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Subspace-Based Takagi-Sugeno Modeling for
Improved LMI Performance

Ruben Robles, Antonio Sala,Senior Member, IEEE, Miguel Bernal, and Temoatzin González

Abstract—Given a nonlinear system, the sector-nonlinearity
methodology provides a systematic way of transforming it inan
equivalent Takagi-Sugeno model. However, such transformation
is not unique: conservatism of shape-independent performance
conditions in the form of linear matrix inequalities results in some
models yielding better results than others. This paper provides
some guidelines on choosing a sector-nonlinearity Takagi-Sugeno
model, with provable optimality (in a particular sense) in the case
of quadratic nonlinearities. The approach is based on Hessian
and restrictions of a function onto a subspace.

I. I NTRODUCTION

Analysis and design of nonlinear control systems via
Takagi-Sugeno (TS) models is well developed, evolving from
model-free heuristics [1], [2] to model-based exact representa-
tions, combined with the direct Lyapunov method in order to
obtain linear matrix inequalities (LMIs) [3], [4], [5]. Thelatter
case is based on thesector nonlinearityapproach, obtaining
an exact TS model via maximum and minimum bounds of a
nonlinearity in a compact modelling region. Approximate TS
models can, too, be obtained, via linearisation at several points
[3], or based on approximate fitting viaH2 or SVD argu-
mentations (linear or polynomial in the scheduling parameters
[6], tensor-product summation [7]); SVD-based techniquesfor
rule reduction of complex TS systems appear in [8]. However,
these “approximate” TS models are intentionally left out ofthe
scope of this paper, concentrating on presenting improvements
to the exact sector-nonlinearity technique. Polynomial-fuzzy
models [9] will also not be considered in the present work.

Although the models are exact, a first drawback comes
from the conservatism of considering only the vertices and
not the combination coefficients in the stability conditions.
Thus, stability is actually proven for a family of linear time-
varying (LTV) systems in which the plant is embedded; these
results are therefore calledshape-independent[10]. Shape
independency is the easiest way to get conditions in the
form of LMIs, which in turn are advantageous because they
belong to the class of convex optimization problems, which
are efficiently solved1 [11]. A few shape-dependent options
are available [12], not considered here.
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1In some cases, performance optimisations are in generalised-eigenvalue
problem form (GEVP); bisection plus LMI is a well-known option: this paper
will understand “LMI” as the convex or quasi-convex problems involving
matrix inequalities, including GEVP, discussed in [11].

Another drawback of the TS/LMI methodology is the well-
known fact that TS representations may not be unique [13].
Hence, different performance levels can be proven with shape-
independent LMIs for the same nonlinear system, depending
on the chosen TS model. To handle this issue, apart from naive
trial-and-error, no systematic procedure of choosing a “good”
TS model from the many options (infinitely many, actually) is
available in literature, to the authors’ knowledge.

From the above discussion, the objective of this work is
choosing an appropriate TS model in order to maximise a
performance objective in regions close to the origin. The ap-
proach is based in first and second partial derivatives (Jacobian
and Hessian). As shape-independent conditions consider all the
convex hull of verticesAi as polytopic uncertainty, different
TS models will, hence, have different shape and orientation
of such uncertainty polytope. The key idea to be presented
is making the intersection of such polytope with some vector
subspaces (appearing in performance-related LMIs) as small
as possible. A preliminary approach appears in [14].

This work is organized as follows: section II introduces
preliminaries and motivates the problem; section III presents
shape-independent uncertainty measures; section IV shows
how a Hessian based transformation can optimise such mea-
sures; restrictions onto a subspace are discussed in section
V; consequences in an LMI context appear in section VI.
Discussion, examples and conclusion, are sections VII, VIII
and IX, respectively. An appendix is provided reviewing basic
ideas and notation in sector-nonlinearity fuzzy modelling.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a nonlinear dynamic system in the form

ẋ(t) = f(x(t)) (1)

with f : Rn 7→ Rn, having continuous second derivatives and
f(0) = 0. Consider the linearised model of (1) to be:

ẋ = Ax, A :=
∂f(x)

∂x

∣

∣

∣

∣

x=0

(2)

1) Takagi-Sugeno modelling:The well-known sector non-
linearity methodology [15] allows algebraically rewriting (1)
as anequivalentconvex sum of linear models

ẋ =
∑r

i=1 hi(x)Aix, (3)

where the membership functions (MFs), grouped in a vector
h ∈ Rr, belong to ther − 1-dimensional standard simplex:

∆ := {h ∈ R
r :

∑r

i=1 hi = 1, hi ≥ 0 ∀i} (4)
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Basically, eachAi ∈ Rn×n is the matrix corresponding
to a particular combination of maxima/minima of previously
defined nonlinearities in a compact set of the state spaceΩ.
Although the methodology is well known, a brief outline,
introducing some notation needed later on, appears in Ap-
pendix, justifying that the number of rules in (3) is a power of
two, see (72). For later developments, let us denote asA the
ordered list of consequents matricesA := {A1, . . . , Ar}. The
sector-nonlinearity technique may not produce a unique TS
model, resulting in possible conservatism [10]. It is also well
known that the linearised matrixA can be cast as a convex
combination of the verticesA of any TS model of (1).

From the developments in the Appendix, the actual structure
of hi coming from sector-nonlinearity TS model off : Rn 7→
R is either in the form (71), as the sum ofs two-rule models:

f(x) =
∑s

i=1

∑1
j=0 µij(x)Aijx (5)

where the MFs belong to:

∆s={µij : µi0=1− µi1, µij ≥ 0, i=1, . . . , s, j=0, 1}

or as a tensor-product (72), wherehi in (3) has the structure:

hi(x) =
∏s

l=1 µl bitl(i)(x) (6)

The reader is referred to the Appendix for detailed definition
and obtention of the above expressions.

