related 

applications by illustrating a method for the facile growth of ordered metal-free CN 

and other 2D materials on conductive substrates.    

Introduction 

Graphitic carbon nitride (CN) exhibits promising photo- and electrocatalytic 

activity for various reactions, such as water splitting,1-8 oxygen reduction,9-12 and CO2 

reduction,13-18 derived from its low price, tunable electronic and catalytic properties, 

environmentally friendliness, and excellent stability under harsh conditions. However, 

its exploitation in (photo)electronic devices has been limited by (i) the difficulty in 

coating a conductive substrate with a high-quality, homogenous and closely-packed 

crystalline CN layer, and (ii) the poor charge separation and fast recombination in CN 

materials, owing to poor electron and hole mobility, sluggish hole extraction, and large 

amounts of structural defects.19 In the last years, great progress in the growth of CN 

layers on various substrates has been made using various methods, such as thermal 

vapor condensation,20-22 liquid microcontact printing,23 doctor-blade technique,24-27 sol 

processing,28 and more.29, 30 Moreover, CN has been successfully used as adsorber in 

photoelectrochemical cells (PECs),20-23, 25, 31 organic light-emitting diodes,32-34 and 

solar cells.29, 35-37 However, despite the progress in utilizing CN in PECs,31 several 
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important factors still limit its efficiency. One major limitation lies on the poor charge 

conductivity through the layer.19, 38 The low conductivity results in increased charge 

recombination and low PEC performance. The insufficient charge separation may stem 

from the fact that the current growth methods usually lead to an unordered layered 

structure with big grain boundaries. In 2015, it was demonstrated that, in contrast to 

graphene, electron and hole mobility within CN materials is perpendicular to the 2D 

layer.38 This study showed that if the CN layers are close and ordered enough, the 

electron and hole mobility is significantly enhanced. Moreover, in a recent study, 

Durrant et al. reported that CN powder contains deep defect levels up to 0.3 eV below 

its conduction bands, which act as traps for electrons, thus deteriorating the total 

photocatalytic activity.39 Therefore, we envision that the synthesis of continuous 

crystalline CN films with fewer defects will result in a significant improvement in their 

(photo)electrocatalytic performance. 

Herein we demonstrate a simple and versatile method to grow crystalline CN films 

with a closely-packed layered structure on fluorine-doped tin oxide glass (FTO), via the 

seeded crystallization of CN monomers followed by their calcination at high 

temperature. The growth of CN monomer crystals was enabled by the deposition of 

nucleation sites on FTO prior to the growth of crystals from supersaturated monomer 

solutions. Upon calcination, a strongly bonded, defect-free crystalline CN layer on FTO 

was successfully obtained. The CN film exhibited impressive PEC performance with a 

photoanodic photocurrent of 116 µA/cm2 at 1.23 V vs RHE and up to a 1-V shift of the 

onset potential under one 1 sun in 0.1 M KOH aqueous solution. Detailed 
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electrochemical and time-resolved absorption spectroscopy investigations prove that 

the excellent PEC performance is a result of improved electron transport, fewer defects, 

and favorable hole-extraction properties. 

 

Results and discussion 

A schematic illustration of the growth of a melamine film on FTO is shown in 

Figure 1a. Melamine crystals were deposited on FTO glass via a two-step process. First, 

in order to initiate the crystallization of melamine on FTO, we deposited melamine 

seeds on its surface by dipping a FTO glass slide into a saturated melamine solution (in 

methanol) (Figure S1 and S2). Scanning electron microscope (SEM) image of the 

surface of the slide after dipping in a saturated methanolic melamine solution shows 

that the melamine seeds were homogeneously deposited on FTO (Figure S2). Next, the 

seeded FTO was soaked into a hot aqueous solution that was supersaturated with 

melamine to prevent the dissolution of the melamine seeds. Upon cooling, as a result 

of the decrease in solubility (from ~3.4 g at 95 ˚C to ~0.4 g at 25 ˚C, Figure S3), the 

pre-deposited melamine seeds on FTO serve as nucleation sites for the crystallization 

of melamine from solution. Figure S4 shows that melamine molecules started to 

crystalize on the modified FTO and the FTO color changed immediately after 

immersion into the hot, supersaturated melamine solution (95 ˚C). After cooling to 25 

˚C, a uniform layer of melamine crystals on FTO was obtained (Figure 1b-d and S4a). 

