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Abstract

Some important eye diseases, like macular degeneration or diabetic retinopathy

can induce changes visible on the retina, for example as lesions. Segmentation

of lesions, or extraction of textural features from the fundus images are possible

steps towards automatic detection of such diseases which could facilitate screen-

ing as well as provide support for clinicians. For the task of detecting significant

features, retinal blood vessels are considered as being interference on the retinal

images. If these blood vessel structures could be suppressed, it might lead to

a more accurate segmentation of retinal lesions as well as a better extraction

of textural features to be used for pathology detection. This work proposes

the use of sparse representations and dictionary learning techniques for reti-

nal vessel inpainting. The performance of the algorithm is tested for grayscale

and RGB images from the DRIVE and STARE public databases, employing

different neighbourhoods and sparseness factors. Moreover, a comparison with

the most common inpainting family, diffusion-based methods, is carried out.

For this pourpose, two different ways of assessing the quality of the inpainting

are presented and used to evaluate the results of the non-artifical inpainting,

i.e. where a reference image does not exist. The results suggest that the use
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of sparse-based inpainting performs very well for retinal blood vessels removal

which will be useful for the future detection and classification of eye diseases.

Keywords: Sparse-based inpainting; Blood vessel removal; Image inpainting;

Inpainting quality evaluation index; Diffusion-based inpainting; Non-artificial

inpainting.

1. Introduction

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are

nowadays two of the most frequent causes of blindness and vision impairment

in the world [1]. The early diagnosis of these pathologies is very important.

However, due to the large of population at risk, a potential screening would be5

highly beneficial for clinicians.

Two examples of fundus images with lesions are shown in Figure 1. Blood

vessels cover a high percentage of the fundus image hindering the automatic

detection of important structures as optic disc, optic cup and macula among

others. Vessels are also considered as noise or artefacts that hamper the segmen-10

tation of different lesions such as exudates, microaneurysms and drusen among

others (Figure 1) and also the classification of pathologies based on background

textures. A possible procedure to avoid blood vessels is to consider these struc-

tures as missing pixels and trying to restore them using the background.

(a) (b)

Figure 1: (a) Exudates, microaneurysms and (b) drusen in pathological fundus images.
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Image inpainting is a technique for restoring missing or damaged areas in an15

digital image. Image inpainting has been recently used in a lot of applications

such as in image restoration from scratches or text overlays, for removal or

replacement of selected objects, for disocclusion in image-based tracking in order

to recover missing persons or objects in specific frames, etc.

Inpainting methods assume that pixels in the known and unknown areas of20

the image have the same statistical properties or geometrical structures. Dif-

ferent algorithms exist in the literature but all of them can be grouped in three

categories or families.

Diffusion-based inpainting covers a family of methods exploiting the smooth-

ness principle by parametric models or partial differential equations (PDEs) to25

propagate local structures from the exterior to the interior of the unknown area.

These algorithms are designed for completing straight lines and curves, for pro-

cessing piecewise smooth images, for propagating strong structures and filling

small gaps. Using this kind of methods to fill large gaps produce a blur result [2].

Different state-of-the-art approaches exist using particular models (linear, non-30

linear, isotropic or anisotropic) to favour the propagation in specific directions

[3–5].

The second category is examplar-based inpainting that exploits image sta-

tistical and self-similarity principles. Using methods belonging at this category,

the unknown region is filled by means of copying and stitching the best match35

pixel or patch from the sample texture. Exemplar-based methods follow two

different ways. In pixel-based algorithms the unknown area can be filled copy-

ing the central pixel of the most similar patch from the sample texture. The

idea of patch-based algorithms is to fill the unknown region in one step by

sampling and copying texture patterns (entire patches) from the source [6–8].40

Obviously, patch-based solutions are more computationally efficient than pixel-

based approaches, for this reason nowadays exemplar-based methods refers to

patch-based methods.

Different researchers focus their efforts on improving and optimizing patch-

based methods trying to find the most efficient way to search the best match45
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patch. One of them are the sparse-based algorithms [9, 10] where the image is

supposed to be sparse in a given domain and known and unknown parts are as-

sumed to share the same sparse representation. The domain can be represented

by a dictionary matrix which can be learned using dictionary-learning methods.

The last category, hybrid methods, are based on separating the image in-50

formation (texture and structure), and thereafter inpaint these components

separately using the most appropriate method (diffusion-based inpainting or

examplar-based inpainting).

