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Abstract

An integrated assessment of the potential of different management practices for mitigating

specific components of the total GHG budget (N2O and CH4 emissions and C sequestration) of

Mediterranean agrosystems was performed in this study. Their suitability regarding both yield

and environmental (e.g. nitrate leaching and ammonia volatilization) sustainability, and regional

barriers and opportunities for their implementation were also considered. Based on its results

best strategies to abate GHG emissions in Mediterranean agro-systems were proposed.

Adjusting N fertilization to crop needs in both irrigated and rain-fed systems could reduce N2O

emissions up to 50% compared with a non-adjusted practice. Substitution of N synthetic

fertilizers by solid manure can be also implemented in those systems, and may abate N2O

emissions by about 20% under Mediterranean conditions, with additional indirect benefits

associated to energy savings and positive effects in crop yields. The use of urease and

nitrification inhibitors enhances N use efficiency of the cropping systems and may mitigate N2O

emissions up to 80% and 50%, respectively. The type of irrigation may also have a great

mitigation potential in the Mediterranean region. Drip-irrigated systems have on average 80%

lower N2O emissions than sprinkler systems and drip-irrigation combined with optimized

fertilization showed a reduction in direct N2O emissions up to 50%. Methane fluxes have a

relatively small contribution to the total GHG budget of Mediterranean crops, which can mostly

be controlled by careful management of the water table and organic inputs in paddies. Reduced

soil tillage, improved management of crop residues and agro-industry by-products, and cover

cropping in orchards, are the most suitable interventions to enhance organic C stocks in

Mediterranean agricultural soils. The adoption of the proposed agricultural practices will require

farmers training. The global analysis of life cycle emissions associated to irrigation type (drip,

sprinkle and furrow) and N fertilization rate (100 and 300 kg N ha-1 yr-1) revealed that these

factors may outweigh the reduction in GHG emissions beyond the plot scale. The analysis of the

impact of some structural changes on top-down mitigation of GHG emissions revealed that 3-

15% of N2O emissions could be suppressed by avoiding food waste at the end-consumer level.

A 40% reduction in meat and dairy consumption could reduce GHG emissions by 20 to 30%.



Reintroducing the Mediterranean diet (i.e. ~35% intake of animal protein) would therefore

result in a significant decrease of GHG emissions from agricultural production systems under

Mediterranean conditions.

Keys words: Cropping systems, GHG, Mitigation, Mediterranean climate, review
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1. Introduction

Mediterranean climate, found from 20º latitude onwards, is characterized by

having mild winters and warm summers. Precipitation during summer period, when

highest temperatures occur, is scarce, so most summer crops require irrigation to

achieve worthwhile yields. Mediterranean climate is neither desert climate, nor humid,

and three subtypes can be distinguished: humid or rainy Mediterranean (Ln Seasonal

rainfall surplus higher than 20% of annual PET potential evapotranspiration); dry

Mediterranean, and semiarid Mediterranean (drier than dry Mediterranean climate) (Ln

< 20% PET) (Papadakis et al., 1966). Over one half of the area with Mediterranean-type

climate worldwide is found in the Mediterranean Sea Basin (Aschmann, 1973), but it is

also present in four other regions of the world namely California (USA), Central Chile,

the Cape region of South Africa, and South-West Australia (Figure 1).

Figure 1. Regions of the world with Mediterranean climate and number of papers measuring field N2O

emissions in each region.



In the case of Mediterranean agricultural systems, the temporal gap between

maximum irradiance and temperature (early summer) and maximum water availability

(winter), added to the low organic matter (OM) content of most cropped soils, are

important drivers of the typically low productivity of rain-fed crops. On the contrary,

irrigated agriculture benefits from the solar radiation and extended frost-free periods to

make these areas capable of high crops yields. The different soil conditions between

irrigated and rain-fed crops greatly affect soil microbial processes, which control the

fluxes of C (carbon dioxide, CO2; methane, CH4; organic carbon) and N (nitrous oxide,

N2O; molecular nitrogen, N2; nitrate, NO3
-; ammonia, NH3) in soil.

Pedoclimatic conditions shape soil processes in Mediterranean cropping

systems, leading to different N2O emission patterns compared to temperate soils

(Aguilera et al., 2013b). Nitrification and nitrifier-denitrification, and not denitrification,

are very often the main pathways leading to emissions of N oxides in rain-fed

Mediterranean cropping system (Sánchez-Martín et al., 2008; Kool et al., 2011;

Aguilera et al., 2013b; Vallejo et al., 2014). These two processes are favoured by

conditions of soil water content (i.e., water filled pore space, WFPS) under saturation

(i.e. 40-60% WFPS). Denitrification may play a predominant role in anaerobic soil

microsites (Davidson et al., 1991) in intensively managed and irrigated systems (e.g.,

Sanz-Cobena et al., 2012; 2014c). Consequently, different cumulative N2O emissions

have been proposed for rain-fed crops (0.7 kg N2O-N ha-1 yr-1) and for e.g., sprinkler

irrigated crops in Mediterranean areas (4.4 kg N2O-N ha-1 yr-1) (Cayuela et al., this

issue). Thus, the importance and potential for N2O mitigation and the best mitigation

strategy differ greatly depending on the cropping system.

Paddy soils account for 6% of the total CH4 emissions from Mediterranean

agriculture (Tate, 2015). Large CH4 emissions in these flooded soils are generated



through methanogenesis under strict anaerobic conditions and low oxido-reduction

potentials (Le Mer and Roger, 2001). On the contrary, aerobic agricultural soils, both

rain-fed and irrigated, promote CH4 oxidation, which is very dependent on management

practices such as N fertilization. Agricultural management strategies based on reducing

methanogenesis in paddy soils, or enhancement of CH4 oxidation in aerated soils, are

often ignored in Mediterranean agriculture, yet they may contribute substantially to

reduce total GHG emissions from these systems.

Increasing the generally low C content of Mediterranean soils is an important

GHG mitigation strategy (Robertson et al., 2000), and is also a priority for preventing

erosion and improving soil quality.

In this review we have synthesized and analyzed the performance of agronomic

GHG mitigation practices in Mediterranean cropping systems aiming to i) decrease soil

N2O emissions; ii) enhance CH4 oxidation and decrease CH4 emission rates; iii)

enhance soil organic C stocks and iv) reduce or leave unchanged other sources of

environmental pollution (e.g. NH3 volatilization and NO3
- leaching). The effect on the

total GHG budget of the selected strategies was also analyzed to establish an order of

priority. The review also includes an assessment of the socioeconomic performance of

agronomic measures and constraints to implementation. Finally, we explored the

potential of structural measures at the agro-food system scale for reducing GHGs

emissions: i) food waste reduction, ii) change in the composition of human diet,

particularly in the proportion of animal products, and iii) reconnection between crops

and livestock at farm or regional scale for optimization of resource use.



2. Agronomic mitigation measures

2.1. Agronomic practices affecting N2O emissions

As previously explained, Mediterranean climatic conditions lead to the existence

of two main contrasting production systems, rain-fed and irrigated, largely differing in

terms of crop management and, consequently, N2O emission processes. Rain-fed

systems, mostly based on winter crops, are characterized by periods with low soil

moisture and cold temperatures, thus with decreased soil microbiological activity and

N2O fluxes. The IPCC (2006) has proposed a 1% emission factor (EF, i.e. the

percentage of fertilizer N applied that is transformed and emitted back to the

atmosphere as N2O) at Tier 1 (Tier 1 default EF1 proposed by IPCC, 2006) for N2O

emissions. However, two recent reviews have shown that N2O emission factors from

rain-fed Mediterranean cropping systems are much lower than the default 1% (i.e.

Aguilera et al., 2013b; Cayuela et al., this issue). Irrigated systems receive large

amounts of water and N inputs which create favorable soil conditions for N2O

production. Emission factors in these systems fluctuate greatly according to water

management and the type and amount of fertilizer used (e.g., synthetic, solid or liquid

manures). Sprinkler irrigated crops led to a N2O EF similar to those of temperate areas

of about 1%; conversely, drip irrigated systems emit at a much lower rate (0.18)

(Cayuela et al., this issue).

EF1 for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from

mineral soil as a result of loss of soil carbon. TABLE 11.1, IPCC 2006 National GHG Inventory Guidelines. Volume
IV (AFOLU), Chapter 11.



2.1.1. Nitrogen fertilization

Optimized N fertilizers application (in terms of input rate and time of

application), as well as the careful selection of the type of fertilizer used are crucial to

reduce N2O emissions. Synthetic and organic fertilizers are the most widespread sources

of environmental N contamination in Mediterranean areas with dense concentration of

livestock, due to the losses of N coming from unadjusted fertilizer application (e.g.,

Sanz-Cobena et al., 2014c). An additional mitigation effect could be achieved by

applying already existing N (organic fertilizer) when possible or with the use of

nitrification and urease inhibitors.