2) Performance measures:Once a TS model is obtained,
analysis and design can be done taking advantage of its convex
structure combining them with Lyapunov functions such as
V = xTPx, P = PT > 0, which naturally leads to conditions
in the form of LMIs in P . A generic assumption on the
problem structure will be made:

Assumption 1. The pursued control objective is the minimi-
sation of a performance measureγ subject to some model-
independent matrix-definiteness constraints

Ψ(D) ≻ 0 (7)

and model-dependent constraints:

xTΥ(Ai, D, γ)x ≥ 0 ∀x 6= 0, ∀i = 1, . . . , r (8)

whereD denotes the decision variables (Lyapunov function,
controller gains, etc.) and allAi ∈ A are given by the TS
model under consideration. Matrix expressionΥ(·, ·, ·) will be
assumed symmetric, convex in its first argument, and linear in
the third argument. We will assume, too, thatΨ and Υ can
be transformed to tractable problems such as, for instance,
LMI, so that suitable convex optimisation software will find
the optimalγ andD.

Many contributions, referred to in the introduction, set
up problems which can be expressed as the above assump-
tion (for instance, decay-rate orH∞ norm computations
for continuous- and discrete-time TS systems, see exam-
ple section). Note that problem (8) isshape-independentas
membershipsh do not appear there: in (conservative)shape-
independentanalysis non-uniqueness of sector-nonlinearity
models ends up in different performance levels being proven
for different (supposedly equivalent) TS models [10].

Under the above assumption, linearity in the third argument
will force that the optimal solution of (8), to be denoted as
γopt,TS, hits the boundary of the constraint set: there will exist
i∗ such thatΥ(Ai∗ , D, γ

opt,TS) will be positivesemi-definite
(non-empty nullspace) for all feasibleD.

3) Relation with performance of linearised model:When
problem (8) is solved with single matrixA, the optimal
performance of the linearised model is obtained.

Proposition 1. The optimal performance measure for(2), say
γopt, is obtained when there existsDopt such that the above
conditions(8), particularised to a single matrixA, are

xTΥ(A,Dopt, γopt)x = 0 ∀x 6= 0, x ∈ C (9)

xTΥ(A,Dopt, γopt)x > 0 ∀x 6= 0, x ∈ C⊥ (10)

for some vector subspaceC ⊂ Rn, beingC⊥ its orthogonal
complement.

Proof. As Υ(·, ·, ·) is a symmetric matrix, it has an orthonor-
mal basis of eigenvectors, so when conditions cease to be
strictly feasible they will be equal to zero in a subspace (as-
sociated to the null eigenvalues ofΥ(A,Dopt, γopt), denoted
as C) and strictly positive in vectors associated to the non-
zero eigenvalues ofΥ(A,Dopt, γopt) (which will belong to
the orthogonal complement ofC, i.e., C⊥).

With a suitable change of variable in the original linearised
dynamics, there is no loss of generality in assuming that the
linearised dynamics yields some constraints which fail when
x lies in the canonicalq-dimensional subspace2

C = {x ∈ R
n : x =

(

0
I

)

η, η ∈ R
q} (11)

In these coordinates, the constraints for the linearised system
(9) and (10) can be equivalently written as a single one in the
form below, for some matrixΥ11:

xTΥ(A,Dopt, γopt)x = xTc

(

Υ11 0
0 0

)

xc (12)

Proposition 2. The (shape-independent) optimal performance
for (3) proven with(8), γopt,TS, is equal or worse thanγopt for
the linearised system(2) proven by(9)–(10): γopt,TS ≥ γopt.

Proof. Note that the linearisedA is in the convex hull of the
matrices in the TS consequentsA in exact sector-nonlinearity
models. Convexity in the first argument ofΥ(·, ·, ·) entails that
for any D such thatΥ(Ai, D, γ

opt,TS) ≥ 0 we would have
Υ(A,D, γopt,TS) ≥ 0. Evidently, then, the best performance
provable with (8) will be larger or equal thanγopt from the
linearised model (9)–(10).

A. Other preliminary results

Through this paper, some other results/notation will be used.

2Indeed, if Υ fail in a subspaceC (in original coordinates), canonical
expression (11) is obtained by conforming a transformationmatrix x = Txc,
with xc = (ξT , ηT )T as T =

(

T
C⊥ TC

)

, where columns ofTC are a
basis ofC, and those ofT

C⊥ are a basis ofC⊥.
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Proposition 3. For any two vectorsψ, x in Rn,

max
‖x‖≤1

ψTx = ‖ψ‖, min
‖x‖≤1

ψTx = −‖ψ‖.

Proof is trivial from scalar product properties.
Given M ∈ Rm×n, the Frobenius normof M is defined

as ‖M‖F :=
√

∑m

i=1

∑n

j=1m
2
ij , where mij denotes the

element ofM at row i and columnj; it verifies‖M‖F =
√

∑min{m,n}
i=1 λ2i , whereλi are thesingularvalues ofM [16].

If M is square and symmetric,λi are, actually, its eigenvalues.

Classical interval arithmetic: An interval η = [a, b] is a
convex subset of the real line, with minimuma and maximum
b, a ≤ b. The sum[a, b]+[c, d] will be defined as[a+c, b+d].
The productx × [a, b] will be defined as[ax, bx] if x ≥ 0,
and as[bx, ax] otherwise. The width of an interval[a, b],
with b ≥ a, will be denoted asw([a, b]) := b − a. The
absolute value will be defined as|[a, b]| = max(|a|, |b|).
Let us denotesym([a, b]) = [−|[a, b]|, |[a, b]| ]. Obviously,
w([a, b]) ≤ 2|[a, b]|, and [a, b] ⊂ sym([a, b]).

