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Subspace-Based Takagi-Sugeno Modeling for
Improved LMI Performance

Ruben Robles, Antonio Sal&enior Member, IEEEMiguel Bernal, and Temoatzin Gonzalez

Abstract—Given a nonlinear system, the sector-nonlinearity ~ Another drawback of the TS/LMI methodology is the well-
methodology provides a systematic way of transforming it inan  known fact that TS representations may not be unique [13].
equivalent Takagi-Sugeno model. However, such transforman — ance different performance levels can be proven with shap
is not unique: conservatism of shape-independent performece . . )
conditions in the form of linear matrix inequalities results in some independent LMIs for the same nonllhgar system, dependlpg
models yielding better results than others. This paper proides 0N the chosen TS model. To handle this issue, apart from naive
some guidelines on choosing a sector-nonlinearity Taka@ugeno trial-and-error, no systematic procedure of choosing atfjo
model, with provable optimality (in a particular sense) in the case TS model from the many options (infinitely many, actually) is
of quadratic nonlinearities. The approach is based on Hesah g\ qijaple in literature, to the authors’ knowledge.
and restrictions of a function onto a subspace. . - L . .

From the above discussion, the objective of this work is
choosing an appropriate TS model in order to maximise a
|. INTRODUCTION performance objective in regions close to the origin. The ap

Analysis and design of nonlinear control systems vigroach is based in first and second partial derivatives blano
Takagi-Sugeno (TS) models is well developed, evolving froemd Hessian). As shape-independent conditions considaeal
model-free heuristics [1], [2] to model-based exact regmés- convex hull of verticesA; as polytopic uncertainty, different
tions, combined with the direct Lyapunov method in order t6S models will, hence, have different shape and orientation
obtain linear matrix inequalities (LMIs) [3], [4], [5]. Thiatter of such uncertainty polytope. The key idea to be presented
case is based on theector nonlinearityapproach, obtaining is making the intersection of such polytope with some vector
an exact TS model via maximum and minimum bounds ofsubspaces (appearing in performance-related LMIs) asl smal
nonlinearity in a compact modelling region. Approximate T&s possible. A preliminary approach appears in [14].
models can, too, be obtained, via linearisation at severiat®  This work is organized as follows: section Il introduces
[3], or based on approximate fitting vi&. or SVD argu- preliminaries and motivates the problem; section Il pnése
mentations (linear or polynomial in the scheduling pararset shape-independent uncertainty measures; section IV shows
[6], tensor-product summation [7]); SVD-based technidoes how a Hessian based transformation can optimise such mea-
rule reduction of complex TS systems appear in [8]. Howevesures; restrictions onto a subspace are discussed in rsectio
these “approximate” TS models are intentionally left outr& V; consequences in an LMI context appear in section VI.
scope of this paper, concentrating on presenting impromésneDiscussion, examples and conclusion, are sections VIIl VII
to the exact sector-nonlinearity technique. Polynomiaizy and IX, respectively. An appendix is provided reviewingibas
models [9] will also not be considered in the present work.ideas and notation in sector-nonlinearity fuzzy modelling

Although the models are exact, a first drawback comes
from the conservatism of considering only the vertices and |
not the combination coefficients in the stability condigon ) i ] )
Thus, stability is actually proven for a family of linear gm  Consider a nonlinear dynamic system in the form
varying (LTV) systems in which the plant is embedded; these #(t) = f(z(t)) 1)
results are therefore calleshape-independertlO]. Shape
independency is the easiest way to get conditions in tkdth f: R™ — R™, having continuous second derivatives and
form of LMIs, which in turn are advantageous because thgy(0) = 0. Consider the linearised model of (1) to be:
belong to the class of convex optimization problems, which 0f ()
are efficiently solveti [11]. A few shape-dependent options T =Ax, A:=—f/—— (2)
are available [12], not considered here. Oz
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In some cases, performance optimisations are in genetaigenvalue X _ . .
problem form (GEVP); bisection plus LMI is a well-known api this paper 1 € R”, belong to ther — 1-dimensional standard simplex:
will understand “LMI” as the convex or quasi-convex probkerimvolving i
matrix inequalities, including GEVP, discussed in [11]. A:={heR":3_ h;=1h;>0Vi} (4)



Basically, each4; € R™*"™ is the matrix corresponding Under the above assumption, linearity in the third argument
to a particular combination of maxima/minima of previouslwill force that the optimal solution of (8), to be denoted as
defined nonlinearities in a compact set of the state space~°P:TS, hits the boundary of the constraint set: there will exist
Although the methodology is well known, a brief outline;* such thatY (A;-, D,°P%T"S) will be positive semidefinite
introducing some notation needed later on, appears in Amon-empty nullspace) for all feasiblg.
pendix, justifying that the number of rules in (3) is a powér o 3) Relation with performance of linearised mod&\hen
two, see (72). For later developments, let us denot@ dse problem (8) is solved with single matrixl, the optimal
ordered list of consequents matricds= {As,..., A4, }. The performance of the linearised model is obtained.

sector-nonlinearity techniqgue may not produce a unique TDS ition 1. Th timal perf
model, resulting in possible conservatism [10]. It is alsallw roposition 1. The optimal performance measure @), say

. . . opt i iafopt
known that the linearised matrid can be cast as a convex’ ' 'S obtained when there exisf3°* such that the above

combination of the verticest of any TS model of (1). conditions(8), particularised to a single matrix, are
fl;rom the d(?velopm(ints in tlhe Apth;_rll_céix, th;z ellgtfu%! structure aTY(A, D' APz =0 Yz #£0,2€C 9)
of h; coming from sector-nonlineari model ¢f: R™ — T opt_opt N
R is either in the form (71), as the sum otwo-rule models: v T(A, D%,y >0 Vo #£0,zeC (10)
F@) =0 o8 () Ay (5) for some vector subspace C R", beingC+ its orthogonal
1=1 =0 PR complement.

where the MFs belong to: ) ) o
Proof. As Y(,-,-) is @ symmetric matrix, it has an orthonor-

Ag={pij : pio=1— w1, ptij > 0,i=1,...,s, j=0,1} mal basis of eigenvectors, so when conditions cease to be
strictly feasible they will be equal to zero in a subspace (as

or as a tensor-product (72), wheitg in (3) has the structure: sociated to the null eigenvalues ¥ A, DPt, ~°Pt), denoted

hi(@) = [T1-1 tain iy (@) (6) asC) and strictly positive in vectors associated to the non-
_ a _ _ ~zero eigenvalues off (A, D°P* ~°P!) (which will belong to
The reader is referred to the Appendix for detailed definitione orthogonal complement ¢ i.e., C1). 0

and obtention of the above expressions.