Another important line of research closely related to image inpainting is the

quality assesment of the resulting image [11–13]. The efforts are focused on look-55

ing for an objective measure that predict automatically the human perception

of an inpainted image without the human help. When performing inpainting on

real world data without a reference image available (non-articial inpainting), a

quality assessment of the inpainting is not straight forward. In this paper two

different ways to measure the quality for non-artificial inpainting are proposed60

and validated in a real application.

Different authors [14–16] have inpainted blood vessels by using diffusion-

based algorithms but only as a middle step of their purpose, in other words,

without any kind of evaluation of the inpainting method used. For example,

[15] uses inpainting techniques in order to segment the optic disk in fundus im-65

ages. Inpainting quality evaluation, in this application, is an unsolved problem

because the reference image (fundus image without vessels) does not exist. Im-

age inpainting assessment is an essential step for our future purposes because

the better the vessels are removed, the more accurate the texture classification

or the lesion detection will be.70

The main novelty of this work is to inpaint blood vessels in fundus images

using a sparse-based inpainting method with spread neighbourhoods and to

establish a way to asses inpainting methods.

In this work, three experiments were carried out in order to find the best con-

figuration of the proposed inpainting method applied to retinal vessel removal.75

The influence of using spread neighbourhoods, the variation of the sparseness
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factor, the algorithm used in the dictionary learning process and the way to build

the RGB dictionaries are some of the key concepts studied in these experiments.

In this work, the blood vessels of grayscale and color retinal images, from

two public databases, were inpainted. The resulting images were evaluated80

using two metrics. Firstly, the traditional Recovery Error is found on some

artificially made vessels added to the image. In this paper we also present a

novel inpainting quality assessment index based on the idea exposed in [17].

By means of this index, a comparison between our sparse-based method and a

diffusion-based inpainting algorithm, via partial differential equations (PDE),85

is carried out.

The rest of the paper is organized as follows: in Section 2, the inpainting

methods are described and the metrics for measuring the quality of non-artificial

inpainted images are introduced. Section 3 shows the experimental results of

blood vessels inpainting in fundus images and the assessment of each inpaint-90

ing algorithm and configuration using the proposed metrics. Finally, section 4

provides conclusions and some areas for future work.

2. Methods

2.1. Sparse-Based Inpainting

A missing pixel region can be filled using methods that synthesize entire95

patches by learning from patches in the known part of the image [2]. Different

variants in the fast searching of best matching patches exist, in this work an

examplar-based inpainting using sparse representation principles and dictionary

learning algorithms is used in the experiments.

2.1.1. Sparse Representation100

Sparse representations of signals are meaningful under the assumption that

the signal can be represented sparsely in a domain, usually represented by atoms

collected as columns in a dictionary matrix. The dictionary D is a matrix N×K,

which contains K prototype signals of length N , also referred to as atoms. The
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model assumes that for any signal x, there exists a sparse linear combination105

of atoms from D that approximates it well. The approximation of x can be

written as

x ≈ Dw, ‖w‖0 � N (1)

where w is a vector containing the coefficients and most of the entries in w are

zero and the operator ‖.‖0 counts the number of non-zero elements in a vector.

Typically it is assumed that the dictionary is redundant in describing x.110

So, given the dictionary D, the approximation x̂ of signal x can be written

as x̂ = Dw, and the representation error or residue can be written as r =

x− x̂ = x−Dw. Most of the entries of w are zero, s is the number of non-zero

coefficients, and s/N is the sparseness factor.

A common way to find w, i.e the sparse approximation problem, is solving115

the following equation:

wopt = argmin
w
{‖w‖p + γ‖x−Dw‖22}, p ∈ {0, 1}. (2)

The problem with p = 0 (to minimize the number of non-zero coefficients)

is NP-hard, but an approximate solution can be found by greedy methods.

Alternatively the problem can be relaxed by setting p = 1 (to minimize the sum

of absolute values) providing a convex problem that can be solved (LASSO).120

Both problem resolutions start with an all zero vector w, which is the solution

when γ is close to zero. As γ factor increases the solution is getting more dense.

2.1.2. Dictionary Learning

Dictionary Learning is often formulated as the problem of finding a dictio-

nary such that the approximations of many vectors, the training set, are as good125

as possible given a sparseness criterion on the coefficients, i.e. allowing only a

small number of non-zero coefficients for each approximation. Let X be a ma-

trix containing K signals to be represented. The dictionary learning problem

can be formulated as an optimization problem with respect to the coefficient

matrix W and the dictionary D as:130
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{Dopt,Wopt} = argmin
D,W

K∑
i=1

‖wi‖p + γ‖X −DW‖2 (3)

Different methods have been proposed to solve the previous optimization

approaches. In this work the Recursive Least Squares Dictionary Learning Al-

gorithm (RLS-DLA) [18] was employed. In this method a single training vector

xi or a mini-batch (subset) of X is processed in each iteration solving the equa-

tion:135

Di = BiA
−1
i , being

 Ai = λiAi−1 +WiW
T
i

Bi = λiBi−1 +XiW
T
i

(4)

where A1 = W1W
T
1 and B1 = X1W

T
1 .