A. Adjusting N fertilization to crop needs

Recommendations on N application rates, based on a careful estimation of crop

needs, aim to achieve optimum yields while reducing N pollution. Reduction of N rates

according to soil N availability and crop yield potential may decrease N surpluses and

subsequent direct and indirect N2O emissions, while saving energy and abating other

GHG emissions (e.g. associated to manufacturing synthetic fertilizers). Current national

emission inventory methods mostly use the 1% Tier 1 EF (IPCC, 2006). However,

many studies concluded that the response of direct N2O emission to N input is non-

linear (Philibert et al., 2012; Kim et al., 2013; Shcherbak et al., 2014), and other

management factors, as constrained by climate, must be considered in determining N2O

emissions (Bouwman et al., 2002; Leip et al., 2011; Lesschen et al., 2011; Aguilera et

al., 2013a). For example, significant effects of N application timing on N2O emissions

have been reported from cereal crops in Mediterranean countries such as Spain (Abalos

et al., 2016). The estimated N2O mitigation potential, through adjusted fertilization (rate

and timing) in Mediterranean agro-ecosystems ranges between 30 and 50% compared to

a non-adjusted practice (Table 1).
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B. Substituting synthetic fertilizers by organic fertilizers

Differences among fertilizer N sources in N2O emissions depend on site- and

weather-specific conditions (Snyder et al., 2009). Replacing mineral N with organic

fertilization provides not only NPK and micronutrients to the soil and crop, but also

organic C when using solid fertilizers (i.e., solid manure, composts, etc.), which is

highly beneficial in Mediterranean soils with low organic C contents (Aguilera et al.,

2013b). In areas were croplands co-exist with livestock farms, using a farm sub-product

allows the reuse/recovery of farm products, thus decreasing the volume of waste that

needs to be managed, and then avoiding the emission of GHG both in the management

of such wastes and in the manufacturing of new synthetic fertilizers. In Mediterranean

areas, the efficient use of manure of fertilizer should be encouraged, and this could be

Mineral N is released slowly when solid organic fertilizers are used so N

delivery can be better coupled with crop needs over time. This may decrease the need of

synthetic fertilizers, thus saving energy and avoiding emissions produced beyond the

boundaries of the farm during the industrial Haber-Bosch process of N fixation. In

contrast, since the N content of manures is normally lower than that of synthetic

fertilizers, the amount of organic matter to be applied in order to fulfil crop needs is

high, so an increase in transport expenses and emissions would be expected unless

manures are applied nearby the source.

Replacing synthetic fertilizers with organic ones is applicable to field crops such

as cereals and oilseeds, given their high N demand. It is applicable to both irrigated and

rain-fed systems, under Mediterranean conditions. Medium-textured and well-drained

soils are the most suitable for this practice since they can counterbalance the N2O

denitrification losses associated to high C-content organic amendments (Velthof et al.,



2003), whereas poorly-aerated soils tend to stimulate denitrification (Rochette, 2008).

Technical issues related to temporal and spatial availability of animal manures must be

considered. Intensive livestock production systems are often decoupled from

agricultural systems. This causes mismatches between manure production and crop

requirements, resulting in manure excess at a local scale. Thus, manure has to be

transported to longer distances and/or treated before being applied, resulting in higher

manure management costs (Teira-Esmatges and Flotats, 2003; Flotats et al., 2009).

The N2O emission reduction at plot scale depends on the form of manure used.

Solid manures have proved to significantly decrease N2O emissions (ca. 23%) in

Mediterranean systems (Aguilera et al., 2013b) and to have the potential to increase C

sequestration in the long term (Ding et al., 2012). Webb et al. (2004) observed that solid

manure incorporation decreased N2O emissions, but Thorman et al. (2007a) found no

consistent effect of incorporation of pig or cattle farmyard manure on such losses,

except when denitrification is likely to be intense. However, as the readily-degradable C

is mainly lost during the storage stage of solid manures, the C added to soil by

incorporation will have less effect on the metabolism of denitrifiers (Webb et al., 2010).

Overall, incorporation of solid manure in Mediterranean regions appears to reduce or

have no impact on N2O emissions (Table 1).

For liquid manures (i.e., slurries), no significant differences have been observed

when these substitute synthetic N sources. This seems to be a consequence of the strong

similarities between available N, in the form of NH4
+, in both fertilizer types (Meijide et

al., 2009; Plaza-Bonilla et al., 2014a). Other studies indicate that the method of slurry

application is a key variable driving N2O emissions from agricultural soils. According

to a meta-analysis by Hou et al. (2015), injection of slurry could significantly increase

direct emissions compared with broadcast application. However, in Mediterranean



areas, dry matter content of slurries under dry weather conditions is normally high, thus

reducing the potential of implementing injection practices. In cases of implementation,

soil conditions appear to be the key factor affecting the direct and indirect N2O emission

pattern after slurry injection (VanderZaag et al., 2011). The addition of readily-

mineralizable C from slurry has been shown to be the main driver for increasing

emissions of N2O by denitrifiers (Webb et al., 2010). If slurries are applied to crops, a

social constraint related to smells and health issues may arise (Cole et al., 2000). This

could be alleviated by restricting their use near towns or populated areas. Additionally,

accumulation of heavy metals in the soil (e.g., zinc and copper present in animal diet)

may represent a barrier for using these organic materials (Berenguer et al., 2008) (Table

2). There are also risks of antibiotic contamination of soils, and leaching when using

manure (Díaz-Cruz et al., 2003).
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C. Nitrification and urease inhibitors

Nitrification inhibitors (NIs) deactivate the enzyme responsible for the first step

of nitrification, the oxidation of NH4
+ to NO2

-. By reducing nitrification rates, and

subsequently the substrate for denitrification, the use of NIs may lead to reductions of

N2O emissions ranging from 30 to 50% (Huérfano et al., 2015) (Table 1).

Nitrification inhibitors are used in a wide range of agro-climatic regions (Akiyama et

al., 2010; Gilsanz et al., 2016). In Mediterranean soils, NIs have shown high mitigation

efficiency in rain-fed and irrigated fields, with a likely indirect effect on denitrification

in the latter systems (Meijide et al., 2010). Soil texture may regulate mitigation

efficiency (Barth et al., 2008) but to a limited extent, since soil texture has been shown

to have a small influence on the inhibition of nitrification (Gilsanz et al., 2016)

Other soil parameters such as pH (with better performance in acidic soils) or

organic C may affect the efficacy of NIs (Robinson et al., 2014; Marsden et al., 2015),

especially for dicyandiamide (DCD), which explains the high efficiencies reported by

studies performed in low-C Mediterranean soils. An inverse relationship between the

inhibitory effect and temperature has also been described (Gilsanz et al., 2016), and

should be considered when choosing the optimum application timing in each season.

The main limitation for implementation of NIs is the increase of fertilization

costs (Timilsena et al., 2015). This could be counterbalanced by an increment in crop

productivity (Abalos et al., 2014a). A potential enhancement in crop N use efficiency

(Abalos et al., 2014a) may reduce N losses and may thus decrease the rate of synthetic

N applied, reducing fertilization costs. Moreover, the use of inhibitors could simplify

the task of fertilization by reducing the number of required applications, or by allowing

for a greater flexibility in the timing of fertilizer application (Linzmeier et al., 2001).



Urease inhibitors (UIs) are used to reduce the activity of the urea hydrolase

enzyme. Therefore, they can only be used when urea or urea-containing fertilizers

(including organic sources) are used. Originally developed to reduce NH3 volatilization,

recent research has shown that these products may also reduce N2O emissions (Sanz-

Cobena et al., 2012; 2014a). Among the various types of UIs available, N-(n-butyl)

thiophosphorictriamide (NBPT) has received the greatest commercial use (Sanz-Cobena

et al., 2008; Abalos et al., 2014a). Recent studies have evaluated the effectiveness of

NBPT to abate N2O emissions in Mediterranean cropping systems, showing a high

mitigation potential in an irrigated maize-field with nitrification-favoring conditions

(55%; Sanz-Cobena et al., 2012), and in a rain-fed barley crop (86%; Abalos et al.,

2012). An incubation experiment confirmed that the efficacy of the inhibitor to abate

N2O emissions is realized under conditions of low soil moisture (Sanz-

Cobena et al., 2014a), common in Mediterranean semi-arid areas due to the scarce

rainfall. The efficiency of UIs is expected to be highest in alkaline soils (frequent in

Mediterranean climates), and is also generally higher in coarse-textured soils and at

high N fertilization rates (Abalos et al., 2014a).

A cost-benefit analysis showed that mitigated N due to reductions in NH3

volatilization when UIs are employed may serve to reduce fertilizer-N rates without

incurring yield penalties (Sutton et al., 2015) (Table 1). The N rate reduction would

decrease total fertilizer costs and partially offset the higher cost of urea treated with UIs.

Further, reduced N rates may have additional environmental benefits such as reduction

in NO3
--leaching. However, such findings were obtained from studies in temperate

climate, and remain to be confirmed under Mediterranean conditions.