We note that melamine molecules cannot be crystalized on bare FTO without the 

seeding process (Figure S4b), emphasizing the importance of the seeding step. 

Furthermore, the melamine film can be grown from supersaturated solutions at different 

starting temperatures due to the higher solubility compared to that at room temperature 

(Figure S5). SEM images of the melamine layer on FTO reveal that the CN layer 
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adopted a polyhedral morphology (Figure 1c, d), which is different to that of the pristine 

powder (Figure S6). The melamine crystals are intimately connected to the FTO with a 

layer thickness of ~40 μm (Figure 1c, d, and S7). XRD measurements of the melamine 

film and pristine powder show similar crystal structures. However, the relative intensity 

of some peaks is different (Figure 1e), owing to the directionality of melamine crystals 

which is directed by the nucleation sites on the FTO glass. 

 

Figure 1. (a) Schematic illustration of the melamine film fabrication. (b) A digital photo 

of the melamine film on FTO. (c) Top-view SEM image of the melamine film. (d) 

Cross-sectional SEM image of the melamine film. (e) XRD patterns of melamine film 

on FTO and melamine powder. 

The CN film was obtained by calcining the melamine film at 550 ˚C for 4 hours, 

leading to a uniform yellow CN layer on FTO glass (Figure 2a). The strong fluorescence 

under illumination (370 nm) suggests that the layer is smooth, without many defects. 

The CN film is composed of a relatively dense internal layer (~20 μm) below an 

external upper layer of flower-like CN microstructures (Figure S8). The dense layer, 

closer to the FTO, is composed of interconnected porous CN networks (Figure 2b and 

S8b). It is noted that the morphology of the CN film is different from CN powder 
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obtained by calcination of melamine powder (Figure S9). Strong sonication of the CN 

film for 5 minutes results in the selective removal of the upper microstructures, while 

the compact layer in contact with the FTO remains intact. This demonstrates that the 

dense CN layer is strongly attached to the FTO, while the uppermost microstructures 

are not (Figure 2b and 2c). As a control experiment, a CN film obtained by the 

calcination of melamine powder, spread on pristine FTO was easily peeled off (Figure 

S10), indicating the importance of the seeding step before the film growth. In addition, 

the extension of the proposed method to other substrates and monomers is exemplified 

by the growth of CN on silica glass (Figure S11), by the coating of FTO with a carbon-

rich CN layer using barbituric acid as the precursor (Figure S12), and by the 

crystallization of cyanuric acid on FTO (Figure S13). 
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Figure 2. Characterizations of the CN film on FTO. (a) Optical images of CN film with 

and without illumination at 365 nm. (b) Cross-section and (c) top-view SEM image of 

the CN film after 5 minutes sonication. The inset is a magnified SEM image of the 

squared area. (d) FTIR spectra. (e) N1s XPS and (f) C1s XPS spectra. (g) EELS spectra 

of CN film. (h) EDS element mapping of carbon and (i) nitrogen. 

Fourier transform infrared spectra (FTIR) of the CN film show the typical stretching 

modes of CN heterocycles in the range of 1200-1700 cm-1 (Figure 2d).40-42 The peak at 

802 cm-1 is attributed to the breathing mode of the triazine unit.24, 40 The chemical states 

of the CN film were studied by X-ray photoelectron spectroscopy (XPS). In the C1s 

spectrum, two peaks at 284.6 and 288 eV were assigned to sp2 C in carbonaceous 

environment and sp2 C in C-N heterocycles, respectively (Figure 2e).25, 43 The C1s 

spectrum of the CN powder obtained by calcination of melamine powder (Figure S14) 

reveals a signal for sp2 C-N bonds that is similar to that observed for CN on FTO, but 

with a significantly stronger sp2 C=C peak. The C=C bonds are attributed to defect sites 

in the CN structure, which are formed during the degradation of melamine upon heating. 