The current dictionary Di−1 is used to find the corresponding coefficients

Wi. The main improvement in RLS-DLA, compared to Least Square Dictio-

nary Learning Algorithm (LS-DLA)[19], is that instead of calculating the least

squares solution in each step, the matrix inversion lemma (Woodbury matrix140

identity) can be used to update Ci = A−1i and Di directly without using Ai and

Bi. The advantage of RLS-DLA compared with Method of Optimized Direc-

tions (MOD)[20] and K-Singular Value Decomposition (K-SVD)[21] comes with

the flexibility introduced by a forgetting factor λ. The idea is to forget more

quickly in the beginning and then forget less as learning proceeds and we get145

more confidence in the quality of the dictionary. This can be done by starting

with λ slightly smaller than one and slowly increasing λ towards 1 as learning

progresses. The update scheme and λ should be chosen so that the initial dic-

tionary is soon forgotten and convergence is obtained in a reasonable amount

of iterations.150

2.1.3. Inpainting using Sparse Representation and Dictionary Learning

Sparse representations with learned dictionaries are, among other things, ca-

pable of producing state of the art inpainting results [22]. Let x be a length(N)

data vector, for example originated from an image patch (squared or from an-

other neighbourhood), with the pixels stacked as a vector. A dictionary de-155

7



scribed by a N × K matrix: D = [d1d2 · · · dK ] being K the number of back-

ground patches from the image to be inpainted (only taking into account the

blocks without missing pixels). Assume there exist a dictionary that represents

the data well and it is computed using Dictionary Lerning techniques. This

optimized dictionary is composed by the L most representative atoms, being160

L = 2N (Figure 2a).

In inpainting there are missing pixels, and the position of the missing pixels

are known. Let us define x̃ of length (N − p) where the p missing pixels are

removed. The inpainting process (Figure 2b) consists of:

1. Removing the corresponding rows of D, giving D̃ of size (N − p)×K.165

2. Finding w as minw||x̃− D̃w|| s.t.||w||0 < s.

3. Finding the reconstructed vector xr = Dw using the full dictionary.

4. Finally, the missing pixels in x̃ can be replaced by the values in the corre-

sponding positions of xr, alternatively all x̃ is replaced by xr if a denoising

of all pixels is needed in addition to filling in the missing pixels.170

Dictionary D Optimal 
dictionary D 

calculated by DLA

Dictionary 
Learning 
Algorithm

(a)

p 
missing 
pixels

Finding w as:

Dictionary

s.t 

Inpainting patch 
composition

Computing 
reconstructed 

vector as:

(b)

Figure 2: Retinal vessel inpainting using Sparse Representation and Dictionary Learning. (a)

Dictionary Learning process, (b) Image inpainting process.

As can be observed in Figure 2b, the reconstructed vector of each patch,
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extracted from the image to be inpainted, is computed. The inpainted patch is

composed replacing the missing pixels in the original patch by the values in the

corresponding positions of the reconstructed patch. The final inpainted image

is formed by the composition between the original image and the inpainted175

vascular tree (Figure 3).

(a) (b) (c)

Figure 3: (a) Original mask with missing pixels, (b) Inpainting performed on retinal vascular

tree (c) Final inpainted image.

Figure 4 shows an overview of the proposed image inpainting method ap-

plied to retinal images. In this flow chart it is possible to differentiate the two

main stages detailed above: the Dictionary Learning and the image inpainting

processes.

Original
image

Dictionary 
construction

Optimal 
dictionary

Finding wopt for each 
patch containing 

missing pixels

Computing the 
reconstructed 

vector

Last patch 
containing missing 

pixels?

Inpainted
image

Vessel
mask

Dictionary Learning 
Algorithm (RLSA)

NO

YES+

Figure 4: Overview of the proposed image inpainting method applied to retinal images.