2.1.2. Irrigation technology

Soil moisture, expressed as WFPS, is a key factor affecting N2O losses (del

Prado et al., 2006; García-Marco et al., 2014), hence the potential for N2O mitigation

linked to irrigation technologies is high (even above 50%) (e.g., Sánchez-Martín et al.,

2010a, 2008; Guardia et al., 2016) (Table 1). The lower amounts of water applied in

subsurface drip irrigation (SDI) or normal/superficial drip irrigation (DI) through more

frequent

overall soil moisture and favoring nitrification over denitrification (Sánchez-Martín et

al., 2010a), thus reducing N2O emissions (Table 1). Drip irrigation systems have shown

an N2O EF of only 0.18%, compared to an EF of 1 % in sprinkler systems (SI), showing

the mitigation potential of irrigation technologies in the Mediterranean region (Cayuela

et al., this issue).

Optimized irrigation techniques to decrease GHGs emissions on Mediterranean

regions are particularly used in perennial crops and intensive vegetable cropping

systems (SDI, DI), and in paddy soils (water table management).

Subsurface drip irrigation has been shown to be beneficial in terms of increased

yield, improved crop quality, and reduced agronomic costs (e.g., for weed control or

water applied) (Ayars et al., 2015), but there are some technical and economic

constraints associated with conversion, automation and maintenance. Indeed, the use of

different irrigation systems results in distinct water use patterns. This is particularly

important in Mediterranean systems, where irrigation needs to be optimized, due to

limited water resources during summer crop growth periods. The most efficient

irrigation system from the water use perspective is subsurface drip irrigation (SDI),

followed by normal/superficial drip irrigation (DI) and sprinkler (SI). In contrast,



whereas furrow irrigation (FI) results in the highest water consumption rates, thus

coincident with N2O mitigation technology.

2.1.3. Fertigation

Irrigation combined with split application of N fertilizer dissolved in the

irrigation water (i.e., fertigation) is ideally suited for controlling the placement, time and

rate of fertilizer N application, thereby increasing N use efficiency. This fertilization

strategy is highly relevant in a context of increasing drought periods due to climate

change in Mediterranean agro-ecosystems (Abalos et al., 2014b). Reductions in direct

N2O emissions between 30 and 50% compared with traditional fertilization and

irrigation practices have been reported for Mediterranean fertigated crops, mostly due

to an effect on nitrification rates (Kallenbach et al., 2010; Schellenberg et al., 2012;

Kennedy et al., 2013; Abalos et al., 2014b; Vallejo et al., 2014) (Table 1). Since this is a

relatively new methodology, there could be initial economic barriers associated with

conversion from furrow or sprinkler (Table 2). Technical and economic barriers

associated with maintenance may also exist; a problem that automation may partially

overcome, easing irrigation and fertilization activities (Thomson et al., 2000).

Conversely, fertigation may serve to reduce costs due to input savings (e.g., water,

fertilizers) and increases in crop quality and productivity (Kennedy et al., 2013; Ayars

et al., 2015).

2.2. Agronomic practices affecting CH4 emissions

Mediterranean agricultural soils produce large CH4 emissions in flooded crops

(e.g. rice) through methanogenesis, representing 6% of all CH4 production from

agricultural sources. Water table management has been proven to significantly reduce



CH4 losses in non-Mediterranean climates (Yagi et al., 1997; Kudo et al., 2014; Liang et

al., 2016). By decreasing the flooding period, both methanogenesis and CH4 evasion

through the water table, one of the CH4 transport pathways, are limited. This leads to

lower emissions and reduces water consumption, a crucial goal to improve the

sustainability of Mediterranean agro-ecosystems (Rizzo et al., 2013; 2015) (Table 1).

Methane emissions also depend on the incorporation of organic matter (mainly

crop residues). Increases in CH4 emissions from rice production were reported when

straw was added from 0 up to 7 t N ha-1 in a Mediterranean cropping system (CH4

emission ranging from c. 100 to c. 500 kg CH4 ha-1 yr-1; Sanchis et al., 2012) (Table 1).

With regard to rice straw management strategies, recommended practices for

enhancing GHG mitigation are composting rice straw, straw burning under controlled

conditions, recollecting rice straw for biochar production, generation of energy, using it

as a substrate, or source of other by-products with added value.

In non-flooded Mediterranean systems, the effect of fertilizer application rate on

soil CH4 uptake has been found to be positive (Meijide et al., 2016), negative (Guardia

et al., 2016) or neutral (Plaza-Bonilla et al., 2014b). Variable effects, depending on

organic or synthetic fertilizers on CH4 sink capacity, were reported by Sánchez-Martín

et al. (2010b). The lower CH4 uptake following the application of high C-content

amendments has been related to changes in soil porosity and enhancement of soil

respiration rates, promoting anaerobic microsites and consequently reducing

methanotrophy (Le Mer and Roger, 2001).

2.3. Agronomic practices affecting C sequestration

Levels of OM in Mediterranean soils are generally low and are expected to

decrease further in many Mediterranean areas in the coming years (Davidson and



Janssens, 2006) as a result of generalized low C inputs and increased soil organic

carbon (SOC) decomposition rates associated with rising temperatures (e.g., Al-Adamat

et al., 2007) thus increasing the GWP of Mediterranean agro-ecosystems.

Management practices aimed at increasing SOC stocks must target a positive

balance between C inputs and outputs through the reduction of SOC losses (Plaza-

Bonilla et al., 2016), the increase of organic C inputs into the soil, or both (Aguilera et

al., 2013a; Six et al., 2004). Most practices leading to increasing SOC content include

reduced soil tillage, careful management of crop residues and agroindustry products in

herbaceous crops, and cover cropping in orchards. These practices have relevant co-

benefits through improved soil physical, chemical and biological quality (Lal, 2011;

Lassaletta and Aguilera, 2015), enhanced crop productivity, reduced dependence on

external inputs (Smith and Olesen, 2010) and lower soil erosion rates.

2.3.1. Reduced soil tillage

Reduction or complete cessation of tillage decreases the direct incorporation of

fresh organic debris into deeper soil layers. The absence of tillage (NT) slows down

aggregate turnover and, in turn, increases the physical stabilization of SOC within soil

aggregates (Álvaro-Fuentes et al., 2008; Plaza-Bonilla et al., 2010). An approximate

annual increase of 1% in SOC when tillage is avoided in Mediterranean croplands has

been observed (own estimation from Aguilera et al. 2013a). This is above the 0.4%

targets of recent initiatives for sustainable soil conservation (http://4p1000.org). The

response under reduced tillage (RT) was variable and of similar magnitude, with

average accrual rates of 0.32-0.47 Mg C ha-1 yr-1 compared to conventional tillage

management (CT) (Sánchez et al., 2016). In semiarid conditions (400 mm of total

rainfall), Guardia et al. (2016) indicated that NT fixed 0.5 Mg C ha-1 yr-1, whereas 0.06



Mg C ha-1 yr-1 was accumulated in the soil under RT practices. Estimates are highly

dependent on the soil depth used for the calculation, since vertical SOC distribution in

NT and CT systems is different (Cantero-Martínez et al., 2007). Further, the assumption

of a steady and linear C sequestration may not hold true, because the annual C

accumulation rate tends to decrease in the long-term (Álvaro-Fuentes et al., 2014).

No-tillage practices are more commonly used in rain-fed systems; but they are

also suitable for irrigated (although RT is more recommended in these systems),

extensive, intensive and organic systems with well-drained soils. In water-limited

regions, such as dryland Mediterranean areas, NT enhances soil water retention

potential, and has a positive effect on biomass production and crop residue inputs

(Lampurlanés et al., 2016). The greater soil water retention potential under NT is the

result of reduced evaporation due to the mulch protection, and enhanced soil water

infiltration due to the higher structural stability at the soil surface.

The reduction or cessation of tillage requires specific management according to

the climatic zone (SmartSOIL, 2015). Reduced tillage is an accepted practice by an

increasing proportion of farmers, although initial investment cost for specific seeding

machinery can constrain farmers willingness to adopt RT or NT. It usually leads to net

cost reductions, despite the initial investment (Sánchez-Girón et al., 2004) since farmers

save labor time and fuel inputs compared to conventional tillage (Álvaro-Fuentes et al.,

2014; Sánchez et al., 2014, 2016; Guardia et al. 2016; SmartSOIL, 2015). Even so, NT

practices need to be accompanied by the application of herbicides, which may increase

costs and produce pollution in soil and water bodies if improperly managed (Annett et

al. 2014). Efforts are being made to promote NT practices with decreased use of

phytochemicals (e.g. Sans et al. 2011; Armengot et al., 2014).