2) Performance measureDOnce a TS model is obtained, With a suitable change of variable in the original lineadise
analysis and design can be done taking advantage of its xondgnamics, there is no loss of generality in assuming that the
structure combining them with Lyapunov functions such dmearised dynamics yields some constraints which fail nhe
V =z Pz, P = PT > 0, which naturally leads to conditionsz lies in the canonicaj-dimensional subspate
in the form of LMIs in P. A generic assumption on the
problem structure will be made: C={zeR":z= <?> n, neRI} (11)

Assumption 1. The pursued control objective is the minimi-I h di h ints for the li isath
sation of a performance measute subject to some model- n these coordinates, the constraints for the linearissteay

independent matrix-definiteness constraints (9) and (10) can be equivalently written as a single one in the
form below, for some matrix(y;:

(D) = 0 @)

ZTY(A, DOP P )z = o7 (Tn 0) 2, (12)

and model-dependent constraints: cLo 0

2T Y(A;, DY)z >0 Yo #0,Vi=1,...,r (8) Proposition 2. The (shape-independent) optimal performance
. i _ for (3) proven with(8), v°Pt T is equal or worse than°?* for

where D den_otes the decision variables (Lyapunov funcumﬂ,|e linearised systerf2) proven by(9)~(10). °PtTS > ot
controller gains, etc.) and all4; € A are given by the TS
model under consideration. Matrix expressiii-, -, -) will be  Proof. Note that the linearised! is in the convex hull of the
assumed symmetric, convex in its first argument, and linearrnatrices in the TS consequendsin exact sector-nonlinearity
the third argument. We will assume, too, thtand Y can models. Convexity in the first argument®f-, -, -) entails that
be transformed to tractable problems such as, for instander any D such thatY(A;, D,~°P»TS) > 0 we would have
LMI, so that suitable convex optimisation software will find (4, D,~°"*%) > 0. Evidently, then, the best performance
the optimaly and D. provable with (8) will be larger or equal thayf?® from the

I . ) ) linearised model (9)—(10). O
Many contributions, referred to in the introduction, set

up problems which can be expressed as the above assump-

tion (for instance, decay-rate ok, norm computations A. Other preliminary results

for continuous- and discrete-time TS systems, see exam-y qygh this paper, some other results/notation will beluse
ple section). Note that problem (8) ghape-independerss

memberships do not appear there: in (conservativeflape- )

i i _1Ini _ i ity “Indeed, if Y fail in a subspaceC (in original coordinates), canonical
mdependentanalys,ls . non-uniqueness of sector n(.)nlmeamé;( ression (11) is obtained by conforming a transformatiatrix = = Tz,
mod(_als ends up in different performance levels being provgfth . = (¢7y7)" asT = (T,. Te), where columns off¢ are a
for different (supposedly equivalent) TS models [10]. basis ofC, and those off,. are a basis o€+.



Proposition 3. For any two vectors), z in R™,

max ¢z = |9, min YTz =—|y].
llzll <1 llzll <1
Proof is trivial from scalar product properties.
Given M € R™*", the Frobenius normof M is defined

as|M|p = />~ >, mi;, wherem;; denotes the

element of M at row ¢ and columnjy; it verifies|| M|, =

some coordinate transformations, from a set of functip(is),
see (69) in Appendix.

Then, the next objective will be defining what the above-
mentioned fit means in formal terms, proposing a choice of the
aforementioned; («) derived from the equations which define
subspaceC, proving optimality for quadratic nonlinearities.
Given that all smooth functions are locally quadratic by the
Taylor series up to degree 2 when close enough to the origin,
the proposal in this paper allow to find the optimal TS model

\/omntmn \2 where); are thesingularvalues ofM [16]. lis pa _ :
If M is square and symmetrig; are, actually, its eigenvalues.in the above settings in small enough modelling regions.

Classical interval arithmetic: An interval n = [a,b] is a
convex subset of the real line, with minimumrand maximum
b, a < b. The suma, b] + [c, d] will be defined aga+c, b+d].
The productz x [a,b] will be defined aglaz, bx] if 2 > 0,
and as[bz,az] otherwise. The width of an intervdh,b],

with b > a, will be denoted asw([a,b]) := b — a. The

absolute value will be defined aga,b]| = max(|al,|b]).

Let us denotesym([a,b]) = [—]|[a,b]|,|[a,b]|]. Obviously,
]

w([a, b)) < 2|[a,b]], anda, b] C sym([a, b]).

Proposition 4. Letn = > ", x; x[a;, b;] be aninterval. Then,

max w(n) < 2 ? Alag, b; 2
max win) < 2y/S o ]

Proof. Obviously,n ¢ Y7 x; x sym([a;,b;]). Elementary
manupulations and Proposition 3 yield the required restlt.

Second-order approximation.Smooth functiong (z) around
the origin based on Taylor series can be seen as:

1
flx) = Jx+ §mTHm,

whereJ stands for the Jacobian whilé stands for the Hessian

matrix, evaluated at the origin:

8% p(z)
H =
83:18% ’

=0

i,7€{1,...,n}.

Since the Hessian is a symmetric matrix, there exists
orthonormal basis which diagonalises it; this implies #eth

Examples will show that the proposed TS models preserve
performance of the linearised model (the best one, from
Proposition 2) in a better way than other arbitrary choices
as the modelling region increases.

IIl. SYSTEMATIC TS MODELLING

Let us consider a TS model in box form (5) with a suitably
ordered consequent liA.

Definition 1. The shape-independent TS modgi(z, A) is
defined as a set-valued maff’ : R® — C(R™), where
C(R™) denotes the convex subsetsRst, given by:

s 2
5z, A):={y€R : 3u;; €A, s.t. y:Z Zuiinjx} (14)
i=1 j=1
where A in the left-hand side has been implicitly used to
denote the whole list of consequent models.

With the above definition, the following is evident:

Proposition 5. For any of the possible TS models of a given
f(x), evidently,f(x) € f*(z, A).

The core step in the sector-nonlinearity methodology deals
with single-output nonlinear functions : R® — R, conform-
ing a vectorp such thatf(z) = Az + Mp(x), see (68). Each
p; is a nonlinearity withone output, to be bounded between
two linear functions, see (70); therefore, this paper focusss fi
an analising these mappin@®* — R in order to tackle the
problem of choosing a TS model for improved performance.

nonlinearity close to the origin can be represented as a $unlater on, the case of multiple nonlinearities is discussed.

squares of single independent variablesHlf= VTAV, the

transformatioryy = Vx can express
eTHe = g(n) = \n? 4+ + A2, (13)

whereq, ..., A\, are the Hessian eigenvalues.

B. Motivation and problem statement

Let us, then, consider a functiofi : R™* — R, with
f(0) = 0. Due to convexity,f*(z,.A) is an interval for the
chosen class of one-output functions. The width of such-nte
val will be related to the conservatism of shape-independen
developments with the TS model.

As TS consequents are linear, considering properties of the
TS model over{||z| = 1} will be informative enough. This
motivates the definition below:

The basic idea arising from the above propositions is that, _ .
as TS vertex matrices!; drift away from the linearisation Definition 2. The normalisedvorst-case widtfWCW) of a
A, then, the “closer” the matriced; could be made to the one-output TS model with consequent Jisis:

such linearisation, the better the obtained proven perdoca

~ort:T'S might be. As the worst-case directions are those in a(A) =
subspace’, the goal of the TS modelling will be fitting “as

closely as possible” the model in the subspéceThis idea
motivates this manuscript.
Given the non-uniqueness of the TS modelling,

objective of this paper is providing a systematic methogdplo

w(f* (z, A))
2€Q,z40 1|
Definition 3. A TS model with consequent ligt is WCW-
optimal if there is no other choice of consequent matrices

(15)

the ﬁrg\{ith betterg(A).

Actually, this paper will prove that a Hessian-based method

to build an infinite family of possible TS models based onlogy obtains such optimal TS model ff(x) is quadratic.