180

The process described above can be implemented defining an image M of the

same size as the original image, masking the positions of all the missing pixels

and using efficient implementations. In that way, the dictionary matrix D̃ do

not have to be explicitly defined. The Orthogonal Matching Pursuit algorithm

(with mask) [10] was used in these experiments, but that could easily be changed185
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to a L1 norm algorithm, like LASSO [23], if preferred. SPAMS library, SPArse

Modeling Software [24], includes an efficient implementation of this algorithm.

2.2. Inpainting Quality Assessment

The quantification of the quality of the image inpainting offers some chal-

lenges. Blood vessel removal is a real application in which the “ideal” fundus190

image without blood vessels does not exist and thus can’t be compared to the

inpainted image. In most state of the art work within inpainting the assessment

is done by comparing the resulting image to a truth image, while doing inpaint-

ing on a corrupted version of the truth image. Two different ways to carry out

the inpainting quality assessment are presented in the following and they are195

used to evaluate the results in each experiment of this work.

2.2.1. Recovery Error

A simple method to measure the image quality inpainting is modifying the

vessel mask segmented by the specialists. In particular additional missing pixels

(artificial mask) are added to this hand-segmented mask giving place to the200

missing vessel mask that will be used in the experiments (Figure 5).

(a) (b) (c)

Figure 5: An example of mask transformation. (a) Original mask, (b) Artificial mask (c)

Missing pixel mask.

Using the Recovery Error (RE) metric it is possible to quantify the quality

of the inpainted images. The intensity value of the missing pixels artificially

added to the vessel mask is known in the original image, for this reason, it is
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possible to extract the error due to the inpainting process by computing the205

difference between the original pixel and the inpainted one at each additional

missing pixel. The average of Recovery Error (RE) along the whole additional

missing pixel mask provides a good metric of how good the image inpainting is:

RE =

√∑Nc

n=1

∑M
k=1(Iout(xk, yk, n)− Iin(xk, yk, n))2

M
(5)

where Iout is the resulting image after inpainting and Iin is the original (truth)

image, both normalized to the range of 0 to 1 and evaluated at the M pixels210

(xk, yk) of the artificial mask. Nc is the number of components (1 for graylevel

images and 3 for RGB). A small RE indicates a high quality inpainting.

2.2.2. Inpainting Quality Evaluation Index

The Recovery Error needs the creation of an artificial mask for each image

and also it only measures the quality in the relatively small areas of artificial215

mask. For these reasons, a novel metric is proposed in order to quantify the

quality image inpainting without the use of a reference (truth) image.

We have observed that subjective quality by visual inspection is based on

two factors:

• The coherence of the inpainted region and the background, in other words,220

the low level of correlation between the resulting inpainted region and the

same region evaluated at the original image.

• The prominence/smoothness of the resulting edges of the inpainted struc-

ture to be removed. The more smooth the edges that joint the inpainted

region and the background are, the better the quality of the inpainting.225

We propose an automatic Inpainting Quality Evaluation (IQE) index ex-

ploiting these two factors, in order to evaluate the resulting images, defined

as:

IQE = 1− [G×HF × C] (6)
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where G evaluates the gradient similarity between the original and the inpainted

image, HF measures the ratio of high frequencies between the images and C230

quantifies the image correlation. This dissimilarity index is ranged from 0 to 1

and a high IQE value corresponds to a good inpainting quality.

Definition of the gradient similarity and high-frequency terms

Human vision is very sensitive to contrast variations or texture changes in

images. Image edges separate different objects or structures of the image, thus235

the gradient can capture well contrast and texture variations well. In addition,

by estimating a high-frequency parameter, it is possible to extract information

about the prominence or smoothness of the contours in the junctions between

the inpainted region and its surrounding background. The G and HF terms focus

on these ideas and both parameters are computed according to the equations240

detailed in [17].

Definition of the correlation term

With the aim of quantifying the coherence of an inpainted region and its

neighbourhood a luminance term is proposed in [17]. Using this term, only the

mean intensities between a particular patch from the inpainted image and the245

original one can be compared. With this idea, both, pixels with and without

inpainting inside the window contributes in the same way to the final value of

the metric for the patch. Moreover, in the global metric, both, patches with

missing pixels (which suffer inpainting) and patches with no missing pixels,

are taken into account modifying the global value of the metric (increasing the250

value, because the patches non suffering inpainting have the maximum value and

contribute overvaluing the metric). For these reasons, we propose a new term

to quantify how coherent an inpainted patch is with the background, or how

well blood vessels have been transformed into retinal texture. For these reasons

we propose a new term to quantify how coherent a new inpainted patch is with255

the background, or how well blood vessels have been transformed into retinal

texture. The correlation level between the inpainted image and the original one
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is computed in each RGB channel. A sliding window, of dimensions m × n,

loops the vessel mask. For each window in which at least one pixel is masked

as blood vessel, the correlation term C(x, y) is calculated as:260

C(X,Y) =

∑m−1
i=0

∑n
j=0[X(i, j)− X̄][Y (i, j)− Ȳ ]√

(
∑m−1

i=0

∑n−1
j=0 [X(i, j)− X̄]2)(

∑m−1
i=0

∑n−1
j=0 [Y (i, j)− Ȳ ]2)