2.3.2. Crop rotations and cover crops

Long crop rotations have been proposed in rain-fed Mediterranean cropping

systems to enhance C sequestration and restore soil fertility and structure (Benlhabib et

al., 2014). The effect of crop rotations on C sequestration is highly dependent on time

with no significant effect reported in short-term studies (López-Bellido et al., 1997;

Hernanz et al., 2002; Martin-Rueda et al., 2007). However, positive effects in long-term

experiments (>15 years) could appear if crop biomass is properly managed after harvest

(Masri and Ryan, 2006; López-Bellido et al., 2010; Martiniello and Teixeira da Silva,

2011). For instance, a wheat-chickpea crop rotation under CT, showed a C sequestration

rate of 0.53 Mg C ha-1 y-1 during a 20-year period, compared with wheat monoculture

(López-Bellido et al., 2010). The effect of crop rotations on SOC stocks is also

dependent on the type of crops included in the rotation (Triberti et al., 2016) and the

management of crop residue. The introduction of perennial crops to rotations has shown

benefits for SOC stock and soil quality (Di Bene et al., 2011; Pellegrino et al., 2011).

The substitution of bare fallows by any crop (usually used to improve water and nutrient

availability for the following crop) has been associated with SOC stabilization in NT

systems (Álvaro-Fuentes et al., 2009), and to reduced soil erosion (Boellstorff and

Benito, 2005). The effect on C sequestration of the inclusion of grain legumes in rain-

fed yearly rotations is dubious, due to their low biomass production, although their

conversion to stabilized soil organic matter could be more efficient than that of cereals

(Carranca et al., 2009). Consequently, the highest potential of fallow and legumes for

mitigating GHG from these types of cropping systems comes from the avoidance of

fertilizer production emissions.

Implementing crop rotations requires more detailed planning compared to

monocultures (e.g., selecting crop species/sequences and nutrient and weed control



practices), which can constitute a management constraint. On the other hand, reduction

of fertilizer, pesticide and herbicide needs, and possible crop yield and soil quality

improvements in the long term, added to the low investment and operational costs to

implement the practice, may encourage farmers to establish this traditional crop

management practice (Ferrio et al., 2007). Moreover, some legume species and cultivars

(e.g., green beans, peas, etc.) can represent high-value crops, particularly in vegetable

crop rotations. In forage cropping systems, leguminous species can improve the forage

quality and therefore the economic profit (Rochon et al., 2004; Kalac, 2011). Crop

rotations (particularly those which involve legumes) are included in the greening

requirements of the European Union Common Agricultural Policy (EU CAP) incentives

(crop diversification), thus encouraging implementation among farmers (Ingram et al.,

2014).

Cover cropping (CC) in herbaceous cropping systems involves the use of catch

crops or green manures during the intercrop period of irrigated cropping systems (intra-

annual rotation) or substituting bare fallows in rain-fed cropping systems (inter-annual

rotation). In fruit orchards, CC involves the use of understory vegetation between tree

rows or in the whole soil surface. Catch crops are intended to reduce nutrient losses in

soils that are prone to greater N leaching losses (e.g. sandy or highly fertilized soils). In

terms of C sequestration, the use of CC has been proposed as a mean to enhance SOM

and labile C pools by incorporating plant material into the soil (Veenstra et al., 2007).

Average C sequestration potential of winter CCs (cultivated in the intercrop period of

summer crops) has been reported at 0.32±0.08 Mg C ha-1 yr-1 at the global level

(Poeplau and Don, 2015). For Mediterranean areas, González-Sánchez et al. (2012)

studied cover crops in woody cropping systems of Spain, reporting average C

sequestration rates of 1.54 and 0.35 Mg C ha-1 yr-1 in studies of less and more than 10



years, respectively, while Aguilera et al. (2013a) calculated an average carbon

sequestration rate of 0.27 Mg C ha-1 yr-1 for all types of cover crops in a meta-analysis

of Mediterranean cropping systems.

Application of CCs is limited during seasons with water scarcity. General lack of

knowledge of the best CC management practices for optimizing both environmental and

economic profits limits the correct implementation of CC. Selection of plant species, the

management of residues and the kill date are crucial factors (Gabriel et al., 2012;

Alonso-Ayuso et al., 2014; Sanz-Cobena et al., 2014b) likely influencing the yields and

N uptake efficiency of the succeeding cash crop (Míguez and Bollero, 2005, Tonitto et

al., 2006). Reduction of fertilizers required for the subsequent crop, (especially when

grain legumes are used as green manure), and gain of secondary products (e.g., animal

feed) can deliver positive economic benefits (Gabriel et al., 2013; Scherback et al.,

2014); usually outcompeting sowing and killing costs (Table 2). Furthermore, CCs

prevent soil erosion, runoff and sediment losses (Hargrove, 1991; Blanco-Canqui et al.,

2015), improve soil structure, N supply and water retention capacity (Quemada and

Cabrera, 2002; Suddick et al., 2010), reduce leaching (Bugg et al., 2007), improve soil

microbial quality (Balota et al., 2014) and reduce soil salinity during the early stages of

the cash crop (Gabriel et al., 2012).

2.3.3. Management of crop residues and agroindustry by-products

Estimating the GHG mitigation potential of using crop residues and organic by-

products from agroindustry in Mediterranean areas implies accounting the net GHG

balance when they are used as: (i) soil amendments to improve SOM and enhance SOC

sequestration (Aguilera et al., 2013a), (ii) feedstock for bioenergy production (e.g. Di

Giacomo and Taglieri, 2009; Spinelli and Picchi, 2010), (iii) co-substrate for



composting (e.g. Santos et al., 2016) , (iv) feed for livestock (e.g. Molina-Alcaide and

Yáñez-Ruiz, 2008) or (v) construction materials (e.g. animal beds, buildings). Also, we

must have a realistic estimate of the current fate of these organic matter streams and the

sustainability or economic issues (Pardo et al., 2013) that may jeopardize the realization

of such potential. To our knowledge no such study has been made for the whole

Mediterranean area. Pardo et al. (this issue), estimated for the Mediterranean coastal

areas in Spain reductions of 4.3 Tg CO2eq yr-1 (about 11% of total agricultural

emissions in Spain in 2014 ) if available local by-products from agri-food industries was

codigested with existing manure and applied to the nearby available agricultural soils.

This study suggests that, despite the overall large stocking of crop-residues and by-

products in the Mediterranean basin (FAOStat, 2016), the potential for their use in

cropping systems may be reduced by its availability nearby.

The potential to increase SOC levels by using agroindustry by-products, as in

crop residues, depends on their composition and degradability. However, agroindustry

by-products vary widely in their chemical composition and therefore in their

degradation rates. For example, olive and mill waste as they have very low degradation

rate in the soil have been found to be good amendments to increase SOC when applied

to the soil (Saviozzi et al., 2001; Sanchez-Monedero et al., 2008).

Besides the potential direct GHG reduction that any strategy involving the return

of the crop residues and agroindustry by-products to the soil may cause, (e.g., Kassam

et al., 2012, Gonzalez-Sanchez et al., 2012; Aguilera et al., 2013a; Plaza-Bonilla et al.,

2015) applying these materials, treated or un-treated, as soil amendments can also

deliver environmental co-benefits, such as erosion reduction when they as raw are used

for mulching (Blavet et al., 2009; Jordán et al., 2010) or, in general, allowing closing

the nutrient cycles, with associated potential reductions of fertilizer use and reductions



in the draught force and fuel consumption for soil tillage (Peltre et al., 2015). Trade-

offs, however, may occur with some of the strategies that may results in larger GHG

mitigation potential. For example, the use of crop residues on the soil surface might

pose a risk of fire in some Mediterranean areas (Luna et al., 2012) and, sanitary,

pollution and legal constraints may apply, especially if the by-product is applied to

crops e.g. fresh vegetables without pre-treatment (Table 2).

Composting and anaerobic digestion of agroindustry by-products are common

treatments that can improve the properties of the organic matter and can also provide

additional overall GHG reductions (del Prado et al., 2013). The composting process has

relatively low associated GHG emissions (Pardo et al., 2015) and can lead to moderate

to high SOC sequestration rates when used as soil amendments (Aguilera et al., 2013a).

Long term humic-clay associations promote a more efficient protection of SOM and

long-lasting C sequestration in amended soils. The composted material will lower the

soil pH, reducing the decarbonation process in soils developed over calcareous materials

(common in the Mediterranean basin). Anaerobic digestion of agro-industry by-

products reduces overall GHG emissions through the generation of biogas. The

conversion of OM into biogas (i.e., CO2 and CH4) involves a fraction of C that is

released to the atmosphere, instead of being applied to the land. Therefore, although

digestate application increases soil C storage and produces benefits over soil quality in

the long term, the potential for C sequestration (per unit of initial residue amount) could

be lower when compared with undigested materials. On the other hand, the high nutrient

availability of anaerobically digested organic wastes makes digestate an economically

viable substitute of mineral fertilizer (Arthurson, 2009).