Later, the optimality criteria will be recast to finding the IV. COORDINATE TRANSFORMATIONS
model having the lowest uncertainty width in the intersmcti

of modelling region® with a particular subspade. In ordinary TS modelling, as discussed in the previous

section and the Appendix, the selection of a particular elgm
Definition 4. Given a vector subspac€, the subspace- Of p(z) in model (68), say;(x), assumes the existence of a
constrained WCW of a one-output TS model is defined as:specific linear function of the statg(x); these selections are
usually chosen by “manual inspection”, such that, defining

oc(A) = el T () = pz:(m)
ni(x)

o pil@) = pi(z)ni()

So, the optimal TS model will be redefined to be the ongitapie limits of;(x) exist, so a 2-rule model gf; can be
minimising gc. Again, in a quadratic case, the solution to thg,4¢eq (see Appendix).

minimum ¢ will be provided in this paper.
Example 1 (Ad-hoc modelling) Consider f(x) := —4x; +
dxyxo, expressed ag(x) = —4x1 + 4p(z), p(x) 1= 122, 1O
A. Optimal shape-independent TS model for SISO nonlinearte modelled in the unit circle. Eithefp(z) := z1, n(z) :=
) . , , , ) xo} or {p(z) := x2, n(x) := x1} could be reasonable choices

Consider a_smgle-v_anable nonlmegnty Wlbﬁ: R = R, 15 craft a TS model. These two possible choices)foan be
f((X =0 3_”d r'{[s classmatl zefctor—nonlln_earlty TS model, (6%)isyally found in the aforementioned inspection, leadimg t

in endix, here repeated for convenience:
PP P . f(m) = —4$+h1(l‘1)$2+h2($1)-(—1‘2), hy = 0.5($1+

_ 3 ; 1), ha = 1 — hq, with the associated shape-independent

=h +(1-=nh 16 .

f(x) = h(z) for + ( (z)) frx (16) model f*(x) = s, 2], OF

Qeing fO = maxseo f(x) and fl = mingeq f(x), with o flx)= 74$+h1(12_)$1 tih2($2)~(—xl), hi1 = 0.5(ze+

f(z) = f(x)/z. Consider now any other possible consequent 1), hy =1 —hy, being f*(z) = [—z1, 21].

modelsgy and g, such that there exists(x) allowing writing  |ntroducing generic coordinate transformations, the abov

A . . TS models can be expressed as a particular case of an infinite

f(@) = h(@)gox + (1 = h(z))G1x (17)  family of choices, as the discussed below.

Using (14), withs = m = 1, so f*! is an interval, we have: Example 2 (i.e., Example 1, continued)The motivation of
this section is that, actually, there aiafinitely many other
<0 choices for the TS models ffx) in example 1. If we express

f(z) € £z, {do, 0 }) = {{Zijgéﬂv x ; 0. 1 !
) ) = f(z) = —da1 + @Pl(m) - @pQ(x)

In order for the abové to exist, the consequents must verify

(proof is straightforward, omitted for brevity): with pi(z) = (az + fr2)* and py(x) = (az1 — fra)?,
we could also think ofy = (ax1 + Bxzo) for the TS model

Go>fo, @1 <h (18) of p1(z) = n?(xz), and, on the other hand, choosg =

(axy —Bxy) for the TS model gf (x) = 13 (z). For notational

Then (18) translates to: convenience, let us defing := (a ), v2 := (—a ), SO we

3 . _ haven; = viz, 12 = vox.
Proposition 6. The shape-independent TS mo(li8) fulfills The resulting TS model, in box for(d), would be a four

. - . o vertex representation:
[ (@ { fo, f1}) C f"(2,{do, 41 })

for anygo, ¢; such thatf(z) € f*(x, {Go,q1}) for all = € Q.

f(z) = ((10A10 + p11A11) + (p20A20 + po1do1))z

_ _ _ wherepio + p11 = 1, poo + po1 = 1, and
Note: on the sequef**(z, .A) will be shorthanded tg** (x)

when no confusion on the consequent parameters arises. In = A;,=(—2 0) + ingi’ Aj=(—20)+ igﬂvi
functions of one variable, the only reasonable choice of af af
consequents is. that in (67), because of the above propusitig,, = max,cq ni(z), &1 = mingcqn;(z), details omitted
Such model f*(z, {fo, f1}) will be, also, shorthanded tofor brevity. Note that the two prior “manually” obtained TS
froert (). models in Example 1 correspond 0 € 1, 3 = 0) or (a = 0,
The objective of this work is generalising the easily prdeab = 1), respectively.
Proposition 6 above to functions of several variables. In
order to do that, a reformulation of the sector nonlinearit
methodology, altogether with a coordinate transformatiih
be presented in next section.

As the number of possible models is infinite, the question
f which is the “best” one arises. Using the WCW-optimality
criteria in Definition 3, in the quadratic case, such best ehod
can be found via eigenvalue decomposition, leading to the

3 . _ main result in this section below.
Such subspace will actually come from constraints (9).



Theorem 1. Consider a quadratic nonlinearity : R™ —  which can be bounded as
R, f(z) := 2T Mz, with M symmetric, with an eigenvalue- -
eigenvector decompositiald = VAV with A diagonal and 5>9 Z (Mg £y .M?) (26)
V orthonormal matrices. Consider, too, a modelling region - ' L

Q :={z : ||z|| < 1}. Then, the WCW-optimal TS model is : . . L
given by expressing where the term at the right-hand side of the inequality is,

actually, twice the Frobenius-norm, i.&.,> 2||M|| .
flz) =310 Nipi(x) (19) The key idea for the theorem is the fact that the above bound
is tight if M is diagonal, i.e.,

i=1

being \; the eigenvalues of\/ and p;(z) = nZ(z), for
ni(z) = V'z, i.e.n; being the projection of: over the unit- 7 =2M|p=2y/>1 A7 (27)
norm eigenvecto;” associated to\;. Then, the optimal TS ) )
model has the form: Hence, if the representation ¢f(z) = 27 Mz had been
chosen in diagonalised coordinate§VAVTz, VIiz = p,
Fl@) =0y S g pig ()i VT o (20)  f(n) = nTAn, the resultings would have been the lowest

possible one. Note that, a/ is symmetric, there exists an
orthonormal basis of eigenvectors so the transformagiea
VTz preserves the norm and, hence, exploration gwér= 1

where ;0 := maxzeq Aini (), ¥ = mingeq \ini(z) and
membership functions are:

VEIe — i ‘ is the same as exploring ovén|| = 1. This proves that the
pio (@) 1= Vio — b1 pir (@) == 1—pio(x), i = {1,...,n}. diagonalised representation is WCW-optimal. O

Proof. For symmetricM, f(x) can be expressed as: Remark 1. If the modelling region is not the unit ball,
a scaling/change of variable should be carried out before

flz)y=>", (Miixf + 20 2Mijxixj) obtaining the optimal TS model for a quadratic nonlineasity
(21) that the new modelling region coincides with the one reglire

=3 (Mnxz + 25 2Mij=’ﬂj) ;. in the above theorem.
The last expression can be equivalently written as Remark 2. If the function to be modelled is non-quadratic. the
n - diagonalisation-based approach no longer applies. Howeve
fla) =2y pil@)as, (22)  close tox = 0, the function may be approximated to:

— . ) 1
with p, defined as: flz) ~ Ja + QITHQJ
~ . B . n . .

pi() i= Miii + 35 2Mijz;. (23) where J is the Jacobian andd is the Hessian atc = 0.
Note that eachp;(z) is linear in z; its maximum and min- Hence, the coordinate changes arising from diagonalisatio
imum over the unit ball, defined as, 7, respectively, so of the Hessian would obtain a TS model guaranteed to be

p. < pi(z) < p;, are from Proposition 3: optimal in a small enough sphere around the origin (so that
- higher-order terms can be neglected).