Proposition 4. Letη =
∑n

i=1 xi×[ai, bi] be an interval. Then,

max
‖x‖≤1

w(η) ≤ 2

√

∑n

i=1

∣

∣[ai, bi]
∣

∣

2

Proof. Obviously,η ⊂ ∑n

i=1 xi × sym([ai, bi]). Elementary
manupulations and Proposition 3 yield the required result.

Second-order approximation.Smooth functionsf(x) around
the origin based on Taylor series can be seen as:

f(x) ≈ Jx+
1

2
xTHx,

whereJ stands for the Jacobian whileH stands for the Hessian
matrix, evaluated at the origin:

H :=
∂2ρ(x)

∂xi∂xj

∣

∣

∣

∣

∣

x=0

, i, j ∈ {1, . . . , n}.

Since the Hessian is a symmetric matrix, there exists an
orthonormal basis which diagonalises it; this implies thateach
nonlinearity close to the origin can be represented as a sum of
squares of single independent variables. IfH = V TΛV , the
transformationη = V x can express

xTHx = g(η) = λ1η
2
1 + · · ·+ λnη

2
n, (13)

whereλ1, . . . , λn are the Hessian eigenvalues.

B. Motivation and problem statement

The basic idea arising from the above propositions is that,
as TS vertex matricesAi drift away from the linearisation
A, then, the “closer” the matricesAi could be made to the
such linearisation, the better the obtained proven performance
γopt,TS might be. As the worst-case directions are those in
subspaceC, the goal of the TS modelling will be fitting “as
closely as possible” the model in the subspaceC. This idea
motivates this manuscript.

Given the non-uniqueness of the TS modelling, the first
objective of this paper is providing a systematic methodology
to build an infinite family of possible TS models based on

some coordinate transformations, from a set of functionsηi(x),
see (69) in Appendix.

Then, the next objective will be defining what the above-
mentioned fit means in formal terms, proposing a choice of the
aforementionedηi(x) derived from the equations which define
subspaceC, proving optimality for quadratic nonlinearities.
Given that all smooth functions are locally quadratic by the
Taylor series up to degree 2 when close enough to the origin,
the proposal in this paper allow to find the optimal TS model
in the above settings in small enough modelling regions.

Examples will show that the proposed TS models preserve
performance of the linearised model (the best one, from
Proposition 2) in a better way than other arbitrary choices
as the modelling region increases.

III. SYSTEMATIC TS MODELLING

Let us consider a TS model in box form (5) with a suitably
ordered consequent listA.

Definition 1. The shape-independent TS modelf si(x,A) is
defined as a set-valued mapf si : Rn 7→ C(Rm), where
C(Rm) denotes the convex subsets ofRm, given by:

f si(x,A):={y∈R : ∃µij∈∆s s.t. y=

s
∑

i=1

2
∑

j=1

µijAijx} (14)

where A in the left-hand side has been implicitly used to
denote the whole list of consequent models.

With the above definition, the following is evident:

Proposition 5. For any of the possible TS models of a given
f(x), evidently,f(x) ∈ f si(x,A).

The core step in the sector-nonlinearity methodology deals
with single-output nonlinear functionsρi : Rn 7→ R, conform-
ing a vectorρ such thatf(x) = Ax+Mρ(x), see (68). Each
ρi is a nonlinearity withone output, to be bounded between
two linear functions, see (70); therefore, this paper focuses first
on analising these mappingsRn 7→ R in order to tackle the
problem of choosing a TS model for improved performance.
Later on, the case of multiple nonlinearities is discussed.

Let us, then, consider a functionf : R
n 7→ R, with

f(0) = 0. Due to convexity,f si(x,A) is an interval for the
chosen class of one-output functions. The width of such inter-
val will be related to the conservatism of shape-independent
developments with the TS model.

As TS consequents are linear, considering properties of the
TS model over{‖x‖ = 1} will be informative enough. This
motivates the definition below:

Definition 2. The normalisedworst-case width(WCW) of a
one-output TS model with consequent listA is:

σ̄(A) := max
x∈Ω,x 6=0

w(f si(x,A))

‖x‖ (15)

Definition 3. A TS model with consequent listA is WCW-
optimal if there is no other choice of consequent matrices
with betterσ̄(A).

Actually, this paper will prove that a Hessian-based method-
ology obtains such optimal TS model iff(x) is quadratic.



4

Later, the optimality criteria will be recast to finding the
model having the lowest uncertainty width in the intersection
of modelling regionΩ with a particular subspace3 C.

Definition 4. Given a vector subspaceC, the subspace-
constrained WCW of a one-output TS model is defined as:

σ̄C(A) := max
x∈Ω∩C,x 6=0

w(f si(x,A))

‖x‖

So, the optimal TS model will be redefined to be the one
minimising σ̄C . Again, in a quadratic case, the solution to the
minimum σ̄C will be provided in this paper.