Sewage sludge is currently applied to agroecosystems, especially to degraded

soils of Mediterranean areas (Albiach et al., 2001; Fernández et al., 2009) due to its high

OM. However, the labile OM forms present in sewage sludge and the high amounts

usually applied (Franco-Otero et al., 2011) may increase CO2 emissions due to

increased soil respiration (Flavel et al., 2005; Song and Lee, 2010). Sludge use is highly

constrained by fresh water pollution and availability issues. It is likely that increasing

social and political environmental concerns, reflected in national and international

normative, will further extend the use of wastewater treatment systems thus increasing

sludge production. In this context, the EU Landfill Directive 99/31/EC (CEC, 1999)

banning the landfilling of sewage sludge (Klee et al., 2004) should lead to a better reuse

of sewage sludge, thus reconnecting urban and rural environments and ensuring the

absence of risks for both the society and the environment. In this sense, further studies

are needed to assess the impact of sewage sludge on (e.g.) antibiotic resistance in soil

microbiota (Chen et al., 2016).

Biochar (a solid by-product generated by pyrolysis) application to soils has been

suggested as a means of reducing atmospheric CO2 concentration. Biochar's climate

change-mitigation potential relies on its highly recalcitrant nature, which decreases the

rate at which vegetation C is released to the atmosphere (Woolf et al., 2010)

mitigation potential depends on production process, and further experimental

assessments of its efficiency under Mediterranean conditions are required (Hussain et

al., 2016).



3. Side-effects associated to selected GHG mitigation practices

3.1. GHG emissions

Specific management practices primarily target the mitigation of a single GHG

(e.g. decreased soil tillage aimed at increased soil CO2 sequestration) may promote the

release (trade-off) or mitigation (win-win) of other GHGs (e.g. N2O or CH4).

Enhanced direct N2O emissions have been observed after NT in the short-term

(Six et al., 2004), especially in poorly drained soils (Rochette et al., 2008). On the long

term, increased soil porosity in NT systems, counterbalances the greater WFPS levels

typically found in NT compared to tilled soils (Plaza-Bonilla et al., 2013a; van Kessel et

al., 2013). Conversely, NT can reduce indirect N2O emissions due to lower runoff and

N leaching (Holland, 2004; Soane et al., 2012).

In the case of crop rotations with bare fallow (BF), Sánchez-Martín et al.

(2010b) showed negative N2O fluxes in a fallow period between two irrigated onion

crops under Mediterranean conditions. Under similar climatic conditions but in a rain-

fed crop, Téllez-Rio et al. (2015) observed lower N2O emissions from a wheat crop

preceded by a fallow period than from a monocrop of the same cereal.

For crop rotations including CCs, the effect on N2O emissions needs to be

assessed by differentiating the intercrop and the cash crop periods. During the intercrop,

contrasting results have been obtained. The meta-analysis of Basche et al. (2014)

pointed out an overall enhancement of N2O losses, particularly in the case of legume-

CCs. These results were supported by Guardia et al. (2016) in a field experiment in

Mediterranean conditions. Conversely, during the subsequent cash crop period, CCs as

opposed to BF have potential to decrease N2O emissions due to the lower requirement

of N fertilizers. The same authors showed that synthetic N applied to a maize crop

preceded by vetch (a legume) could be decreased by 25% without yield penalties.



However, also under Mediterranean conditions, neither Sanz-Cobena et al. (2014b) nor

Guardia et al. (2016) observed a significant effect of catch crop management on N2O

emissions when considering the whole crop and intercrop cycles. Since the effect of

CCs on direct N2O losses is negligible (particularly when considering the whole

cropping cycle and integrated fertilization management) CCs mainly reduce indirect

N2O emissions associated with N leaching (Gabriel et al., 2012; Quemada et al., 2013).

In any case, both BF and the use of legumes in yearly rotations decrease the GHG

emissions from N fertilizer manufacturing, making crop operations (e.g., machinery,

agrochemicals manufacturing, etc.) the main source of GHG emissions in these systems

(Aguilera et al., 2015a; Guardia et al., 2016).

Biochar has attracted attention as a strategy for mitigating N2O emissions from

agricultural soils, along with the initial concept of increasing SOC stocks. Biochar was

found to decrease N2O emissions by close to 50% (Cayuela et al., 2015), with soils from

Mediterranean origin showing variable but large mitigation potential, up to 90%

according to lab studies of wood biochar (Cayuela et al., 2013) . However, field studies

under Mediterranean conditions have shown small to no significant reductions (Castaldi

et al., 2011; Suddick and Six, 2013; Pereira et al., 2015), or even a slight increase in

N2O emissions (Sánchez-García et al., 2016). These different outputs between lab and

field studies were probably due to the fact that laboratory conditions were not finally

reflected on the field (Cayuela et al., 2014), and suggests that further experiments using

a range of soil types, crops (absence of perennial and horticultural crops) and

management practices is required. The effectiveness of biochar to significantly decrease

N2O emissions depends on the soil type (Sánchez-García et al., 2014), the N fertilizer

used (Nelissen et al., 2014) and, ultimately, on the main pathways leading to N2O

formation (nitrification vs. denitrification). Biochar from woody materials (low C/N



ratios) produced by slow pyrolysis at high temperatures (>500 °C; molar H:Corg<0.3)

have shown the highest mitigation potential (Cayuela et al., 2014; 2015).

3. 2. Non-GHG emissions

Ammonia volatilization, nitric oxide (NO) and NO3
- leaching are the main

pathways of non-GHG pollutant release to the environment from Mediterranean

agricultural soils. Whereas NO contributes to the formation of ozone, and influences air

quality, both NH3 and NO3
- losses also indirectly affect emissions of N2O (IPCC, 2006).

In rain-fed systems, NO3
- leaching normally occurs in autumn and is mostly

driven by episodic precipitation events and external N inputs. In irrigated systems, N

losses through leaching occur in summer due to high irrigation and N fertilization rates.

Ammonia emissions are common in both rain-fed and irrigated cropping soils if urea

and ammonium-based fertilized are applied to the soil surface.

Adjusting N fertilization rates to crop needs may have positive side-effects on

the abatement of both NH3 volatilization and NO3
- leaching (Quemada et al., 2013;

Sanz-Cobena et al., 2014c). The use of solid manure can lower N losses through

reduced leaching (Sanchez-Martín et al., 2010) and N2O emissions (Meijide et al., 2007;

2009), due to enhanced microbial and plant immobilization of N (Table 1). The

application of liquid manure (slurries) can improve soil structure, decreasing the risk of

N leaching in the medium term (Zavattaro et al., 2012; Plaza-Bonilla et al., 2013b),

although it can increase it in the short term when applied at high rates (Yagüe and

Quilez, 2015).

Manure application in the field can trigger NH3 volatilization (e.g. Sanz et al.,

2010; Viguria et al., 2015) if no NH3-abatement strategies are applied (Sanz-Cobena et

al., 2014c). Slurry injection technologies have been shown to reduce NH3 emission by



40-90% compared with broadcast application (Webb et al., 2010). However, this may

leave more mineral N available to be lost in the form of e.g., NO3
- and N2O if soil

conditions favor denitrification (high WFPS) (Sanz-Cobena et al., 2014c). On well-

drained arable soils, injection can reduce N losses, as it reduces NH3 volatilization while

it has little effect on N2O emission rates. In Mediterranean agriculture, slurry injection

is still a marginal practice, but may have a great potential for NH3 abatement without

compromising N2O mitigation due to dry soil conditions that are unfavorable for

denitrification. Immediate incorporation of manure (pig, cattle and poultry manure) into

the soil by ploughing may reduce up to 90% of NH3 compared with no ploughing

(Webb et al., 2010). Ammonia abatement will decrease to 50% if soil incorporation is

delayed for some hours (Dell et al., 2011), or incorporation systems other than

ploughing are used (e.g., discs, tines; Thompson and Meisinger, 2002). Fertilizer

injections and tilling within the first 24 h after application are not popular among

farmers because of the additional costs and technical difficulties associated.

In the case of digested agroindustry by-products, the increase in NH4
+ associated

with the transformation process improves fertilizer potential, but may also enhance N

emissions through NH3 volatilization. The final effect on direct and indirect NO

emissions will be determined by the complex interactions involved in the soil-plant

system, which are influenced by the composition of the organic amendment, but are

tightly controlled by the soil conditions (e.g. water content, temperature) and the time

and method of application (Thorman et al., 2007). Similarly, for sewage sludge applied

to croplands as soil amendments, large amounts of N in NH4
+ form may be released,

providing a substrate for nitrification (Kleber et al., 2000) and thus increasing NO

emissions (Roelle and Aneja, 2002). Techniques to stabilize sludge improve the soil

retention of organic C (Dere and Stehouwer, 2011) and reduce the risk of N leaching



(Correa et al., 2006) due to the low proportion of available N (15-20%). In contrast,

thermal-drying of sludge causes an increase in easily-mineralizable organic N (Tarrason

et al., 2008), with readily plant-available NH4
+ of up to 85% (Gendebien et al., 2008).

This may lead to, not only to higher GHG emissions due to enhanced activity of

nitrifiers and denitrifiers, increasing risk of NH3 volatilization.