pi = \/Mi +AYL MY, p =, (24)  In later developments, the optimal shape-independent TS

i 2,0pt
hence the TS model arising from (22) will be: model from (20) will be denoted a#™°**(z).
n B V. TS MODELS WITH OPTIMAL PERFORMANCE IN A
flo)y=> (uio(iﬂ)ﬂi + ﬂil(x)ﬁi) ; SUBSPACE
_ = _ _ As discussed in the problem statement, an accurate fit of

and the map in (14) will be the interval: the shape-independent TS model in the performance-dritica

si no— no o subspacé€ is often needed. This issue will be now adddressed.
[ (x, A) = [* Zi=1 pilwil, Zi:l Pt|xz|] (25) P

So, from Definition 2 we have A. Restrictions
n Definition 5 (Restriction of a function or set-valued mafhe
i > 2p; - |ail restriction of a functionf : R” — R to alinear¢-dimensional
S =1 (¢ < n) vector subspacé€, will be denoted asf|c : C — R,
and such maximum on the unit sphere (Proposition 3 agalfiyially defined asf|c(z) := f(x) Vo € C. An analogous
is given by: definition will be assumed for the restriction of a set valued
_ n map, such ag*, i.e., ¢ (x) := f5(x) Vx € C.
S p g, ie., file(x) = f(2)
Consider now the subspacebeing defined as:

which, substituting (24), results in:
C={zxeR":3neR! st = Hn} (28)

52 — 2 2| — 2 2 thus, being H a n x ¢ matrix mapping from canonical
gi=>y 4| M;+4)» M; | =4 M:i42 M , g q pping
; ; ! ; ; ! coordinates irMR? to C.



Then, abusing the notation, the restriction can be alvoof. Representation (32) is a TS model ff:(n), i.e., of

defined in terms of-dimensional subspace coordinatgsas
fle :RT—R

fle(n) = f(Hn), neR? (29)

g(n). Then, Proposition 6 yields the required result. O

In subspaces whose dimension might not be one, we can
assert the following result for quadratic functions, which
extends Theorem 1 in order to consider restrictions:

Given a function and its restriction, a complementary fun

tion can be defined fulfilling the following proposition. Theorem 2. Consider f(z) being a quadratic function. De-

note asg(n) = flc(n) the restriction of f to C, being
Proposition 7 (Complementary function)For any subspace g**°P*(n) the Hessian-based optimal shape-independent TS

C, a functionf : R — R can be decomposed as:

f(x) = f-c(x)+ fle(z)

where f_c(x), denoted as complementary function, fulfill

foc(x)=0forzeC.
Proof. It is evident, settingf_¢(z) := (f(z) — flc()).

Consider an invertiblen x n matrix T He H),
formed by completingd with suitablen — ¢ linearly in-

model ofg. Then:

(") < a(f*c(n, A)) (34)

Proof. Proof is analogous to Proposition 9: agn) C

f*%c(n, A), the Hessian-based representatiory ©f) has the
lowest maximum uncertainty width, by Theorem 1. O

Basically, as intuitively expected, Proposition 9 and Theo
rem 2 say that it is better (or at least equal) to get a direct
TS model on the restriction of a function —left-hand side of

dependent columns, so the following linear transformatiq83) and (34)- than, first, modelling on a larger space and,

T:R" — R"™ is set up:

later, restricting the resulting TS model —right-hand sifiehe

referred inequalities—. This motivates using the decoritipos
in Proposition 7 —equivalently, (31)— to obtain WCW-optima
TS models of the restrictions, as detailed in next section.

v =T(En) =T <5> (30)

n

with n € R? the subspace coordinates, afg R" 7 being
dummy complementary coordinates. Then, using the abdde Global models with optimal performance ¢h
transformatioril” betweenz and (§,7) and notation (29), we  Up to now, results in previous section have discussed
can express: optimality of certain TS models definemhly on a subspacé
_ _ 1] 2] (indeed, restrictions from Definition 5 are meaninglessiolat
@) = FTEm) = F7(En) + f7) C). However, applications usually require TS modelling ih al
being /1! and f[2! defined as: of R™ and not only inC. Expression (31) comes handy now.
[ Consider a quadratic functiofi(x) = 27 Mz and theg-
FBn) == F(T(0,n)) = fle(n)

dimensional subspace defined in (28). Consider, too, any of
the possible linear transformatiofisand its associated matrix

If the original functionf verifies f (0) = 0 then these functions

verify f11(0,1) =0, f11(0,0) =0, f2(0) = 0.

T in (30), and expresg in the new coordinates as:
Definition 6 (Restriction of a TS model)Consider a box-TS

(31)

(35)

s = () ()

model of f(z) given by(5). The restriction of such model tofor F = T' MT. Using the new coordinate&, ), the

a linear subspace given in(28) results in:

fle(n) = Z Zuij(Hn)Ainn

i=1 j=0

The shape-independent TS modél(z,.A) from (14) can
be also restricted t@, allowing to prove:

(32)

Proposition 8. The restriction off to C is contained in the
restriction of the shape-independent TS model, i.e.,

fle(n) € f*|c(Hn, A)

Proof is obvious from Definition 6 and Proposition 5,

Proposition 9. If the subspacé€ is one-dimensional, denoting
g(n) = fle(n), the optimal TS model of the univariate

functiong(n) : R — R fulfills
9> () C f*|c(Hn, A)

for any choice of consequentt in the original model.

(33)

subspac& becomes the canonical subspd6en), n € R9.

Express, therf(z) decomposed in the form (31). Given the
fact that f['/(5,0) = 0, as fIl is quadratic we can express,
with trivial manipulations of matrix¥' above:

e = (€7 o) @1 8) @
FE ) = 1" Foan 57

With suitable choices off and H: when conformingl’, are
assumedF;; and Fy, diagonal, without loss of generalfty

(36)

4Indeed, if it were not the case, consider the diagonalisatiBso
VUTA,,VW, Fi1 = VETAEVE. Then, t.he change of variable* = V;n,
&* = V£ would render a representation:

* * * * A 0 é*
e ) = (&7 o) (VanfVE 0) (n>
) =0T Agn*

So, replacing a supposed (initial guesﬁ,}, by a correctedd,, = Vnﬁn and
H¢ by He = Ve He, the requested diagonal form would be obtained.



(2]

Denote as)\,”, ¢ = 1,...,q the diagonal elements (i.e.,and F», in (36) and (37) would be usable for obtaining the
eigenvalues) offy,; denote asAl”, i = 1,...,n — ¢ the optimal model in either the subspage= 0 or 7 = 0.
diagonal elements ofy,. Then, in then, ¢ coordinates, we  Note also that the change of variable should be reverted in
can write &, m;, in order to have the TS model (41) depending on the
1 _ (T T Fiy 38 original x coordinates instead of the transformed ones (details
SR &) (5 1 ) (F21) ¢ (38) omitted for brevity).

So, basically the procedure to obtain the optimal model for
a subspacé€ of a quadratic function would be:
1) Get a basisH of C, complete it and obtaifl’, F, and
Flen) = (gT nT) (Fn) subsequentlyf!! and f2!.
’ Fa 2) Obtain the Hessian eigenvectorsfdf (yielding diagonal
Fy1) and 12! (yielding diagonalFss,).
3) Combine both steps in a single change of variable.