(7)

where X(i, j) is the ith, jth pixel in the sliding window evaluated in the inpainted

image and Y (i, j) is the ith, jth pixel in the sliding window evaluated in the

original one (image with blood vessels). X̄ and Ȳ are the average values of the

intensity calculated in the inpainted and the original image respectively.

The correlation term C(A,B) between the whole inpainted image A and the265

original one B is calculated as the average of C(X,Y) terms for each window in

which at least one pixel belongs to a blood vessel:

C(A,B) =
1

Nw

Nw−1∑
k=0

Ck(X,Y ) (8)

where Nw is the number of windows in which at least one pixel is labelled as

blood vessel. A low correlation corresponds to a high coherence between the

inpainted region and its surrounding background.270

3. Results

Three experiments were carried out. The objective of the first experiment

was to assess the influence of the sparseness factor and the neighbourhood. For

that the sparse-based method with RLS-DLA on graylevel images were used.

In the second experiment, two methods of dictionary learning were used with275

the aim of measuring the effect of inpainting each component of a RGB image

(separate inpainting) versus to inpaint the three components together (jointly

inpainting). Finally, the sparse-based inpainting is compared with a diffusion-

based algorithm on RGB images.
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3.1. Material280

The material of this work are publicly available fundus images. Two dif-

ferent databases were used. DRIVE [25] database is composed by 40 retinal

images (565 x 584 pixels) all belonging to diabetic subjects. For each image,

a mask image that delineates the field of view is provided (external mask) as

well as manual segmentations of the blood vessels (vessel mask). STARE [26]285

database is a set of 20 images (700 x 605 pixels) along with two hand labelled

vessel network provided by different experts. Note that a list with the original

images used as well as the resulting images of the inpainting are made available

at http://cvblab.synology.me/MOSevaluation/MOSevaluation.rar to facilitate

future fair comparisons and to allow the evaluation of experts in this domain.290

3.2. Gray Level Experiment

In this part of the work, the green channel of a RGB image was chosen to

perform the vessel inpainting because it is the component commonly used to

detect the lesions (the objective of a computer-aided diagnosis system) [27–29].

The original image is divided in L overlapping patches of sizeN = BBheight×295

BBwidth or other non-squared neighbourhoods. The initial dictionary D is

composed by atoms from the training signal, in this context that means that

atoms are constructed by means of normalized stacked pixels of patches (without

any missing pixels) extracted from the image. The RLS-DLA [18] is applied

in order to optimize the dictionary D, (size N × K). The new dictionary is300

composed by the L most relevant atoms being L = 2N , so the learned dictionary

is a matrix N × L, which contains L prototype signals of length N .

Inpainted images are obtained using the learned dictionary and the fast

implementation of the OMP method (with mask) provided in the SPAMS library

[24].305

Different neighbourhoods were tested: squared blocks of sizes 8 × 8, 21 × 3

and 3 × 21. The choice of the neighbourhood size is a key decision because is

directly related with the size of the anatomical structure to be inpainted and,

therefore, with the image resolution. In this work, two public databases are used
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and the different resolutions affects in the neighbourhood size decision. A spatial310

resizing was performed in the STARE images in order to set the same resolution

as the DRIVE images. Using these image dimensions (565 x 584 pixels), the

thickest blood vessel takes up around five pixels. So, the patch size (in each

dimension) should be higher than the size of the biggest vessel, to avoid patches

containing only missing pixels. Finally, the patch size is chosen as a trade-off315

between the sparsity of zeros inside the patch and the computational cost. In

this work square and rectangular patches as well as sparser neighbourhoods were

tested in order to compare the behavior.

The inpainting based on sparse representation with squared neighbourhoods

works well when the missing pixel areas are small [9]. In our problem, we have320

continuous, and large, missing pixels areas which are not properly addressed by

this kind of neighbourhoods. Our idea is to use more spread neighbourhoods

trying to minimize the number of missing pixels in the same patch. So, in

addition to the squared neighbourhoods, the patterns shown in Figure 6 were

tested. These patterns contain 77, 43 and 115 elements respectively. The same325

neighbourhood is used for learning the dictionary as used later in the inpainting

step.