The inclusion of a NI with any NH4
+-based N fertilizer will retain N in the soil in

the form of NH4
+, thus reducing potential losses by NO3

- leaching (Quemada et al.,

2013). By inhibiting nitrification, NIs can also mitigate NO emissions (Qiao et al.,

2015; Guardia et al., 2016). The expected increase on NH4
+ in the upper soil associated

with the use of NIs may increase the risk of NH3 volatilization if environmental and

weather conditions are favorable for this process and the fertilizer is applied to the soil

surface. On the other hand, the production and transport of inhibitors may increase

emissions of CO2. Reductions in NH3 volatilization induced by UIs may increase soil

mineral N prone to be lost as NO3
- leaching, which would eventually increase indirect

N2O emissions. However, the few field investigations carried out under Mediterranean

conditions have not shown any significant UI effect on N leaching (e.g., Sanz-Cobena et

al., 2012).

Improved irrigation techniques have been shown to reduce NO3
- leaching

(Quemada et al., 2013) as a result of lower soil moisture and a lower proportion of wet

soil surface, but may potentially increase NO emissions (Sánchez-Martín et al., 2010a).

In the case of fertigated soils, indirect N2O emissions from leached NO3
- would be

reduced due to lower irrigation rates and higher irrigation frequency (avoiding deep

percolation), as well as better synchronization between N supply and plant N needs

(Quemada et al., 2013).



3. 3. Crop yields

Adjusting N fertilization rates to crop needs, if properly done, does not have

negative effects on crop yields (Yagüe and Quilez, 2010), but only on reduced N losses.

Similarly, the use of organic amendments instead of synthetic fertilizers does not have a

negative effect on crop yields per se. As occurring with synthetic fertilizers, applying

solid manures only as N fertilizer could decrease yields if N application rates (and/or

timing) are not precisely adjusted to crop requirements (Abalos et al., 2013) (Table 1).

This may result in an effective mitigation per surface area but the yield-scaled N2O

emissions could increase.

Solid manures are usually applied in combination with synthetic fertilizers or

liquid manures to achieve adequate N application rates. For slurries, increases in cereal

yields have been reported, presumably due to a more balanced nutrition (Plaza-Bonilla

et al., 2014a). However, in more productive areas (e.g. irrigated or sub-humid) and

high-yielding crops (e.g. maize) farmers tend to complement slurry application with

synthetic fertilizer as a top-dressing application (Bosch-Serra et al., 2015). The use of

urease or nitrification inhibitors in combination with synthetic fertilizers has shown

slightly positive or negligible effects on crop yields (Abalos et al., 2013). No significant

effect of 3, 4-dimethyl pyrazole phosphate (DMPP) on crop yields has been measured,

while increases in yields (5-10%) have been measured when using DCD (Vallejo et al.,

2005; Abalos et al., 2014a; Huérfano et al., 2015).

Diversified crop rotations have shown to improve yields (Lopez-Bellido et al.,

2000; López-Fando and Almendros, 1995) (Table 1). On the contrary, the presence of

BF in rotations is usually associated with decreased SOC contents (Álvaro-Fuentes et

al., 2008; Ryan et al., 2009) enhancing the cropping system GWP, but also affecting soil

fertility and the yield-scaled GHG budget. The benefits on crop yield and direct N2O



emissions (considering the whole intercrop-cash crop cycle) are enhanced when using

legume CCs (Quemada et al., 2013; Doltra and Olesen, 2013; Tonitto et al., 2006) but

there may be drawbacks for direct mitigation of N2O emissions during the intercrop

period (Basche et al., 2014; Guardia et al., 2016), as well as for preventing N leaching.

Further research should analyze these trade-offs in the short- and long-term, considering

both direct and indirect N2O and other GHG emissions.

In the case of soil management practices, although highly dependent on

pedoclimatic conditions, increases up to 20% in yields have been reported in

Mediterranean environments under reduced tillage (Cantero-Martínez et al., 2007;

Pittelkow et al., 2014) with some exceptions (Pittelkow et al., 2015).

4. Effect of agricultural practices on the total GHG budget of rain-fed and

irrigated cropping systems

The main management practices affecting C sequestration, N2O and CH4

emissions have been discussed, so the most promising measures can be selected,

considering the overall GHG balance in each specific Mediterranean agro-ecosystem

(Table 3). The dominant GHG sources of each cropping system and each particular area

(local pedoclimatic conditions) should be considered for prioritizing the adoption of

efficient techniques, but also taking into account all practices that could provide an

optimum balance between GHG mitigation and crop yields while saving/maintaining

farm expenses or leading to an efficient use of available resources.

The study of Aguilera et al. (2015a) pointed out that the main GHG sources in

herbaceous cropping systems in Mediterranean areas were emissions from machinery

due to the low direct GHG emissions in these systems. Guardia et al. (2016), in a non-

irrigated cereal-legume rotation, also confirmed that the relative weight of N2O losses



was lower than that of farm inputs and operations, while C sequestration was the main

GHG component under NT adoption. Despite some uncertainties and variability that

could be attributed to the C sink (e.g., the depth considered for calculation, the decrease

of annual sequestration rate in the long term) (Álvaro-Fuentes et al., 2014), it appears

that practices such as NT/RT combined with crop rotations including legumes and cover

crops, without removal of crop residues, are the most promising for minimizing fuel

consumption and external inputs (e.g. conservation agriculture practices, as

conventional ones, might rely on the use of pesticides), and promote C sequestration

(Table 3). These practices may provide the best GHG balance in rain-fed Mediterranean

herbaceous crops, without negative side-effects on crop yields or N losses. Adjusting N

rates to crop needs may improve the GHG balance of rain-fed herbaceous cropping

systems through two components (N2O emissions and CO2 equivalents from production

and transport of fertilizers) while reducing costs, so this practice should be encouraged

in Mediterranean areas.

In summer irrigated crops, high N2O losses can occur (Aguilera et al., 2013b).

Consequently, agricultural practices based on an improved management of irrigation

water (e.g., drip irrigation), N fertilization (e.g., adjusting N rates and timing, use of

nitrification inhibitors) and both (e.g., fertigation) are the most promising measures in

these agro-ecosystems. Since fruit orchards are broadly characterized by efficient water

and fertilizer use (e.g., drip irrigation and drip-fertigation), other promising techniques

are cover cropping (thus minimizing fuel consumption) and pruning-residue

management for enhancing C stocks (Aguilera et al., 2015b) (Table 2).

Methane emissions are the main component of the GHG budget of paddy fields

(Aguilera et al., 2015a), so mitigation efforts should focus on water management for

minimizing these losses (see section 2.1.). Reducing water consumption in vegetable



cropping systems may lead to substantial GHG emission reductions (Aguilera et al.,

2015a).
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5. Socioeconomic performance of agronomic measures and constraints to

implementation

The degree of implementation of agronomic strategies proposed in this review differs

among countries under Mediterranean climatic conditions. Even so, management

actices (e.g. crop rotations, cover cropping, etc.) are

widespread, but there is room for increasing their application.

Adoption of conservation agriculture (CA) practices (i.e. coincidence in time

-

materials or living crops including CCs; and iii) crop rotations or associations) (FAO,

2011) in dry Mediterranean cropping systems has been reported by Kassam et al.

(2012). According to this study, CA practices are implemented in 72 million ha (14% of

the total cropland with this climatic regime). Outside the Mediterranean basin, where

adoption of CA practices is still modest (c. average of 3% over total arable land)

(Lahmar, 2010; Kassam et al., 2012), there are several countries and regions showing

successful adoption of CA. These include the USA (16% of total cropland under no-

tillage) (Kassam et al., 2012), central Chile (30% of rain-fed systems growth under CA

practices) (Derpsch and Friedrich, 2009), South Africa and south Western Australia

(CA adopted by 90% of farmers) (Llewellyn et al., 2009). In Mediterranean Europe,

Spain is the country with the largest cropping surface under CA (650,000 ha, 5% of

cropland, and 1,218,726 ha of perennial trees - mostly olives and grapes - in

combination with CCs) (MERMA, 2010; González-Sánchez et al., 2015). In North and

South African areas under Mediterranean conditions, the implementation of CA is, to

date, sparse (Derpsch and Friedrich, 2009; FAO, 2011). Even so, cereal-based CA

systems of Mediterranean regions of northern Africa and Southern EU (i.e. organic



farming systems) frequently show coexistence of livestock (e.g. small ruminants) and

cropping systems (e.g. olives), which facilitates CA practices such as crop rotations as

well as the reusing of manures as fertilizers (Kassam et al., 2012). Mitigation through

water management approaches also presents a high potential. Spate irrigation dominates

African regions under Mediterranean conditions (FAO, 2012). Irrigated crops are grown

under full controlled irrigation, which includes surface, sprinkler and drip irrigation in

the EU, EEUU and Oceania. Among the irrigation technologies used in Mediterranean

cropping systems, furrows are still widespread in summer-irrigated crops, followed by

increasing sprinkler irrigation systems (MAGRAMA, 2014). Surface irrigation with

furrows was applied in 62% and 71% of the total irrigated cropland (14,249 ha and

3,297 ha) for maize and wheat, respectively, according to a survey based report focusing

on farmers practices of the Ebro watershed (Spain) (Sisquella et al., 2004). Water-

saving irrigation systems such as drip irrigation (both surface and subsurface) are still

being developed (Zalidis et al., 2013).