Lower percentage of C atoms forming C=C bonds in the CN films implies stronger 

intermolecular interactions within the melamine crystals which impede the degradation 

of melamine, leading to higher quality CN layers with negligible defects. The N1s 

spectra support the CN formation and best deconvolution of the N1s peak indicates the 

existence of three peaks at 398.7, 400, 400.9 eV, which correspond well to C=N-C, N-

C3, and C-NH-C and C-NH2 (Figure 2f), respectively.43 Electron energy loss 

spectroscopy (EELS) proves the formation of a sp2 C=N network by revealing the 

presence of 1s-π* and 1s-σ* transitions in both the carbon K edge and the nitrogen K 

edge (Figure 2g).44 Energy dispersive X-ray spectroscopy (EDS) element mappings 

shows a uniform distribution of C and N within the CN layer (Figure 2h and 2i).  
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Figure 3. (a) XRD diffraction pattern of CN layer on FTO (b) TEM image, and (c) 

SAED pattern of CN layer.  

The crystal structure of the CN layer was characterized by XRD and selected area 

electron diffraction (SAED). The XRD pattern of the CN film shows one sharp, strong 

interplanar stacking peak (002) at 27.5˚ and a relative weak in-plane (100) peak at 13.4˚ 

(Figure 3a).40 The strong XRD peak at 27.5˚ indicates a good layer organization. The 

layered structure with relatively smooth surface compared to the CN powder is 

observed by transmission electron microscopy (TEM) image (Figure 3b, S9). SAED 

patterns (Figure 3c and S15) show the (002), (100) diffractions, further supporting a 

crystalline state for the CN layer.45 However, the diffraction fringes of the CN film 

could not be obtained due to the instability of such CN upon exposure to the electron 

beam (Figure S16). 

The UV-vis spectrum of the CN film indicates that the absorption onset is at ~475 

nm (corresponding to a bandgap of 2.61 eV), i.e. slightly red-shifted compared to the 

one of the CN powder (~460 nm) (Figure S17). The red shift is likely due to the dense 

CN layer compared to the CN powder (Figure S18). In consistence with this, the 

fluorescence spectrum of the CN film is red-shifted relative to that of the CN powder 

film (Figure S19). The sharp absorption edge implies that the layer contains a low 

number of structural defects. Mott-Schottky measurements combined with the UV-vis 

spectrum of the CN layer reveal that the conduction band (flat band) and the valence 
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band are located at -0.75 and 1.86 eV vs RHE, respectively, which is suitable for water 

reduction and oxidation (Figure S20). 

The photoelectrochemical properties of the CN film were measured in a typical 

three-electrodes cell, using 0.1 M KOH as the electrolyte, Pt as the counter electrode 

and Ag/AgCl as the reference electrode. Linear sweep voltammetry (LSV) curves of 

the CN electrode in the dark and under one-sun illumination demonstrate a typical PEC 

behavior with an onset potential at only 0.25 V vs RHE (Figure 4a). To the best of our 

knowledge, this potential is the lowest among CN electrodes and comparable to state-

of-the-art materials, such as BiVO4.46-48 The low onset potential indicates that, upon 

illumination, the production of photocurrent starts almost 1 volt below the water 

oxidation potential. Naturally, the photocurrent increased at higher potentials, reaching 

116 µA/cm2 at 1.23 V vs. RHE (Figure 4b). This value is among the best reported for 

CN electrodes without sacrificial agent (Table S2) and it is >200 times higher than what 

is observed with a CN powder electrode (~0.5 μA/cm2, Figure S18 and S21). Durability 

test revealed that the CN can maintain the photocurrent for 30 min, and with ~70 % 

photocurrent retained after one hour (Figure S22). In addition, the changes in the 

photocurrent of the CN electrode after the removal of the flower-like top 

microstructures is negligible (Figure S23), indicating that the underlayer continuous 

CN film is the main contributor to the photocurrent. Incident photon-to-current 

conversion efficiency (IPCE) measurements of the CN electrode at different 

wavelengths show a direct correlation between light absorption and photocurrent. The 

photocurrent onset is at ~470 nm and the IPCE values at 400 nm and 420 nm reach 8.5% 

and 3.6%, respectively (Figure 4c). 