(a) (b) (c)

Figure 6: Tested neighbourhoods. (a) p1, (b) p2 (c) p3.

Table 1 shows the results of the average recovery error (for the forty images

from the DRIVE database) in the different tested configurations (8 × 8, 21 ×

3, 3 × 21, p1, p2 and p3 neighbourhoods). The tested number of non-zero330
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coefficients of vector w were s=4 and s=10.

8x8 21x3 3x21 p1 p2 p3

s=4 0.0386 0.0409 0.0431 0.0286 0.0275 0.0291

s=10 0.0390 0.0414 0.0432 0.0283 0.0272 0.0290

Table 1: Mean Recovery Error calculated from the resulting images of grayscale inpainting

using RLS-DLA for different values of sparseness factors (s=4 and s=10) and different neigh-

bourhoods.

As can be observed in Table 1, results are slightly worse in the case of squared

neighbourhoods. However, in relation to the non-zero coefficients (sparseness

factor) the performance is similar using s = 4 and s = 10.

Figure 7 shows an original image and the inpainting result for the best case335

(neighbourhood p2).

(a) (b)

Figure 7: Grayscale inpainting for the 01 test image from DRIVE public database. (a)Original

image and (c)Inpainted image. This result was obtained using RLS-DLA with the sparseness

factor s = 10 and the second spread neighbourhood.

3.3. RGB Experiment

This experiment aims to analyse which configuration provides better results:

to inpaint each color component separately or the jointly inpainting of the three
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components [22]. Another objective in this experiment is to demonstrate if340

the choice of the dictionary learning algorithm (in order to create the optimal

dictionary) influences in the quality of the resulting inpainted image. DRIVE

database and recovery error were used in this experiment.

3.3.1. RGB-separate Inpainting

Each component of RGB images were extracted and inpainted following the345

same method as presented in the graylevel experiment. The resulting RGB

image is the composition of the three inpainted images, one for each channel. In

this experiment the performance of the inpainting employing the RLS-DLA is

compared with the performance of the result using Online Dictionary Learning

(ODL) algorithm [30].350

Table 2 shows the results of the mean recovery error (for the whole DRIVE

dataset) measured on the composed RGB image, for RLS-DL and ODL algo-

rithms.

8x8 21x3 3x21 p1 p2 p3

R
L
S
-D

L s=4 0.0578 0.0549 0.0651 0.0496 0.0506 0.0463

s=10 0.0575 0.0553 0.0645 0.0489 0.0503 0.0453

O
D

L s=4 0.0559 0.0577 0.0662 0.0474 0.0518 0.0471

s=10 0.0567 0.0581 0.0641 0.0473 0.0512 0.0464

Table 2: Mean Recovery Error calculated from the resulting images of RGB-separate inpaint-

ing using RLS-DL and ODL algorithms for different values of sparseness factors (s=4 and

s=10) and different neighbourhoods.

3.3.2. RGB-jointly Inpainting

In this method an atom of the dictionary is composed by the same patch in355

each channel, so the learned dictionary D′ is a matrix N ′ ×L′ where N ′ = 3 N

and L′ = 2 N ′. In this case the number of non-zero coefficients of vector w′

should be tripled, compared to the gray level experiment, because its length is

three times the length of w. The inpainted RGB image is obtained in one step

and the recovery error is measured on this image directly.360
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Table 3 shows the results of the mean recovery error for the RGB image

using RLS-DL and ODL algorithms.

8x8 21x3 3x21 p1 p2 p3
R
L
S
-D

L s=12 0.0377 0.0396 0.0496 0.0225 0.0253 0.0283

s=30 0.0382 0.0396 0.0499 0.0213 0.0249 0.0281

O
D

L s=12 0.0382 0.0396 0.0470 0.0249 0.0274 0.0272

s=30 0.0387 0.0384 0.0486 0.0242 0.0270 0.0280

Table 3: Mean Recovery Error calculated from the resulting images of RGB-jointly inpainting

using RLS-DL and ODL algorithms for different values of sparseness factors (s=12 and s=30)

and different neighbourhoods.

Comparing Table 2 and Table 3 an improvement for all neighbourhoods is

observed inpainting the three channels in one step, rather then individually.

Thus, it is beneficial using one dictionary in which each atom is composed for365

a patch extracted from all channels.