Let us denotefltl(¢,n) = F(&,n)¢, being F the linear
function F : R™ — R™~7 multiplying ¢ in (38), i.e.,

actually expressed as lax (n — ¢) row vector, and denote
as F; its elements, forl < ¢ < n — ¢. Then, (38) can be

expressed as: 4) [optional] Express the box-TS model (41) in original
n—gq coordinates.
UEn) = Ful&mé The outline of the procedure is illustrated in example below
i=1

o . . . . Example 3. Let us model the functioff : R® — R given
Denoting /o := max (T ), andFiy := min Fi(1™"x), by f(z) = «} in the 2-dimensional subspatepanned by

we can expresg!!l as the TS model: C={z € R° : x=H1, n € R*} with
n—q 1 B g (11 -1 05 1)'
FUED) =D () Figl (39) =20 2 -4 —2) -

=1 j=0 . . . . . ..
= In order to avoid scalings so that the unit circle in original

Manipulating 12 (n) = 7, )\Fhﬁ, we can express it as: coordinates keeps being the unit circle in transformed ones
B let us obtain an orthonormal basis af (overwriting H

1 . .
2y _ Nm with Matlab commandH=or t h( H) , for instance), as well
fom) = Z; - pij (€)Gigni (40) as an orthonormal basis of its complementary space (Matlab
=t=0 H_xi =nul | (H)). With these two basis, we can form the
with Gio == max A2 and Gy := min A2 ;. change of variableT in (30), with 7' actually being an
rcQ [P

%rﬁhonormal matrix. So, variables; to x5 will be mapped
fo (&1,&2,&3,m,1m2) and the above subspace will be, in the
new coordinates:

S xre
From Theorem 2, because of the diagonal representat
of fRl(n), the above TS model (40) is the WCW-optima
one, in the sense of Definition 3, for the restrictigf: in
n coordinates. C={(&1,6,8,m,m) €ER®: & =& =& =0}
Combination of the optimalf2! with its complementary

function f1!! results in the main theorem of this section: Let us check the accuracy @hof several possible TS models:

a) Inspection-based coordinates; The first TS model to be

Theorem 3. Given a quadratic functionf(z) = 27 Mux, considered is the “inspection” one given by:
subspace’ defined in(28), and the change of variablé0),
the TS model f(x) = hy(w1)Aow + ha(z1) A1z (42)
f(l‘) = f[l](g,n) + f[Q](n) with hl(l‘l) = 0.5(351 + 1), hg(xl) =1- hl(l‘l), Al =
n—q 1 B ¢ 1 B (41) —Ap,and4p=(1 0 0 0 0). The model yields
=2 2 ma €Tk + 3D wisGum i) = [~ 2], 43)
=1 7= =1 7=

Of course, this would end the classical way of TS modelling
in prior literature. The issue under discussion is, however
Proof. As the restriction off[!] onto C is zero, and so itis  how accurate is such model in subspate

the restriction taC of the shape-independent TS model arising In order to assess the accuracy @f2) onC, let us trivially

is WCW-optimal in subspace in the sense of Definition 4.

from (39), i.e.,f[15:(0, 1) = {0}, it is easily seen that: carry out the change of coordinatds by rewriting £ in
o s (43) replacingx; by its exEression on the new coordinates
Fle(€m) = F7 e(n) (n,€) arising from matrixT’

so optimality inC is not lost when adding (39) and (40) as the 21 = —0.1379¢; + 0.6081&, + 0.1379¢5
complementary function (and its TS model) is zerothn O
4 0.33857; + 0.69117;

Note that the diagonal form ify; is, actually, not needed in
the proof. However, there is no loss of generality in assgmin “The actual subspace is generated via performance opfiemisgd) of a
it it has b d hin the ab di ion b 5th-order linearised model. The actual model matrices avidslare omitted
It It has been stated as such in the above discussion €Cays&use they are not relevant for the time being. Full exesnplill appear

being bothFy; and F»; diagonal, the same matricég,, F>;  on Section VIII.



b)

c)

As ) are subspace coordinates, the restrictigff|c is which is, as expected, lower than that frqd4) and (47).

" In fact, asf(x) was quadratic, Theorem 3 states that there
J*le = [~(0.3385m +0.6911n;), 0.3385m: +0.6911n.] is no othe{(lirzear cgordinate change which gives a better
for ) ranging in the unit ball T is orthonormal), the worst- figure for g¢ than that in(49).
case width (Definition 4) on the subspa€eis given by For illustration, reverting the change of variable by suita
twice the norm ofs := (0.3385,0.6911), by Proposition inversion of the transformation matrices, we can write:

3 and the fact that all intervals are symmetric. The result
for the TS mode{42) is:

e = 2||k| = 2 x 0.7695 = 1.5391 (44)

& = (0.6386 —0.5473 0.1672 0.4865 —0.1672)x
e = (0.7696 0.4542 —0.1388 —0.4037 0.1388)z
so, replacing these expressions(#8) and multiplying by

1.064 and 0.592, respectively, we can define consequent
matrices:

Non-optimised change of variable: Now, let us test the
ideas in Section V-A, i.e., that carrying out TS modelling
afterthe change of variable will lead to a better model than
the one above, where TS modelling was cartiedforethe Ay = (70.8591 0.2088 0.1779 —0.5449 —0.1477)
changez = T'(1,§). Asp = (—0.1104 0.4794 —0.0990 0.3032 0.0822)
Writing now f(x) = 27 Mz being M the matrix with all A=A Ao — A

its entries equal to zero except thi 1) term (equal to 1), o A, el a0

we can express it in the new coordinatesias- T MT such that a final (WCW-optimal in the requested subspace)
(not displayed, to save space). The restrictiolf tén such box model(5) with s = 2 can be written in the originak
n coordinates isf|c(z) = nT Fyan, with: coordinates, as an alternative to the nai@42).
I, — 0.1146 0.2339 (45) The above example has shown how a rewritingréfhas
22710.2339 04777 reduced the uncertainty due to shape-independence frofn 1.5

to 1.18 in a particular subspace These manipulations will
be able to improve associated LMI results in fuzzy contrsl, a
discussed in next section.

where, as expectedy, = x-x7. S0, we can expreggn) =

fle(Hn) = (0.11461;4+0.467915) 11 +(0.4777n3)15. Com-

puting the norms 0f0.1146,0.4679)7 and (0,0.4777)7,

by Proposition 3, the resulting TS model yields on the unit

circle a shape-independent interval: VI. USE OF OPTIMALTS MODELS IN LMI's

Let us consider a nonlinear system (1), its linearisatloin

(2) and the nonlinearitiep(x) in (68). The objective of this

It can be shown that, agrange on the unit ball, the worst- section is using the previous developments to suggest a TS

case width in this case will be: model which preserves performance of the linearised system
_ proven with some LMIs (arising by suitable transformations
Gc =2/0.48172 + 0.47772 = 1.357 47 of (7) and (8), if needed) by avoiding larger than necessary

which is lower than that fronf44), as expected. uncertainty off*? in key subspaces, given by Proposition 1.