A. Optimal shape-independent TS model for SISO nonlinearity

Consider a single-variable nonlinearity withf : R 7→ R,
f(0) = 0 and its classical sector-nonlinearity TS model, (67)
in Appendix, here repeated for convenience:

f(x) = h(x)f̃0x+ (1− h(x))f̃1x (16)

being f̃0 = maxx∈Ω f̃(x) and f̃1 = minx∈Ω f̃(x), with
f̃(x) = f(x)/x. Consider now any other possible consequent
modelsq̂0 and q̂1 such that there existŝh(x) allowing writing

f(x) = ĥ(x)q̂0x+ (1− ĥ(x))q̂1x (17)

Using (14), withs = m = 1, so f si is an interval, we have:

f(x) ∈ f si(x, {q̂0, q̂1}) =
{

[q̂0x, q̂1x], x ≤ 0

[q̂1x, q̂0x], x ≥ 0.

In order for the abovêh to exist, the consequents must verify
(proof is straightforward, omitted for brevity):

q̂0 ≥ f̃0, q̂1 ≤ f̃1 (18)

Then (18) translates to:

Proposition 6. The shape-independent TS model(16) fulfills

f si(x, {f̃0, f̃1}) ⊂ f si(x, {q̂0, q̂1})

for any q̂0, q̂1 such thatf(x) ∈ f si(x, {q̂0, q̂1}) for all x ∈ Ω.

Note: on the sequel,f si(x,A) will be shorthanded tof si(x)
when no confusion on the consequent parameters arises. In
functions of one variable, the only reasonable choice of
consequents is that in (67), because of the above proposition.
Such modelf si(x, {f̃0, f̃1}) will be, also, shorthanded to
f si,opt(x).

The objective of this work is generalising the easily provable
Proposition 6 above to functions of several variables. In
order to do that, a reformulation of the sector nonlinearity
methodology, altogether with a coordinate transformationwill
be presented in next section.

3Such subspace will actually come from constraints (9).

IV. COORDINATE TRANSFORMATIONS

In ordinary TS modelling, as discussed in the previous
section and the Appendix, the selection of a particular element
of ρ(x) in model (68), sayρi(x), assumes the existence of a
specific linear function of the stateηi(x); these selections are
usually chosen by “manual inspection”, such that, defining

ρ̃i(x) :=
ρi(x)

ηi(x)
, ρi(x) = ρ̃i(x)ηi(x)

suitable limits ofρ̃i(x) exist, so a 2-rule model ofρi can be
crafted (see Appendix).

Example 1 (Ad-hoc modelling). Considerf(x) := −4x1 +
4x1x2, expressed asf(x) = −4x1 + 4ρ(x), ρ(x) := x1x2, to
be modelled in the unit circle. Either{ρ̃(x) := x1, η(x) :=
x2} or {ρ̃(x) := x2, η(x) := x1} could be reasonable choices
to craft a TS model. These two possible choices forη can be
visually found in the aforementioned inspection, leading to:

• f(x) = −4x+h1(x1)x2+h2(x1) ·(−x2), h1 = 0.5(x1+
1), h2 = 1 − h1, with the associated shape-independent
modelf si(x) = [−x2, x2], or

• f(x) = −4x+h1(x2)x1+h2(x2) ·(−x1), h1 = 0.5(x2+
1), h2 = 1− h1, beingf si(x) = [−x1, x1].

Introducing generic coordinate transformations, the above
TS models can be expressed as a particular case of an infinite
family of choices, as the discussed below.

Example 2 (i.e., Example 1, continued). The motivation of
this section is that, actually, there areinfinitely many other
choices for the TS models off(x) in example 1. If we express

f(x) = −4x1 +
1

αβ
ρ1(x) −

1

αβ
ρ2(x)

with ρ1(x) = (αx1 + βx2)
2 and ρ2(x) = (αx1 − βx2)

2,
we could also think ofη1 = (αx1 + βx2) for the TS model
of ρ1(x) = η21(x), and, on the other hand, chooseη2 =
(αx1−βx2) for the TS model ofρ2(x) = η22(x). For notational
convenience, let us definev1 := (α β), v2 := (−α β), so we
haveη1 = v1x, η2 = v2x.

The resulting TS model, in box form(5), would be a four
vertex representation:

f(x) = ((µ10A10 + µ11A11) + (µ20A20 + µ21A21))x

whereµ10 + µ11 = 1, µ20 + µ21 = 1, and

Ai0=(−2 0) +
1

αβ
ξi0vi, Ai1=(−2 0) +

1

αβ
ξi1vi

ξi0 = maxx∈Ω ηi(x), ξi1 = minx∈Ω ηi(x), details omitted
for brevity. Note that the two prior “manually” obtained TS
models in Example 1 correspond to (α = 1, β = 0) or (α = 0,
β = 1), respectively.

As the number of possible models is infinite, the question
of which is the “best” one arises. Using the WCW-optimality
criteria in Definition 3, in the quadratic case, such best model
can be found via eigenvalue decomposition, leading to the
main result in this section below.
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Theorem 1. Consider a quadratic nonlinearityf : Rn 7→
R, f(x) := xTMx, with M symmetric, with an eigenvalue-
eigenvector decompositionM = V ΛV T with Λ diagonal and
V orthonormal matrices. Consider, too, a modelling region
Ω := {x : ‖x‖ ≤ 1}. Then, the WCW-optimal TS model is
given by expressing

f(x) =
∑n

i=1 λiρi(x) (19)

being λi the eigenvalues ofM and ρi(x) = η2i (x), for
ηi(x) = V T

i x, i.e. ηi being the projection ofx over the unit-
norm eigenvectorV T

i associated toλi. Then, the optimal TS
model has the form:

f(x) =
∑n

i=1

∑1
j=0 µij(x)ψijV

T
i x (20)

whereψi0 := maxx∈Ω λiηi(x), ψi1 := minx∈Ω λiηi(x) and
membership functions are:

µi0(x) :=
V T
i x− ψi1

ψi0 − ψi1
, µi1(x) := 1−µi0(x), i = {1, . . . , n}.