An important advantage of CN over other semiconductors is its high chemical 

stability in solution over a wide range of pHs. LSV curves upon on/off light illumination 
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of the CN electrode in 0.1 M NaH2PO4 buffer (pH 7) and 0.5 M H2SO4 (pH 0.2) aqueous 

solution show high, stable photocurrents (Figure 4d). The photocurrent at 1.23 V vs 

RHE in neutral electrolyte reaches 71 μA/cm2, while that in acid is 64 μA/cm2 despite 

a water oxidation rate that is lower than in alkaline solution. Notably, the onset potential 

in both electrolytes is below 0.3 V vs RHE. The good photocurrents together with the 

low onset potentials in various electrolytes denote its promising potential in PEC water 

splitting. 

 

Figure 4. (a) LSV curves of the CN film in 0.1 M KOH aqueous solution with and 

without one sun illumination. (b) Photocurrent of the CN film in 0.1 M KOH aqueous 

solution at 1.23 V vs RHE upon illumination of one sun. (c) IPCE plot of the CN film 

electrode as a function of wavelength. (d) LSV curves of the CN film in 0.1 M NaH2PO4 

(pH 7) and 0.5 M H2SO4 aqueous solution upon on/off one sun illumination. 

To better understand the charge transport behavior within the CN electrode, we 

measured the photocurrent upon back and front illumination. These measurements 
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reveal that the current upon front illumination is ~70 µA/cm2 (Figure 4b), lower than 

the one observed when illuminating from the backside. The lower photocurrent may 

stem from light absorption from the flower-like structures upon front illumination and 

the slightly high electrode thickness. Nevertheless, it is still 140 times higher than that 

of the CN powder electrode, witnessing the advantageous charge separation and 

electron mobility within the CN film. The hole-extraction properties were assessed by 

measuring the photocurrent in the presence of triethanolamine (TEOA), an efficient 

hole scavenger. We assume that the photocurrent in presence of TEOA represents the 

maximum current that can be obtained without any hole-transfer limitations.25 The CN 

electrode exhibits a double photocurrent at 245 μA/cm2 after addition of 10% TEOA 

into the 0.1 M KOH solution (Figure S24a). In good agreement with this observation, 

the IPCE value at 400 nm is improved to 19% (Figure S24b). This means that the 

extraction efficiency of photogenerated holes in 0.1 M KOH is very high, reaching up 

to 47%, which is a very impressive number considering the sluggish reaction kinetics 

for water oxidation in general.  

 

Figure 5. (a) A schematic illustration of the band diagram in the PEC cell. (b) Open 

circuit voltage of the CN electrode in 0.1 M KOH aqueous solution upon on/off one 

sun illumination.  
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The good charge separation of photogenerated charges is supported by the high 

open-circuit voltages (Voc) of the CN electrode (Figure 5), which reflects the strong 

electron-hole separation driving force. The Voc in darkness corresponds to the Fermi 

level when in equilibrium with the electrolyte (Figure 5a).49, 50 51, 52 Under illumination, 

holes, the minority carriers in CN, migrate to the CN surface and electrons, the majority 

carriers, are located near the CN, leading to a Voc of 0.61 V (Figure 5b), while that of 

the CN powder electrode is negligible with a value lower than 0.02 V (Figure S25). The 

high Voc confirms the advantages of reduced grain boundaries in the continuous 

structure on the CN film. The negative shift of Voc upon illumination reflects the n-type 

semiconductor property of the CN film, while the fast Voc changes upon on/off 

illumination indicates the low amount of defect states in the CN film. Cyclic 

voltammetry (CV) at negative potentials further confirmed the low level of structural 

defects, showing a very low capacitance, which is usually attributed to electrons in deep 

trap states within the CN film (Figure S26). Thus, electrons can freely move through 

the CN layer without being trapped and recombined.39 Electrochemical impedance 

spectroscopy (EIS) at 1.23 V vs. RHE reveals a charge transfer resistance that is seven 

times smaller than that of the CN powder electrode (Figure S27).  
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Figure 6a. (a) Transient absorption spectra of a CN film soaked in 0.1 M KOH, 0.1 M 