Fertigation use is increasing, particularly in high-value crops (e.g. horticulture,

orchards) which are very representative in Mediterranean areas. According to FAO

(2014), around 9 million ha of cropland are currently under fertigation.

Nitrogen over-fertilization has been noticed in agricultural systems of high

income economies, mostly in irrigated cropping systems. On average, 57% of the N

crop uptake is over applied in Europe (Sánchez et al., 2016). This percentage is even

higher in certain Mediterranean EU countries, such as Italy and Spain, where there are

hotspots of intensive livestock production, leading to large quantities of manures

normally surface-applied to croplands (Sanz-Cobena et al., 2014b). As an example, in

maize crops of Catalonia and Aragón (NE Spain) farmers apply more than 400 kg N ha-

1 in 84% of the cropping area due to application of both manures and synthetic



fertilizers (Sisquella et al., 2004). According to expert judgement, this can be

extrapolated to cropping areas of California (USA), Australia and Chile although, in

these regions, surface application of manure is common on pasture and silage fields and

some rangelands.

The implementation of technological mitigation solutions focusing on

fertilization, such as urease and nitrification inhibitors, is expected to be limited in

Mediterranean cropping systems, mostly due to associated extra costs for farmers.

According to producers, the use of inhibitors increases cost of synthetic N fertilizer by

20% (Sutton et al., 2015). According to this, a larger expansion would be expected in

high income economies (e.g. EU, EEUU and Australia), where there could exist

subsidies for farmers to adopt this kind of technology.

Based on this analysis, there is large potential for implementing the strategies

presented in this review. However, there are certain constraints that may make their

implementation more difficult in the coming years.



5. 1. Constraints to management practice change

Constraints to management practice change by farmers, and the overall impact

of these constraints on implementation of the practice, assessed by expert judgment are

summarized in Table 2. The application of most of these agronomic measures can be

hindered by economic constraints. Several practices require an initial investment for the

acquisition of specific equipment (improved irrigation technology, fertigation, crop

residues and agro-industry by-product management, low/no tillage). Economic

constraints could also arise in the form of a regular cost due to possible yield penalties

(N fertilization adjustment, organic fertilization, low/no tillage and cover crops). In the

case of crop rotations and the use of crop residues and agro-industry by-products, these

practices can reduce benefits from other economic activities.

Most agronomic measures described in this review are also accompanied by

some kind of technical constraint. This mainly relates to N fertilizer adjustment, the

substitution of synthetic fertilizer by manures, the application of sewage sludge, no/low

tillage practices, cover crops and crop rotations. Some of these practices require

additional work, such as soil sampling, or learning how to use or maintain new

equipment (e.g. incorporation of manures, improved irrigation technology, fertigation

and low/no tillage). Finally, low/no tillage practices can increase weeds and soil

compaction problems, thus increasing the need for additional management practices,

particularly the first years after adoption (Soane et al., 2012; Armengot et al., 2015).

Social constraints to management change are largely associated with farmer

perceptions (Sánchez-Girón et al., 2004; Ingram et al., 2014; Sánchez et al., 2014;

2016). Conventional farmers can be reluctant to implement some of the practices

because of strong traditions (e.g., crop residue management, no-tillage, cover crops) or



having a perception of decreased productivity due to practice implementation (e.g.,

adjusting fertilization rates or shifting from synthetic fertilizers to manure). Further,

new recommended practices (e.g., nitrification and urease inhibitors, biochar), which

are not yet widespread among neighboring farmers can be negatively perceived

(Hussain et al., 2016). A lack of training for practices with high technical or

maintenance requirements (e.g., irrigation technology, cover crops, crop rotations,

adjusting fertilization rates) may lead to management difficulties, or the misuse and

decline of yields, in turn encouraging the negative perception of the practice's

effectiveness (Cantero-Martínez et al., 2007; Abalos et al., 2013). Legal restrictions for

management, treatment and transportation may also hinder the adoption of practices

related to the use of manure, agro-industry by-products or sludge.

Environmental constraints to the adoption of management practices are mainly

related to pollution (e.g., heavy metal accumulation through sludge use or by flooding

water management, Klee et al., 2004; Uraguchi and Fujiwara, 2012; increased

application of herbicides by no-tillage, Annet et al., 2014) and health issues (e.g., for

liquid manures, Cole et al., 2000; or by-products without pre-treatment applied to

crops). Other environmental constraints can be associated with risk of fire due to

leaving crop residues on the soil surface (Luna et al., 2012).

Nonetheless, except for environmental constraints, most of the barriers can be

overcome by long term monetary savings or gains associated with the practice. Most

practices reduce the need of exogenous N fertilizer, which is one of the main expenses

for farmers (Aizpurua et al., 2010; Abalos et al., 2014a; Aguilera et al., 2015a, b).

Improved irrigation technology, fertigation, or use of crop residues and agro-industry

by-products (Jordan et al., 2010) can reduce crop water requirements, whereas crop

rotations and improved irrigation technology may also decrease the need for pesticides



and/or herbicides. Conservation tillage practices also reduce labor costs and fuel

consumption (Sánchez et al., 2016), while improved irrigation technology and

fertigation save time and labor costs (Thomson et al., 2000). In other cases, the practice

improves soil quality and can increase crop yields and/or quality in the medium or long

term, as for the substitution of synthetic fertilizers by slurry (Plaza-Bonilla et al.,

2014a), the use of crop residues and agro-industry by products, fertigation and

improved irrigation technology (Ayars et al., 2015; Kennedy et al., 2013), low/no

tillage, cover crops and crop rotations (Ferrio et al., 2007). Finally, in some cases, an

extra benefit is produced, as for crop residues and agro-industry by-products

(Arthurson, 2009).

Further, there are increasing numbers of innovative farmers and associations

who are implementing some management practices with positive results and are

demonstrating their effectiveness, and advising to other interested or neighboring

farmers. Some of the practices are already included in the greening requirements of the

European Union Common Agricultural Policy (e.g., crop diversification, crop rotations

particularly those which involve legumes), allowing economic incentives to encourage

implementation among farmers (Ingram et al., 2015).

5. 2. Assessing policy options to regulate the implementation of different mitigation

strategies

The main outcomes of the literature review and the expert judgment as discussed

during a workshop held in Butrón (Bizkaia) in December 2016, to synthesize the most

promising measures to abate N2O from cropping systems is presented in Table 1 and 2.

This information enabled to perform an assessment based on the simple framework

developed by Pannell (2008). This framework was used for choosing environmental



policy options to regulate the implementation of different mitigation strategies (Figure

mitigation (i.e., scale from -100 to 100%) of every mitigation strategy based on the

collected literature review values.

Figure 2. Policy options based on the Pannell (2008) framework for the GHG mitigation strategies in

Mediterranean areas. This is based on choosing environmental policy options to regulate the

implementation of different mitigation strategies. The societal public benefit in the y-axis refers to the

percentage of mitigation (i.e., scale from -100 to 100%) of every mitigation strategy based on literature

review values. We calculated the private net benefit to the farmer in the x-axis according to the weights

(i.e., scale from -5 to 5) on the potential cost and benefit of every mitigation strategy. These values were

We cal

-5 to 5) on the potential cost and benefit of every



mitigation strategy (Table 1). When applying the framework, the use of agricultural

extension is highly recommended to engage farmers to adopt strategies that do not

imply a cost to the farmer, but that can have large benefits to society (e.g., adjusting N

fertilization, manure fertilization, fertigation, increasing legumes, advanced irrigation

technology, judicious crop residue management; see Figure 2). The agricultural

extension option may include the increase of agricultural demonstrations and

communications, to transfer scientific and technological findings to the farming

community. This would enhance access to technical education on management practices

that deliver mitigation, and support the enlargement of farming networks. Strategies

such as injection of slurries, cover crops, application of composted sewage sludge,

biochar and use of nitrification or urease inhibitors showed negative or negligible

economic net benefits for the farmers (private benefits). In this case, two potential

policy options might be applied, according to Pannell (2008): i) positive incentives if

societal net benefits are high; and ii) technology development or no action when the

public net benefits are moderate or not high enough to warrant incentives (Figure 2).

6. Beyond the plot scale: assessing the combined effect of reduced fertilization and

drip irrigation on GHG emissions

Selected management actions show a strong potential for mitigation of specific

GHGs. However, it is important to assess this potential within a context of the total

GHG budget, including all the involved processes in the production chain, beyond the

plot scale, in order to identify possible trade-offs.