Proof. For symmetricM , f(x) can be expressed as:

f(x) =
∑n

i=1

(

Miix
2
i +

∑n

j>i 2Mijxixj

)

=
∑n

i=1

(

Miixi +
∑n

j>i 2Mijxj

)

xi.
(21)

The last expression can be equivalently written as

f(x) =
∑n

i=1 ρ̃i(x)xi, (22)

with ρ̃i defined as:

ρ̃i(x) :=Miixi +
∑n

j>i 2Mijxj . (23)

Note that each̃ρi(x) is linear in x; its maximum and min-
imum over the unit ball, defined asρ

i
, ρi respectively, so

ρ
i
≤ ρ̃i(x) ≤ ρi, are from Proposition 3:

ρi :=
√

M2
ii + 4

∑n

j>iM
2
ij , ρ

i
:= −ρi, (24)

hence the TS model arising from (22) will be:

f(x) =
n
∑

i=1

(

µi0(x)ρi + µi1(x)ρi

)

xi

and the map in (14) will be the interval:

f si(x,A) =
[

−∑n

i=1 ρi|xi|,
∑n

i=1 ρi|xi|
]

(25)

So, from Definition 2 we have

σ̄ = max
‖x‖=1

n
∑

i=1

2ρi · |xi|

and such maximum on the unit sphere (Proposition 3 again)
is given by:

σ̄ =
√

∑n

i=1 4ρ
2
i

which, substituting (24), results in:

σ̄2 =

n
∑

i=1

4



M2
ii+4

n
∑

j>i

M2
ij



 = 4

n
∑

i=1



M2
ii+2

n
∑

j 6=i

M2
ij





which can be bounded as

σ̄ ≥ 2

√

√

√

√

n
∑

i=1

(

M2
ii +

∑n

j 6=iM
2
ij

)

(26)

where the term at the right-hand side of the inequality is,
actually, twice the Frobenius-norm, i.e.,σ̄ ≥ 2‖M‖F .

The key idea for the theorem is the fact that the above bound
is tight if M is diagonal, i.e.,

σ̄ = 2‖M‖F = 2
√

∑n

i=1 λ
2
i . (27)

Hence, if the representation off(x) = xTMx had been
chosen in diagonalised coordinatesxTV ΛV Tx, V Tx = η,
f(η) = ηTΛη, the resultingσ̄ would have been the lowest
possible one. Note that, asM is symmetric, there exists an
orthonormal basis of eigenvectors so the transformationη =
V Tx preserves the norm and, hence, exploration over‖x‖ = 1
is the same as exploring over‖η‖ = 1. This proves that the
diagonalised representation is WCW-optimal.

Remark 1. If the modelling region is not the unit ball,
a scaling/change of variable should be carried out before
obtaining the optimal TS model for a quadratic nonlinearityso
that the new modelling region coincides with the one required
in the above theorem.

Remark 2. If the function to be modelled is non-quadratic. the
diagonalisation-based approach no longer applies. However,
close tox = 0, the function may be approximated to:

f(x) ≈ Jx+
1

2
xTHx

where J is the Jacobian andH is the Hessian atx = 0.
Hence, the coordinate changes arising from diagonalisation
of the Hessian would obtain a TS model guaranteed to be
optimal in a small enough sphere around the origin (so that
higher-order terms can be neglected).

In later developments, the optimal shape-independent TS
model from (20) will be denoted asf si,opt(x).

V. TS MODELS WITH OPTIMAL PERFORMANCE IN A

SUBSPACE

As discussed in the problem statement, an accurate fit of
the shape-independent TS model in the performance-critical
subspaceC is often needed. This issue will be now adddressed.

A. Restrictions

Definition 5 (Restriction of a function or set-valued map). The
restriction of a functionf : Rn 7→ R to a linearq-dimensional
(q < n) vector subspaceC, will be denoted asf |C : C 7→ R,
trivially defined asf |C(x) := f(x) ∀x ∈ C. An analogous
definition will be assumed for the restriction of a set valued
map, such asf si, i.e., f si|C(x) := f si(x) ∀x ∈ C.

Consider now the subspaceC being defined as:

C = {x ∈ R
n : ∃η ∈ R

q s.t. x = Hη} (28)

thus, beingH a n × q matrix mapping from canonical
coordinates inRq to C.
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Then, abusing the notation, the restriction can be also
defined in terms ofq-dimensional subspace coordinatesη, as

f |C : Rq 7→ R

f |C(η) := f(Hη), η ∈ R
q (29)

Given a function and its restriction, a complementary func-
tion can be defined fulfilling the following proposition.

Proposition 7 (Complementary function). For any subspace
C, a functionf : Rn 7→ R can be decomposed as:

f(x) = f¬C(x) + f |C(x)

where f¬C(x), denoted as complementary function, fulfills
f¬C(x) = 0 for x ∈ C.

Proof. It is evident, settingf¬C(x) := (f(x)− f |C(x)).

Consider an invertiblen × n matrix T :=
(

Hξ H
)

,
formed by completingH with suitable n − q linearly in-
dependent columns, so the following linear transformation
T : Rn 7→ R

n is set up:

x = T (ξ, η) := T

(

ξ
η

)

(30)

with η ∈ R
q the subspace coordinates, andξ ∈ R

n−q being
dummy complementary coordinates. Then, using the above
transformationT betweenx and (ξ, η) and notation (29), we
can express:

f(x) = f(T (ξ, η)) = f [1](ξ, η) + f [2](η) (31)

beingf [1] andf [2] defined as:

f [1](ξ, η) := f(T (ξ, η))− f(T (0, η)) = f¬C(x)

f [2](η) := f(T (0, η)) = f |C(η)

If the original functionf verifiesf(0) = 0 then these functions
verify f [1](0, η) = 0, f [1](0, 0) = 0, f [2](0) = 0.