KOH containing 10% TEOA, 0.5 M H2SO4, and 0.1 M NaH2PO4 (pH 7) aqueous 

solutions. (b) Transient absorption decay of a CN film soaked in 0.1 M KOH upon front 
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(black) and back (red) excitation of a laser pulse and transient signals monitored at 850 

nm. Laser excitation 355 nm. Pt wire counter electrode. 

Transient absorption spectroscopy measurements (TAS) of the CN film in various 

electrolytes at 1.23 V vs RHE were used to elucidate the charge separation mechanism, 

electron lifetime, and hole extraction kinetics (Figure 6). It is worthy noticing that TAS 

measurements without the applied 1.23 V vs RHE produced undetectable transient 

signal, indicating that charge recombination of photo-induced geminate elecvtron/hole 

pairs should take place faster than our instrument response (1 s). In contrast, applying 

1.23 V vs RHE bias potential to CN films in contact with different electrolytes, a long-

lived transient signal could be recorded at 1 ms upon 355 nm laser flash excitation 

(Figure 6a). This TAS can be assigned to electrons in CN layer as reported before.39, 53-

56 In good agreement with the photocurrent measurements, the electrons lifetime is 

longer at high pH due to a facilitated hole removal. Furthermore, the presence of TEOA 

as a hole scavenger further increases the electron lifetime, as a result of a faster hole 

extraction which disfavors electron-hole recombination (Table S3). Still, even in the 

absence of a hole scavenger, the electron lifetime in polarized CN films is extremely 

long thanks to an efficient hole extraction, decreasing its population in the CN layer 

and therefore diminishing the probability of electron-hole recombination (Figure S28 

and Table S3). Moreover, larger transient intensity was observed for the back laser flash 

excitation compared to the front excitation of the CN films, as can be seen in Figure 6b. 

This larger electron population in the back irradiation is in good agreement with 

photocurrent measurements of Figure 4b previously commented. 

All the above-mentioned insights suggest that the good PEC performance is due to 

enhanced charge separation, electronic conductivity, and efficient hole extraction at the 

CN/electrolyte interface. The good hole-extraction properties can be attributed to the 
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low recombination rate, fewer defect sites, as well as a layer porosity that is sufficient 

for good electrolyte penetration. Furthermore, because the electron and hole mobility 

within the CN layer is perpendicular to the 2D layer (unlike in graphene),38 the ordered 

sheet structure with closer layers should augment the electron and hole mobility.  

Conclusion 

We demonstrated a unique, simple and general method to grow highly ordered CN 

layer with a low amount of defects on conductive substrates from the seeded 

crystallization of a CN monomer. To initiate the crystallization process, a seeding layer 

of melamine on FTO is first deposited, followed by the immersion of the seeded 

substrate into a supersaturated solution of melamine at high temperature. Upon cooling, 

melamine crystals spontaneously grew on the seeded substrate to form a well-covered 

melamine film. Upon calcination of the melamine film at high temperature, a strongly 

attached and crystalline CN layer with an interconnected, porous structure is 

synthesized with an intimate contact with the substrate. The closer stacking of the layers 

permits better electron and hole mobility, which significantly decreases the 

recombination rate, thereby elongating the lifetime of photogenerated electrons and 

holes, and increasing their probability to reach the conductive substrate and react with 

the electrolyte, respectively. Detailed photoelectrochemical and photophysical 

measurements reveal an excellent hole-extraction efficiency (~50 %), and confirm the 

long electron lifetime, good charges conductivity and fast charge separation under 

illumination. Consequently, the CN photoanode exhibits an exceptionally low onset 

potential (up to 1 V shift) which is comparable to the best metal-based photoanodes, a 

good photocurrent density, and an external quantum efficiency of ~8.5% at 400 nm, as 

well as good stability over a wide pH range (0-13).  
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