Optimised coordinates: Obtaining three orthonormal ei-

genvectors of the top-lefix 3 block of %, arranged in @ A Effect of the nonlinearity in the Lyapunov equations

3 x 3 matrix V1, as well as two orthonormal eigenvectors Wh h imal soluti f a LMl for the li ised
of the bottom-right2 x 2 block of said F —the Fi, en the optimal solution of a or the linearise

matrix in (45) above—, in a2 x 2 matrix Vs, the matrix systemi = Az has been obtained, we are in the situation
V = blockdiag(Vi, Va) is the Hessian-based coordinate” (9)-(10). However, the actual performance proved for a

transform of each of the subspaces so that the resulting ﬁ;gnlmear system would require replacing the linearisedest

model is optimal in the sense of Theorem 1. The overgfrvatives: = Ax by the nonlinear ones = A‘fc * Mp(x)'
coordinate change i = T - V - (7 )7, yielding the Of course, that would destroy the LMI form ads nonlinear,

transformed model of? as: so the objective is generating a sector-nonlinearity TS ehod
of M p with low conservatism which still allows proving good
f(z) =0.4078 £2 + 0.9828 312 + 0.592 73 enough performance with LMIs.
=(0.4078 &3 + 0.9828 135) &3 + 0.592 2 As the perfomance limit in (9) and (10) is hit far € C,
that means that the restriction pfz) onto subspac€ must
which, asv/0.4078% + 0.98282 = 1.064 would lead t0 @ pe modelled with precision in order to lose the least possibl

g°'=[—0.4817,0.4817] xm; + [~0.4777,0.4777] xn2 (46)

4-rule TS model on the unit circle given by: performance (ideally). So, at first glance, applying Theore
si(\ i (7 1 (¢ TN\T 3 to each element gf might seem a viable solution and so
Fi@) =1 (T v (5 K ) ) (48) it is, indeed. However, further improvements may be crafted

=[—1.064, 1.064] x £3+[—0.592,0.592] X 72 by considering the structure of matrix/ and the obtained
Lyapunov function. Such ideas will be detailed next.

First, note that, actually, it is not each componenip@f)
the magnitude to be precisely modelled. Indeed, let us assum
gc =2x0.592 =1.184 (49) there exists a Lyapunov function whose time-derivative wil

The worst-case width on the subspage= & =& =0
results, in this case:



require, in turn, the use of the state derivatives. Say, suchin that way, all directions would have the same influence
Lyapunov function having the fornV(z) := TPz will  (so measuring uncertainty on the unit circle is meaningfat)
give rise toV = 227 Pz, so the difference betweem)(the sums in (54) will be carried only for ranging from 1 tog.
linearised system’s behavious, := 2¢TPAz and ¢) that Restrictions: As discussed in Section Il, constraints (8)
from the nonlinear systey, := 227 P(Ax + Mp(x)) is actually fail in ag-dimensional subspade. Considering the
N, a7 change of variablg" leading to canonical form (12), the ex-
(@) = Vnp = Vi = 207 PMp(x) (50) pression of£(x) in (50) can be written in the new coordinates
So, the actual term whose uncertainty must be small, whene. = (£7,77)7 beingn the subspace coordinates as:
lies in subspac€, is Z(x). _ P _
Of course, qualitatively speaking, if each element (nenlin E(x) =2(¢ "_)T PMP(TxCl B
earity) in vectorp(z) is modelled with a “precise enough” TS = &'T1p(Txe) + ' Top(Tae) = x Tp(Tx.)
system, the overalE will be precise. However, the different,;,ore matrixr, is formed by selecting the first — ¢ rows
intervals of uncertainty inp will result in a cumulative

uncertainty inPMp given by the rules of classical intervalOf I = 2T PM andT’, is built with the lastq rows of L.
y P9 y - Abusing the notation, we will defing(¢,n) = p(Tx.).

om0 i 5 A subspace i the ne w0, the proposed gl o
PM béca o interval arithmetic assumes all -2?5( mthe optimal TS modelling is producing a WCW-optimal model
P, use nterv ! Ic assumes afl Iniervais ¥ﬁ(77) :=T2p(&,n) in C in order to avoid losing performance

vary mdependently, Wh!Ch 'S ~not. usually the case. Suita ith respect to (12), because the restrictiorzofo C is
canonical structure choices fgrwill be discussed below to

try to avoid such a source of conservatism. Zle(n) =0T p(0,n) (56)

(55)

Remark 3. In a discrete-time case, Lyapunov equationSuch optimal model oy can be obtained by the techniques
would have consideredV = (Az + Mp)"P(Az + Mp) in previous sections.
so the difference between linear and non-linear would be: Note that (56) is a reduced-dimensionality version of (52).
20T ATPMp + p" MTPMp. As p is O(2?), then the first Hence, with straightforward modifications Proposition 18 a
term isO(z®) and the second one i9(z*). So, in order to plies to bound uncertainty ii|¢(7), simply changing(z) to
minimise the discrepancy close the origin, concentrating @5(0, ) and summing oveq dimensions (instead of) in (54).
the terms of the order of® will suggest setting, in this case, Last, regarding the remaining nonlinearitieslinp(¢,7), a
=( N o T 4T TS model of them can be crafted using any available technique
=(z) = 227 AT PMp(2) (1) and choice of coordinates as, from (55), it will not influence
] o modelling accuracy in the requested subspace.
B. Diagonalisation of=(x)

With PM=I (or AT PM=I in the discrete case), we have: VIl. DISCUSSION

E(z) = 227 p(z) (52) To conclude the theoretical part of the paper, let us discuss
otential limitations and future lines of research.

Consider, t0o, that a suitable TS model for each elem Ntrhe first issue is the resulting number of rules. For instance

Of”lp(a:),_ yield_ing a shape—indep_endent interval of_uncertain%e inspection-based model of —case (a) in Example 3— has
pi’(), is available. Denote the interval of uncertainty08s y,, ryles, whereas the ones arising from our recommended

="', given by: changes of variables have four rules. In a quadratic case, it
=5 (x) = 250, wipi(a) (53) can be shown that, for a nonlinearity Mz, with M being
. , . , ) ) ~of rank m, the overall number of rules associated to the
obtained with standard interval arithmetic from intervals.  qimensional subspaa@ where it should be optimal will be

Proposition 10. In the above case, the interval of uncertaintgqual to2”, beingd = min(g, m). Now, regarding the model
=si fylfills: on the orthogonal subspae®- , which must forcedly be

4 carried out to build a global model, the nonlinearities dtidne
w(E™ (@) < 2||z| - /Yy |5 (x)]? (54) modelled in the simplest possible way, but, of course, itldou
{equire at least two more rules, so the total number of rules
Will be 27+1 or higher, for each of the involved nonlinearities.
Hence, our approach may result in a larger number of rules

Otherwise, withPM +# I, such bound would need tothan inspection-based ones looking for “simple” TS repmese
include terms regarding the norm (singular values)Raf/, tations. In complex cases, combining our approach with the
and not all elements op would have the same relevanceapproximate complexity reduction techniques mentionetdén
in £ (depending on alignment with the worst-case singulémtroduction might be needed.
vectors). As handlingPM =# I results quite cumbersome, Now, the discussion on what is more conservative, few
the objective of the next developments is showing that sorimexactrules (classical approach) versus our new proposal of
changes of variable can lead to a TS model in wHith:) more rules withoptimal fit in a subspacshould be addressed.
has the expression (52) above (in the relevadimensional If the modelling region is small enough, it has been proved
subspace given by the failing LMIs). that our model will fit inside the projections onto of the

Proof. Proof is a consequence of Proposition 4 and lineari
in z of =.