Definition 6 (Restriction of a TS model). Consider a box-TS
model off(x) given by(5). The restriction of such model to
a linear subspaceC given in (28) results in:

f |C(η) =
s

∑

i=1

1
∑

j=0

µij(Hη)AijHη (32)

The shape-independent TS modelf si(x,A) from (14) can
be also restricted toC, allowing to prove:

Proposition 8. The restriction off to C is contained in the
restriction of the shape-independent TS model, i.e.,

f |C(η) ∈ f si|C(Hη,A)

Proof is obvious from Definition 6 and Proposition 5,

Proposition 9. If the subspaceC is one-dimensional, denoting
g(η) := f |C(η), the optimal TS model of the univariate
functiong(η) : R 7→ R fulfills

gsi,opt(η) ⊆ f si|C(Hη,A) (33)

for any choice of consequentsA in the original model.

Proof. Representation (32) is a TS model off |C(η), i.e., of
g(η). Then, Proposition 6 yields the required result.

In subspaces whose dimension might not be one, we can
assert the following result for quadratic functions, which
extends Theorem 1 in order to consider restrictions:

Theorem 2. Considerf(x) being a quadratic function. De-
note as g(η) := f |C(η) the restriction of f to C, being
gsi,opt(η) the Hessian-based optimal shape-independent TS
model ofg. Then:

σ̄(gsi,opt) ≤ σ̄(f si|C(η,A)) (34)

Proof. Proof is analogous to Proposition 9: asg(η) ⊂
f si|C(η,A), the Hessian-based representation ofg(η) has the
lowest maximum uncertainty width, by Theorem 1.

Basically, as intuitively expected, Proposition 9 and Theo-
rem 2 say that it is better (or at least equal) to get a direct
TS model on the restriction of a function –left-hand side of
(33) and (34)– than, first, modelling on a larger space and,
later, restricting the resulting TS model –right-hand sideof the
referred inequalities–. This motivates using the decomposition
in Proposition 7 –equivalently, (31)– to obtain WCW-optimal
TS models of the restrictions, as detailed in next section.

B. Global models with optimal performance inC
Up to now, results in previous section have discussed

optimality of certain TS models definedonly on a subspaceC
(indeed, restrictions from Definition 5 are meaningless outside
C). However, applications usually require TS modelling in all
of Rn and not only inC. Expression (31) comes handy now.

Consider a quadratic functionf(x) = xTMx and theq-
dimensional subspace defined in (28). Consider, too, any of
the possible linear transformationsT and its associated matrix
T in (30), and expressf in the new coordinates as:

f(x) =
(

ξT ηT
)

F

(

ξ
η

)

(35)

for F = T
T
MT . Using the new coordinates(ξ, η), the

subspaceC becomes the canonical subspace(0, η), η ∈ R
q.

Express, thenf(x) decomposed in the form (31). Given the
fact thatf [1](η, 0) = 0, as f [1] is quadratic we can express,
with trivial manipulations of matrixF above:

f [1](ξ, η) =
(

ξT ηT
)

(

F11 0
F21 0

)(

ξ
η

)

(36)

f [2](η) = ηTF22η (37)

With suitable choices ofH andHξ when conformingT , are
assumedF11 andF22 diagonal, without loss of generality4.

4Indeed, if it were not the case, consider the diagonalisations F22 =
V T
η ΛηVη , F11 = V T

ξ
ΛξVξ . Then, the change of variableη∗ = Vηη,

ξ∗ = Vξξ would render a representation:

f [1](ξ∗, η∗) =
(

ξ∗T η∗T
)

(

Λξ 0
VηF21V

T
ξ

0

)

(

ξ∗

η∗

)

f [2](η∗) = η∗TΛηη
∗

So, replacing a supposed (initial guess)Ĥη by a correctedHη = VηĤη and
Ĥξ by Hξ = VξĤξ , the requested diagonal form would be obtained.



7

Denote asλ[2]i , i = 1, . . . , q the diagonal elements (i.e.,
eigenvalues) ofF22; denote asλ[1]i , i = 1, . . . , n − q the
diagonal elements ofF11. Then, in theη, ξ coordinates, we
can write

f [1](ξ, η) =
(

ξT ηT
)

(

F11

F21

)

ξ (38)

Let us denotef [1](ξ, η) = F(ξ, η)ξ, being F the linear
functionF : Rn 7→ Rn−q multiplying ξ in (38), i.e.,

F(ξ, η) :=
(

ξT ηT
)

(

F11

F21

)

actually expressed as a1 × (n − q) row vector, and denote
as Fi its elements, for1 ≤ i ≤ n − q. Then, (38) can be
expressed as:

f [1](ξ, η) =

n−q
∑

i=1

Fi(ξ, η)ξi

DenotingF i0 := max
x∈Ω

Fi(T
−1x), andF i1 := min

x∈Ω
Fi(T

−1x),

we can expressf [1] as the TS model:

f [1](ξ, η) =

n−q
∑

i=1

1
∑

j=0

µij(x)F ijξi (39)

Manipulatingf [2](η) =
∑q

i=1 λ
[2]
i η2i , we can express it as:

f [2](η) =

q
∑

i=1

1
∑

j=0

µij(x)Gijηi (40)

with Gi0 := max
x∈Ω

λ
[2]
i ηi andGi1 := min

x∈Ω
λ
[2]
i ηi.