Figure 8 displays the results of two inpainted images using the proposed

method (with the best result, i.e with p1 and RLS-DLA). Figure 8a shows an

image that includes exudates and Figure 8c shows an image with microaneurisms

and haemorrhages. As can be observed from the output images, (Figure 8b and370

Figure 8d), the blood vessels are significantly suppressed without any visual

degrading of the exudates or microaneurisms.

3.4. Comparison of Inpainting Methods

With the aim of characterizing the best inpainting category for our applica-

tion, a comparison between diffusion-based inpainting, the inpainting method375

used in the retina by other authors, and sparse-based inpainting, the proposed

method in this paper, was carried out and the results are presented in this

section.

Besides DRIVE database, in order to provide a wider comparison, the fundus

images of the STARE public database, introduced in section 3.1, were added in380

this experiment. In order to avoid the task of the artificial mask extraction for
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(a) (b)

(c) (d)

Figure 8: RGB-jointly inpainting for two images. Original images (a)08 test and (c)14 test

from DRIVE public database. Inpainted images (b)08 test (RE = 0.207 ) and (d)14 test (RE

= 0.211). The inpainting was performed using RLS-DLA with the sparseness factor s = 30

and the first spread neighbourhood.

each image belonging to STARE database, the proposed IQE index was used to

quantify the quality of the blood vessel inpainting.

Diffusion-based inpainting category by means of the simplest isotropic diffu-

sion model [31] and a public implementation of the exemplar-based inpainting385

method presented by Criminisi et al.[32] were selected to perform the compar-

ison with the proposed sparse-based inpainting method (Table 4). The same

neighbourhoods used in the previous experiments were tested for the sparse-
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based method.

In order to validate the IQE index, the RGB-jointly inpainting and the390

RGB-separate inpainting were carried out. Note that in relation to the non-

zero coefficients, s = 10 was used for RGB-separate (RGBS) inpainting and

s = 30 for the RGB-jointly (RGBJ) inpainting. In addition, a Mean Opinion

Score (MOS) evaluation of the inpainting results was performed by five experts

in digital image processing (Table 5). These experts assessed the 60 resulting395

images according to the following quality scale: Very poor(0), Poor(1), Fair(2),

Good(3), and Excellent(4). In the evaluation process, the resulting images were

presented in random order to the experts and without any kind of information

about the inpainting method used to remove the vessels.

8x8 21x3 3x21 p1 p2 p3 DBI [32]

D
R

I
V

E RGBS 0.541 0.5276 0.5189 0.6044 0.597 0.617
0.5039 0.6641

RGBJ 0.5596 0.5461 0.535 0.6838 0.6194 0.6915

S
T
A

R
E RGBS 0.6224 0.6013 0.5897 0.6539 0.6562 0.6524

0.5748 0.6691
RGBJ 0.6152 0.6094 0.5979 0.6648 0.6572 0.6582

Table 4: IQE index average for the RGB-jointly inpainting (s = 30) and the RGB-separate

inpainting (s = 10) computed from DRIVE and STARE databases using diffusion-based in-

painting (DBI), Criminisi et al. [32] method and different neighbourhood configurations of

sparse-based Inpainting.

8x8 21x3 3x21 p1 p2 p3 DBI [32]

D
R

I
V

E RGBS 0.3 0.05 0.075 3.35 1.575 3.625
1.625 2.75

RGBJ 0.65 0.18 0.22 3.475 2.275 3.7

S
T
A

R
E RGBS 0.388 0.117 0.21 2.95 2.1 2.65

1.5 3.1
RGBJ 0.75 0.33 0.412 2.95 2.2 2.65

Table 5: Mean Opinion Score (MOS) evaluation of the inpainting results obtained from the

DRIVE and STARE databases. The assessment was carried out using the following scale:

Very poor(0), Poor(1), Fair(2), Good(3), and Excellent(4).

The novel IQE index allows to quantify the performance of the inpainting400
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result taking into account the result in the whole image, not only in a few pixels

artificially added composing an artificial mask. For this reason, comparing the

results for DRIVE database (Table 4) with the results presented in Tables 2 and

3 different results are observed. In Table 3 the best results are obtained using

the pattern one, but assessing the inpainting quality by the IQE index the best405

pattern is found as number three in Table 4. We believe that the IQE index

provides us a more reliable measure of the quality of the inpainting compared

to the Recovery Error because RE only evaluates the quality in the relatively

pixels of the artificial mask.