10

vertex models of any other TS model. Of course, this fit

-
might not be true orC* but such possible worse accuracy g ! - [— Approach
in the complementary subspace is irrelevant due to the sxces Z %8[ © 7 |== =TS model
performance margin implicit in thetrict inequality (10). So, £
for small-enough modelling regions our approach will yield §0-4'“
performance equal to or better than alternative options. f 0.2f -
. . . . C'v?) | | | R N
In larger modelling regions, for a heavily nonlinear system E % n s 5 > >

the geometry of the state trajectories might change substan ' Radius of modeling region Q

tially from that around the origin; hence, our proposal a#nn

claim optimality in such a situation, because the directiorrig- 1. Comparison of performance of the proposed approaehsolid line
critical for performance cease to be those in subsgarem 293inst the TS model (58) in dotted fines.

the linearised LMIs (9). Further research is needed in cimer

ge_n_eralise the ideg i_n Proposition 1 _to, for ins_tance, LMIS The one-dimensional subspace = {z € R3
arising from preexisting TS models, incorporating a set
A; instead of the linearisationl; however, some technical
difficulties arise. Detailed analysis of the issues arisivith

LT o=
9 0.1764 03014 09371)7 .5 € R} is the one which
prevents the linearised decay-rate problem to progress any
non-quadratic nonlinearities far from the origin is als@ded further: its basis corresponq o the eigenvgqtor of _the matr
: ATP + PA + 2+°Pt P associated to the minimal eigenvalue
in further research. Amin = 0 due toyort)

A last observation is the fact that, if LMIs were shaper ™" ‘

dependent (such as [12]), in an ideal case, as “all’ ossibIeFOHOWing identical modelling procedures to those in Ex-
P ! ' . ' ' POSS ample 3 with the above subspace, the resulting TS model (4
TS models are equivalent rewritings of the nonlinearities, : L .
- " . rules), when used in decay-rate optimisation, gives thaltes
a “perfect” shape-dependent approach should give the same. ; ; . . !
. . in Figure 1 (solid red line), which clearly improve over thesfi
results whichever the TS model used; however such perfec , .
. . proposed TS modé€b8) (dashed-blue line). For instance, the

algorithm has not yet been discovered.

improved modelling can prove marginal stability  0) up to
a radius of the modelling region of 3, whereas the conveation

VIII. A DDITIONAL EXAMPLES L . .
non-optimised model only proves stability up to radius Bof.

Example 4. This first example illustrates the advantages of,y of the radius values in the figure, the proposed TS model
the proposed approach in order to obtain an optimal model 'Qets a faster decay (largey).

the sense of finding the maximum decay rate of the following
continuous nonlinear system: Example 5. This example illustrates the advantages of the
proposed approach fof{., control synthesis. Consider the

—3x1 — 212 — ; ; ; i
! 27 following discrete-time nonlinear system

T = —4352 — 3 (57)
—8(x2 4+ 1) + 12 — 223 0.52140.8x2 421 sin wo+x3+w; —0.2u )
(61)

xlk+1]= ( .
wherez € Q, Q C R3 being a spherical modelling region 0.2521—0.4529+1.521 sin xo+wy+0.1u

(several values for its radius being tested later on). Tgkin ylk] = (0.5301 0.5u)T
into account the single nonlinearity? in (57), a conventional - .
inspection-based 2-rule TS model can be obtained: wherez € Q, @ C R* is the state,w € R® is the

perturbation,u € R is the control input. For comparison a

. 2 —3 _i -1 set of 4-rule TS models are proposed, based on extracting the
b= i) 0 —4 —1Jz  (58) giate as a common factor in three different ways:
i=1 —8(a; +1) 1 -2
_ ATS L

with 1 (z) = 2292 yy(2) = 1 — (), oy = maxay, wlk+1] = Al’x + Bu+ Ew, i={1,2,3} (62)

: i opt TSl ylk] = Cz + Du
(2 = MiNz;. Maximum decay rate°?* for V = z* Px under

TE

TS model58) is obtained maximising > 0 subject to: WhereAT;S denotes the arrangement of nonlinearities of the

P>0, ATP4PA<-29P, i={1,2} (59) i-th TS model as follows (see Remark 4 in Appendix):

These conditions fulfill Assumption 1 and are in GEVP form.  ,rs _ ( 0.5 0.8 + x1 sinc y + :cz>
The above model's performance will be compared with the ! 0.25 + 1.5sin s —0.45

maximum decay rate obtained from the proposed modeling ... 0.5 + sin xo 0.8 +

technique. To that endb7) is rewritten as(68), i.e., (2 = (0,25 +1.5sinzs —0.45 )

&= Ax + Mp(z) (60) ATS _ (0.5 0.8 4+ z1 sinc x +x2)

o = °
where A is the linearization of (57), M = (0 0 —8)T 1 0.25 —0.45+ 1.5z sincz,
and, p(x) = x2. Oncep(z) is defined, the GEVP test of deca;b
rate (59) was applied for the linearised system, i(80) with

x) = 0, and achieved a°?* = 1. No TS model will be able, _
p(x) & B<0012>7C<0.5 0)’D<0>7E<1 0).

sin

eingsinc(a) = % and the respective constant matrices:

of course, of getting a faster decay (Proposition 2). 0 0 0.5 0 1
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Of course, all representations are equivalent. Subsedyent

. . . . = 160f - == Approach
corresponding T§ models are obtained using the maximum g | = |- Model TSy
and minimum inQ2 of each element of its respectiex 2 g |- Model T
matrix A%® (details omitted). £ 8o} — — Model TS

Now, in order to apply the methodology in this paper, let = :
us first linearise and then rewrités1) in the form(68), i.e., =

z[k + 1] = Az + Bu+ Fw + Mp(x)

kl=C D
y[ ] v+ Du Fig. 2. Comparison of proven LMI performance between theppsed
with approach in solid line and the TS models in (62) in dottedslitebelled

asT'S;). A close-up zoom of the radius range [0,0.5] is also provided
A (05 08 et 1 (2)= 3
“\025 —045)° " \o 15) PYT \aysina,

yielding

wherep(z) is the vector of nonlinearities present in the system. 07051 —0.4719
Then, sufficient conditions for the well-kné¥, Lyapunov = = 2 Tp(Txz.) = 27 <1'3140 9.4020 ) p(Tzc) (66)
inequality AV + yTy — 'ygpthw < 0 are posed minimising : :

Radius of modeling region (2

(63)

7 subject to: Defining nowp(¢,n) as p(€,n) = I'p(Tz.), we can express
E = alpEmn) = (€T nT)p(&,n). In this way,(66) has the

-X (%) (%) overall form (52) and the restriction can be written g%6),

A X+BF;, —-X+Ey?E" (x)| <0  (64) after the proposed coordinate changes. By decompgisirsin

CX+DF; 0 -1 (31), standard TS modelling in the coordinateand of p

and /2!, respectively, is used to find an expression analogous
. o , ; Yo (41), which concludes the modelling step (details omitted).
functionV’ = = X L and the cqntrol gans, rgspectlyely Bl This allows finding a 16-rule TS model fulfilling the bound
() refers to completion to obtain a symmetric matrix. iy proposition 10 for subspacé, with the sum ranging in
Let us now consider the linearised case, i63) With 5 sjngle dimension. Such model has been used for locally

p(x) = 0, in order to obtain the relevant subspaces whergga ching for controllers guaranteeing aM.. norm for the
modelling must be precise. In that case, from straightfedva,onjinear system in circular regions.