From Theorem 2, because of the diagonal representation
of f [2](η), the above TS model (40) is the WCW-optimal
one, in the sense of Definition 3, for the restrictionf |C in
η coordinates.

Combination of the optimalf [2] with its complementary
function f [1] results in the main theorem of this section:

Theorem 3. Given a quadratic functionf(x) = xTMx,
subspaceC defined in(28), and the change of variable(30),
the TS model

f(x) = f [1](ξ, η) + f [2](η)

=

n−q
∑

i=1

1
∑

j=0

µij(ξ, η)F ijξi +

q
∑

i=1

1
∑

j=0

µij(η)Gijηi
(41)

is WCW-optimal in subspaceC in the sense of Definition 4.

Proof. As the restriction off [1] onto C is zero, and so it is
the restriction toC of the shape-independent TS model arising
from (39), i.e.,f [1],si(0, η) = {0}, it is easily seen that:

f si|C(ξ, η) = f [2],si|C(η)

so optimality inC is not lost when adding (39) and (40) as the
complementary function (and its TS model) is zero onC.

Note that the diagonal form inF11 is, actually, not needed in
the proof. However, there is no loss of generality in assuming
it: it has been stated as such in the above discussion because,
being bothF11 andF22 diagonal, the same matricesF11, F21

andF22 in (36) and (37) would be usable for obtaining the
optimal model in either the subspaceξ = 0 or η = 0.

Note also that the change of variable should be reverted in
ξi, ηi, in order to have the TS model (41) depending on the
originalx coordinates instead of the transformed ones (details
omitted for brevity).

So, basically the procedure to obtain the optimal model for
a subspaceC of a quadratic function would be:

1) Get a basisH of C, complete it and obtainT , F , and
subsequently,f [1] andf [2].

2) Obtain the Hessian eigenvectors off [1] (yielding diagonal
F11) andf [2] (yielding diagonalF22).

3) Combine both steps in a single change of variable.
4) [optional] Express the box-TS model (41) in original

coordinates.
The outline of the procedure is illustrated in example below.

Example 3. Let us model the functionf : R5 7→ R given
by f(x) = x21 in the 2-dimensional subspace5 spanned by
C={x ∈ R5 : x=Hη, η ∈ R2} with

H=

(

1 1 −1 0.5 1
2 0 2 −4 −2

)T

.

In order to avoid scalings so that the unit circle in original
coordinates keeps being the unit circle in transformed ones,
let us obtain an orthonormal basis ofC (overwriting H
with Matlab commandH=orth(H), for instance), as well
as an orthonormal basis of its complementary space (Matlab
H_xi=null(H’)). With these two basis, we can form the
change of variableT in (30), with T actually being an
orthonormal matrix. So, variablesx1 to x5 will be mapped
to (ξ1, ξ2, ξ3, η1, η2) and the above subspace will be, in the
new coordinates:

C = {(ξ1, ξ2, ξ3, η1, η2) ∈ R
5 : ξ1 = ξ2 = ξ3 = 0}.

Let us check the accuracy onC of several possible TS models:
a) Inspection-based coordinates: The first TS model to be

considered is the “inspection” one given by:

f(x) = h1(x1)A0x+ h2(x1)A1x (42)

with h1(x1) = 0.5(x1 + 1), h2(x1) = 1 − h1(x1), A1 =
−A0, andA0=

(

1 0 0 0 0
)

. The model yields

f si(x) = [−x1, x1]. (43)

Of course, this would end the classical way of TS modelling
in prior literature. The issue under discussion is, however,
how accurate is such model in subspaceC.
In order to assess the accuracy of(42) onC, let us trivially
carry out the change of coordinatesT by rewriting f si in
(43) replacingx1 by its expression on the new coordinates
(η, ξ) arising from matrixT

x1 = −0.1379ξ1 + 0.6081ξ2 + 0.1379ξ3

+ 0.3385η1 + 0.6911η2

5The actual subspace is generated via performance optimisation (9) of a
5th-order linearised model. The actual model matrices and LMIs are omitted
because they are not relevant for the time being. Full examples will appear
on Section VIII.
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As η are subspace coordinates, the restrictionf si|C is

f si|C = [−(0.3385η1 + 0.6911η2), 0.3385η1 + 0.6911η2]

for η ranging in the unit ball (T is orthonormal), the worst-
case width (Definition 4) on the subspaceC is given by
twice the norm ofκ := (0.3385, 0.6911)T , by Proposition
3 and the fact that all intervals are symmetric. The result
for the TS model(42) is:

σ̄C = 2‖κ‖ = 2× 0.7695 = 1.5391 (44)

b) Non-optimised change of variable: Now, let us test the
ideas in Section V-A, i.e., that carrying out TS modelling
afterthe change of variable will lead to a better model than
the one above, where TS modelling was carriedbeforethe
changex = T (η, ξ).
Writing nowf(x) = xTMx beingM the matrix with all
its entries equal to zero except the(1, 1) term (equal to 1),
we can express it in the new coordinates asF = T

T
MT

(not displayed, to save space). The restriction toC, in such
η coordinates isf |C(x) = ηTF22η, with:

F22 =

(

0.1146 0.2339
0.2339 0.4777

)

(45)

where, as expected,F22 = κ·κT . So, we can expressg(η) =
f |C(Hη) = (0.1146η1+0.4679η2)η1+(0.4777η2)η2. Com-
puting the norms of(0.1146, 0.4679)T and (0, 0.4777)T ,
by Proposition 3, the resulting TS model yields on the unit
circle a shape-independent interval:

gsi=[−0.4817, 0.4817]×η1+ [−0.4777, 0.4777]×η2 (46)