As can be observed in Table 4, the IQE index ratifies that the RGB-jointly410

inpainting of the three channels provides better results than the RGB-separate

inpainting. The results of the MOS evaluation (Table 5) shows high correlation

with the IQE results, demonstrating the reliability of the proposed metric.

Diffusion-based techniques perform well filling small gaps but the results are

quite poor when the unknown region to be inpainted is large and blood vessels415

are a large structure that covers a high percentage of the fundus image. This

fact could be the consequence of the humble results observed in Table 4 when

diffusion-based inpainting is used.

The method proposed by Criminisi et al.[32] is based on the idea of finding

the image patch that maximises the correlation with the region to be inpainted.420

Table 4 shows similar results using this method in comparison with the best

configuration of the proposed sparse-based method. Figure 9 allows a visual

comparison of the resulting images using the inpainting methods compared in

this work.

Despite the well performance using the Criminisi et al.[32] method, the public425

implementation used in this work is really time-consuming. In order to check

this fact, Table 6 shows the average time taken by the different algorithms

compared in this work when blood vessel removal is performed in DRIVE and

STARE databases.

Note that comparison with other work where inpainting is done on fundus430

images is not possible because the inpainting techniques are used as a middle
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(a) (b)

(c) (d)

Figure 9: im0005 from STARE public database. (a) original, (b) Inpainted image by diffusion-

based method (IQE = 0.5322), (c) Inpainted image by Criminisi et al. method [32] (IQE =

0.6631) and (d) RGB-jointly inpainted (s = 30) image by sparse-based method using the first

pattern (IQE = 0.6886).

step, and the inpainting quality is not quantitatively validated, to the authors

knowledge.

4. Conclusions

In this paper, different inpainting techniques were applied to remove blood435

vessels of the fundus images. We propose to use a sparse-based method for in-

painting this application, and experiment on RGB-jointly versus RGB-seperate
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Sparse-based Diffusion-based Criminisi et al.[32]

DRIVE 297.07 sec. 91.78 sec. 609.41 sec.

STARE 303.64 sec. 98.33 sec. 647.58 sec.

Table 6: Averaged time (in sec.) consumed for the Sparse-based method, Diffusion-based

method and Criminisi et al. method to perform the blood vessel removal in each database

involved in this work.

configurations. Different patch patterns as well as sizes are investigated. A

diffusion-based method is also tested for reference. Different experiments were

carried out using two public databases of fundus images.440

Two different metrics were proposed and used in order to quantify the quality

of the inpainted images (in non-artificial applications) and compare the different

methods and configurations tested. The RE is based on evaluating artificially

added missing pixel areas. In this paper we propose the IQE index, which

provides more efficient and reliable results than the Recovery Error for two445

main reasons. The IQE index does not need the creation of an artificial mask.

In addition, this metric allows to quantify the performance of the inpainting

result taking into account the whole image, not only a small area corresponding

to the artificial mask.

Through dictionary learning algorithms, the optimal dictionaries from450

DRIVE database were obtained for different patterns, and the pixels belong-

ing to the vessels were inpainted by combining the pixels of the patches that

produce the optimal coefficients w. Results show a better performance using

spread patterns rather than using square neighbourhoods.

Two different ways to obtain the inpainted RGB image have been tested.455

Learning the dictionary taking into account the three channels provided better

results than to inpaint each component separately.

Moreover, RLS-DL technique was compared with ODL obtaining comparable

results, demonstrating that inpainting techniques based on sparse representa-

tion and dictionary learning can be used to remove vessels in retinal images.460
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Regarding the sparseness factor, results show that this factor has not a high

influence in the result.

Blood vessels are a large structure that covers a high percentage of the fundus

images and that might be part of the reason why sparse-based methods perform

better than the diffusion based. The proposed method has also been compared465

with the exemplar-based inpainting method by Criminisi et al. [32] obtaining

similar results in a more efficient way.

It is possible to obtain an image better suited for texture analysis and le-

sion segmentation by firstly perform sparse based inpainting of the RGB-jointly

image using a spread patch mask. This can hopefully lead to a more reliable470

classification between pathological and healthy texture and a more dependable

diagnosis of retinal diseases.

In future work the proposed method using sparse-based algorithms and the

proper configuration will be used in order to obtain a retinal image without

blood vessels. The final objective of the project is to develop an automatic475

screening software in order to distinguish between the normal and pathological

retina and classify these pathologies. The previous step to the inpainting stage

is to segment automatically the retinal blood vessels. In a previous work, the

authors proposed an automatic algorithm for this purpose [33]. Next step to the

inpainting stage is the texture characterization [34], using as input the inpainted480

images.
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