Schur complem_ent mgnipglations, it pqn_be proved that thepy, jllustrative purposes, we present Fig. 2, which de-
above problem is iea5|bl2e if andTonIy_|f1|t |Ts so for the worstsqripes the performance bound”! using the TS models in
case disturbancev” = (y* — E* PE) " E" P(A+ BK)z. | \is (64), as the radius of modeling regiof increases.
Replacing s_uch d|sturbance_|n thé.. inequality, it can be Resylts corresponding to the proposed modeling technique
proved that if (64) holds, equivalentlyP > 0 and are presented in a solid line, whereas those three TS models
T T o1 in (62) are presented with dotted lines. As expected, all
v <(A+BK) (P =By ™"E")"(A+BK)-P TS models match the performance of the linearization at
the origin, but as they move away from it, the proposed
subspace-based approach outperforms the alternative ones
also hold withP := X~! andK := FX-!. These conditions. (Which disregard the linearised geometry), yielding a lowe
too, fulfill Assumption 1 even if65) is not directly in LM| disturbance-rejection bound (theoretical optimality pribr
form: note that convexity ind; is ensured by the presence ofMall modelling regions). For completeness, a time simula-
—X + Ev2ET in the constraints in(64). tion presenting||ly[k]|| = ||Cz + Dul| (whose squared sum
As(64)is an LMI problem in(X, F;,~~2), solving it for the should be minimised, according to the requested performanc
linearized system results ir?t 1 4644 Replacing the ob- Criterion) appears in figure 3. The original nonlinear dynam

tained optimal decision variables 65), the one-dimensional ics is simulated with four different controllers arisingofn

subspace wher¢s5) marginally holds, see expressigf), is ;ach IOf thr? TS r:nodﬁlling 2_Itern:t]icyes for a ztep d_iiturbance
C={rcR?:x— (00518 0.3068)T7’777 € R}, this allows esults show that the achieved figures farfk]|| with our

to obtain a transformation matrix = 7'z, that rewrites(65) proposed methodology are the lowest ones, and time response
in the form(12), i.e., is better damped. Of course, we cannot prove that the chosen

disturbance is the worst-case one for the nonlinear system (
B (—0.3068 0.9518) is an unsolved problem) but, at least with the chosgh],

where X and F; are decision variables given by the Lyapuno

(65)
+(C+DK)T(C+DK)) <0 V.

T 0.9518 0.3068 the observed performance of our proposal is better than the

. , _ classical ones.
Now, in order to generate the optimal TS model, following

ity enters the Lyapunov equati@5), disregarding quadratic “Close enough” to the origin: in fact, changing parameters i
terms inp, as: system matrices, alternative setups can be built in whieh th

- _ proven performance of the proposed approach is only optimal
==22TT(A+BK)' (P~ — Ey 2ET) ' Mp(Tx.) up to a certain radius.
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Consider a modelling regiof). The objective of sector-

........... il ...I"_fi.._..ﬂ.-.-—\e—;-u.-—-—-.-é- = Approach . . - : . .

06 = T : | Model T, nonlinearity TS modelling is bounding if2 each element
e R |- Model 75, pi(z), by two linear functions: actually , finding lineay (z)
S N TR LT 0 i : 2]~ - - Model TS such thatan;(z) < p;(x) < Bn;(x) for somea, 5 in R.

: : : Considering, then, a particulaf(z). Assume there exists a
R S S pr function of the statey;(z) : R" — R, such thatp;(z) = 0 for
0 . i = Ny = ini 0; :
T all zin B={x € Q:n;(z) =0}. Defining p;(x) as:
_ pi(x)
Fig. 3. Time response dfy[k]| for a stepw = (—0.17, —0.09)T of the pi(z) = Z( )’ forz ¢ B (69)
nonlinear system, with the four controllers arising frorateaf the considered i\
TS modelling options, using a modelling region radius of. 0.3 Then, if the following limit exists for allz € B:

Y(x) = lime—q pi(§)

then, the definition of;(x) can be extended, i.e., defined ev-
This paper has presented a Hessian and subspace basggihere in (including the sei), by definingp; () = ~(z)
methodology to minimise the conservatism of TS modefgr ; ¢ B, and (69) elsewhere. It is well known that the limit
to be later used in Shape-independent LMI conditions. Th&x) existS, and the resu'ting extendﬁgm) is continuous in

presented procedure is optimal (in minimax worst-case W)-if p,(x) has continuous first derivatives (which it does, by
certainty width) for TS models of quadratic functions, hencassumption). Hence, the relationship

approximately optimal for any smooth nonlinearity close

enough to the origin. Different examples prove that, indeed pi(x) = pi(x)n;(x)
the uncertainty width measures, as well as decay-rate 3¢lds in all Q. By compactness of, the bounding:

H., performance figures are better with the proposed TS

modelling technique than those obtained with frequentidus (min ﬁi(y)> ni(z) < pi(x) < (maX ﬁi(y>> ni(z)  (70)
“inspection” and “extraction of factors” ideas. The LMIs yeQ yeQ

discuss only the preservation of linearised performantieeO entails that eachp;(x) can be expressed as an interpolation
LMI setups and reduction/simplification of the number 0f;(z) = w;(z) x pio + (1 — w;(z)) x ;1 Where:

rules, as well as optimality for large modelling regionse ar

IX. CONCLUSIONS

matter of future research. pio = max pi(y), pin = minpi(y), wi(z) = pil®) — pin
ISy yeN Pi0 — Pil
APPENDIX When bounding each;, i = {1,...,s} as above discussed,

ni(z) are linear, say);(x) = N}z, denoting byMy; the i-th

column of M in (68), anduo(x) = w;(x), pa(z) =1 —
Consider a single-input nonlinear functigh: R — R. If  w;(x), the result will be an expression in the form:

f(0) = 0 and its derivative is continuous, then the function:

s 1 s 1
(@) = {f(33)33_1 z#0 B=) ) i (AJFM[i]ﬁiszT)x::ZZNiinjIC (71)

Review of sector nonlinearity approach

f xTr) = . =1 j=0 =1 j=0
lim, o f(z)z~! =0 o _ ) _

which is a box-like parameter uncertainty description [E§,
can be defined, because the required limit exists; furthemo(2)]. Converting box representations to tensor-produesda],

f(z) is continuous. Ag (z) = f(x)z, we can trivially express, [19], [7] can be done in a straightforward way. Indeed, as

in any compact regiof) C R: Z;:o wij () =1 we can express (71) as:
z) = h(z) for + (1 — h(z)) frz 67 . s 1 2
@ = b+ (- h) G (W (Mo X2 ) A,.j) v
being fo = max,eq f(x) and fi = min,eq f(2). 98 . 9s
In a multi-input case, a nonlinear model (1), dsis =D k=1 (H;=1 i bitq,(k)Abiti(k)i) r=3,_; hArz (72)
linearisable at the origin, can be expressed as: wherebit; (k) € {0,1} is thei-th bit (I < i < ) of the binary
i(t) = f(z, p(z)) representation of integdr — 1, and h;, is thus formed as the

L ) ) ] ~ product of a specific combination af; (or 1 —w;, depending
pemg fGy) a linear function ang a vector of.nonllr?earmes, on the corresponding binary digit).
i.e., there existp(z) : R" — R® such that (1) is equivalentto |, summary, oncel/, p(z) and the linear functions; (z)
& = Az + Mp(x) (68) are chosen, the above well-known steps end up in a TS system
with power-of-two vertex models (box or tensor-productipr
being A the Jacobian off at z = 0, from (2). Note that Ideally, the TS model of a scalar expressipfx) = A\z?
representation (68) may be not unique (there might be seveas\ (ungr (1- ul)f) x, beingz andz the minimum and
options in choosing/ andp). Each element of, denoted as maximum values ofr in a modelling region. For quadratic
pi(z) will be a functionp;(z) : R — R; subindex will be multivariable functions, the idea is generalised to thedites
omitted in notation ifp has a single element. coordinates applying the above to each of the squares in (13)



Remark 4. In some references, TS models are generated fro

a representation L)
&= A(z)x (73)

instead of(68), such thatlim, o A(z) exists; then, maximum

and minimum in the modelling region of each element ¢

matrix A(z) are sought. Evidently, this is a particular case
of the above procedure, considering= x;.
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