Here we present the results of a simple exercise to illustrate these trade-offs by

comparing the total life cycle emissions (including infrastructure production, electricity

production, fertilizer production, and direct and indirect N2O emissions) associated with



irrigation and N fertilization inputs in a series of hypothetical scenarios. The scenarios

cover three irrigation technologies (drip, sprinkler and furrow) under two fertilization

application rates (100 and 300 kg N ha-1 yr-1) and two levels of water pumping height

(surface and 200 m underground) under Mediterranean conditions (Figure 3). We

estimated GHG emissions employing published emission coefficients for each process

involved, including specific direct N2O emission factors for Mediterranean irrigation

types (Cayuela et al., this issue). Drip irrigation leads to lower overall N2O emission

levels only under certain conditions, particularly when a high energy input has to be

applied for water lifting and N is applied at the high rate, as a result of lower water

demand and lower N2O emission factor (Figure 3).

Figure 3. Estimation of greenhouse gas emissions (kg CO2eq ha-1 yr-1) associated to irrigation and N

fertilization in Mediterranean cropping systems for three different irrigation types (drip, sprinkle and

furrow) under two levels of N fertilization rate (100 and 300 kg N ha-1 yr-1) and two levels of pumping

height (0 m and 100 m). Emission values are based on data from: infrastructure: Lal (2004); electricity:

direct electricity consumption from Aguilera et al. (2015c) and electricity emission factor from Aguilera

et al. (2015b); fertilizer production (average N fertilizers, Europe): ecoinvent Centre (2007); N2O

indirect: IPCC (2006); N2O direct: Cayuela et al. (this issue).



However, in some situations, the higher infrastructure burden and the energy

needed for pressurizing lead to higher GHG emissions (CO2 eq ha-1 yr-1) from drip

irrigation than from furrow irrigation. Likewise, furrow irrigation delivers the lowest

emission level when water is easily available and N is applied at the low rate, but the

highest when water is extracted from deep wells. On the other hand, our calculations

show that the outside-farm production of major inputs such as electricity and N fertilizer

is the main contributor to the balance in most situations explored, suggesting that the

main focus for reducing the GHG balance of these systems should focus on reducing the

CO2 eq. foot-print associated to these inputs. This could be achieved by reducing the

amount of inputs, e.g. optimizing N fertilizer rate and avoiding water with high

extraction costs. A complementary strategy would be to minimize the CO2 eq.

emissions from the production of these inputs by, for example, substituting synthetic

fertilizers by organic sources of N (residues, biological N fixation) and employing

renewable energy for electricity production. It is, therefore, important to consider all the

life cycle emissions under each specific circumstance in order to select the best set of

practices to maximize mitigation benefits and reach cost-effectiveness in producing a

unit of food.

7. Structural changes: behaviors and practices that can function alongside

agronomic GHG mitigation

Even if an optimized set of practices in terms of GHGs emissions from soils is

implemented, this could still result in an increased overall sectorial emission due to

energy intensive practices (such long term transport) or increased waste along the

production chain. Globally, 2.7 Tg of N are emitted to the environment in the

production of food waste (Grizzetti et al., 2013). A reduction of food waste could



significantly reduce the amount of reactive N emitted to the environment during primary

production, including N2O (Bodirsky et al., 2014; Lamb et al., 2016). Between 3 and

15% of N2O emissions could be suppressed by avoiding food waste at the consumer

level (Grizzetti et al., 2013; Vanham et al., 2015). Additionally, curbing food waste

would help to avoid GHG emissions associated with waste management, particularly

landfill CH4 emissions, which, in a Mediterranean country such as Spain, represented a

similar level of emissions as enteric fermentation by livestock in 2012 (MAGRAMA,

2014). This mitigation measure is not specific to the Mediterranean region, other than

considering the relatively high food waste rates that are particularly relevant at the

consumption level of the Mediterranean countries belonging to Europe or N America

(Gustavsson et al., 2011). While the consumer part is behavioral, the waste produced at

other levels, namely supermarket, distribution, agroindustry or farm, can be associated

with prices and competitiveness strategies (Parfitt et al., 2010). Food waste reductions

could be influenced by policy measures, but diverse conflicts of interest could represent

a barrier to implementation.

Changes in diet among population in developed and emerging economies have

led in recent years to unexpected increases in GHGs emissions due to increased demand

for meat and other livestock products. A reduction of animal protein consumption by

50% in the EU would lead to a reduction of GHG emissions by 25 to 40%, depending

on the alternative use of the land (Westhoek et al., 2014). In several Mediterranean

countries such as Spain, Italy and Greece, the share of animal protein in the total protein

intake has increased from ~35 to over 60%, evolving from a typical Mediterranean diet

to a diet rich in animal protein, over recent decades (Lassaletta et al., 2014c). A

reduction of 40% of meat and dairy consumption would reduce GHG emissions by 20

to 30%.



Transport of food can also contribute significantly to the footprint of agricultural

products. With the exception of France, all countries of the Mediterranean basin are net

importers of agricultural products, particularly in the form of feed. In 2009, the

countries of the Mediterranean basin net-imported 2.3 Tg N embedded in traded

commodities, most of them cultivated in South America, North America, Northern

European Countries and Russia (Figure 4). The production of feed in other countries

generates at the same time and spatial leakage of emissions that are not considered by

the national inventories (Lassaletta et al., 2014a). On the other hand, reducing feed

demand within Mediterranean countries could reduce the need for land expansion at

global scale. The reintroduction of the Mediterranean diet (i.e., a back reduction to

~35% of animal protein, see Bach-Faig et al. 2011 for a detailed description of the

current Mediterranean diet) would reverse this trend: animal production would be lower,

land would become available for other purposes and GHG emissions could be reduced

by more than 50% (Sáez-Almendros et al., 2013).

In summary, even if the most cost-effective practices are implemented in feed

and livestock production, their impacts on GHGs mitigation may be offset by increased

demand of high GHG-intensity products (such as meat), increases in food waste at the

consumer level and long distance transport. Both reduction of food waste and animal

protein consumption represent a reduction of the food demand, and will not only reduce

GHG emissions in the agriculture sector, but will also lead to important co-benefits such

as decreased demand of agricultural land, giving space for afforestation and reducing

deforestation of natural forests, reduce biodiversity loss and improving ecosystem

services.



Figure 4. Net protein fluxes (expressed in nitrogen) of food and feed imported to Mediterranean regions

from the otherworld countries in 2009. Mediterranean regions marked in black. Green countries are those

which are net exporting N to the analyzed region. Yellow/red countries are those which are net importing

N from the analyzed region. Arrows show fluxes between any region and the studied region. Fluxes

below 50 Gg N are not represented. Calculated following Lassaletta et al. (2014b).

Finally, disconnection between feed and livestock production systems at the

regional and global scales results in low nutrient use efficiency of agro-ecosystems,

because of difficulties in closing nutrient cycles. Lack of manure in specialized

cropping areas leads to higher needs of synthetic fertilizers, and overuse of manure

often occur in areas with high animal concentrations (Bai et al., 2014; Billen et al.,

2013; Lassaletta et al., 2014a; Naylor et al., 2005; van Grinsven et al., 2014). This

phenomenon is driven by the economic benefits associated with spatial concentration of

livestock systems, in combination with the low economic value of manure per unit of

mass. It has been observed for example in Spain and Italy where areas of livestock

production concentration generates too much manure and slurries that are difficult to

manage (Lassaletta et al., 2012; Penuelas et al., 2009). In addition, very high manure

application rates, typical of livestock concentration areas, are associated with unusually



high N2O EFs under Mediterranean conditions (Heller et al., 2010). The potential of

reconnecting livestock and crop farming for mitigating GHG emissions is illustrated by

several examples at the local or regional level (Granlund et al., 2015; Sasu-Boakye et

al., 2014; Soussana and Lemaire, 2014). Note however that, due to the high level of

animal protein production in some regions, both for local consumption and export, a

generalized transition to reconnection based on higher local feed consumption would

only be possible if it were accompanied by a reduction of animal protein in the human

diet (van Grinsven et al., 2015, 2014; Westhoek et al., 2014). A higher demand of non-

oil crops feeds replacing soy, with lower protein contents, could otherwise entail a

higher land demand that could offset the mitigation benefits or/and could compete with

human food. In several Mediterranean countries with livestock production highly

dependent on feed imports, a generalized reconnection would require a transition

towards the Mediterranean diet and also a reduction of food waste. Thus, important

positive synergies between dietary changes, food waste reduction, production close to

consumers and livestock-crop reconnection could arise when developed simultaneously.

8. Conclusions

The framework for GHG mitigation provided here, based on solid and

comprehensive scientific evidence, is of wide societal, environmental and economic

interest, affecting all stakeholders in the Mediterranean agricultural sector, from farmers

to governments.

Efficient implementation thus will require effective policies, closer collaboration

between scientists, stakeholders and farmers, and enhanced public awareness and

engagement.
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