It can be shown that, asη range on the unit ball, the worst-
case width in this case will be:

σ̄C = 2
√

0.48172 + 0.47772 = 1.357 (47)

which is lower than that from(44), as expected.
c) Optimised coordinates: Obtaining three orthonormal ei-

genvectors of the top-left3× 3 block ofF , arranged in a
3× 3 matrix V1, as well as two orthonormal eigenvectors
of the bottom-right2 × 2 block of said F –the F22

matrix in (45) above–, in a2 × 2 matrix V2, the matrix
V = blockdiag(V1, V2) is the Hessian-based coordinate
transform of each of the subspaces so that the resulting TS
model is optimal in the sense of Theorem 1. The overall
coordinate change isx = T · V · (ξT ηT )T , yielding the
transformed model ofx21 as:

f(x) =0.4078 ξ23 + 0.9828 ξ3η2 + 0.592 η22

=(0.4078 ξ3 + 0.9828 η2)ξ3 + 0.592 η22

which, as
√
0.40782 + 0.98282 = 1.064 would lead to a

4-rule TS model on the unit circle given by:

f si(x) =f si
(

T · V ·
(

ξT ηT
)T

)

(48)

=[−1.064, 1.064]× ξ3+[−0.592, 0.592]× η2

The worst-case width on the subspaceξ1 = ξ2 = ξ3 = 0
results, in this case:

σ̄C = 2× 0.592 = 1.184 (49)

which is, as expected, lower than that from(44) and (47).
In fact, asf(x) was quadratic, Theorem 3 states that there
is no other linear coordinate change which gives a better
figure for σ̄C than that in(49).
For illustration, reverting the change of variable by suitable
inversion of the transformation matrices, we can write:

ξ3 =
(

0.6386 −0.5473 0.1672 0.4865 −0.1672
)

x

η2 =
(

0.7696 0.4542 −0.1388 −0.4037 0.1388
)

x

so, replacing these expressions in(48) and multiplying by
1.064 and 0.592, respectively, we can define consequent
matrices:

A10 =
(

−0.8591 0.2088 0.1779 −0.5449 −0.1477
)

A20 =
(

−0.1104 0.4794 −0.0990 0.3032 0.0822
)

A11 = −A10, A21 = −A20

such that a final (WCW-optimal in the requested subspace)
box model(5) with s = 2 can be written in the originalx
coordinates, as an alternative to the naive(42).

The above example has shown how a rewriting ofx21 has
reduced the uncertainty due to shape-independence from 1.54
to 1.18 in a particular subspaceC. These manipulations will
be able to improve associated LMI results in fuzzy control, as
discussed in next section.

VI. U SE OF OPTIMAL TS MODELS IN LMI S

Let us consider a nonlinear system (1), its linearisationA in
(2) and the nonlinearitiesρ(x) in (68). The objective of this
section is using the previous developments to suggest a TS
model which preserves performance of the linearised system
proven with some LMIs (arising by suitable transformations
of (7) and (8), if needed) by avoiding larger than necessary
uncertainty off si in key subspaces, given by Proposition 1.

A. Effect of the nonlinearity in the Lyapunov equations

When the optimal solution of a LMI for the linearised
systemẋ = Ax has been obtained, we are in the situation
in (9)–(10). However, the actual performance proved for a
nonlinear system would require replacing the linearised state
derivativesẋ = Ax by the nonlinear oneṡx = Ax+Mρ(x).
Of course, that would destroy the LMI form asρ is nonlinear,
so the objective is generating a sector-nonlinearity TS model
of Mρ with low conservatism which still allows proving good
enough performance with LMIs.

As the perfomance limit in (9) and (10) is hit forx ∈ C,
that means that the restriction ofρ(x) onto subspaceC must
be modelled with precision in order to lose the least possible
performance (ideally). So, at first glance, applying Theorem
3 to each element ofρ might seem a viable solution and so
it is, indeed. However, further improvements may be crafted
by considering the structure of matrixM and the obtained
Lyapunov function. Such ideas will be detailed next.

First, note that, actually, it is not each component ofρ(x)
the magnitude to be precisely modelled. Indeed, let us assume
there exists a Lyapunov function whose time-derivative will
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require, in turn, the use of the state derivatives. Say, such
Lyapunov function having the formV (x) := xTPx will
give rise toV̇ = 2xTP ẋ, so the difference between (a) the
linearised system’s behaviouṙVL := 2xTPAx and (b) that
from the nonlinear systeṁVNL := 2xTP (Ax +Mρ(x)) is

Ξ(x) := V̇NL − V̇L = 2xTPMρ(x) (50)

So, the actual term whose uncertainty must be small, whenx
lies in subspaceC, is Ξ(x).

Of course, qualitatively speaking, if each element (nonlin-
earity) in vectorρ(x) is modelled with a “precise enough” TS
system, the overallΞ will be precise. However, the different
intervals of uncertainty inρ will result in a cumulative
uncertainty inPMρ given by the rules of classical interval
arithmetic [17]. Such uncertainty is larger than that arising
from the joint evaluation of each element of the vectorg̃(x) :=
PMρ, because interval arithmetic assumes all intervals may
vary independently, which is not usually the case. Suitable
canonical structure choices for̃g will be discussed below to
try to avoid such a source of conservatism.

Remark 3. In a discrete-time case, Lyapunov equations
would have considered∆V = (Ax + Mρ)TP (Ax + Mρ)
so the difference between linear and non-linear would be:
2xTATPMρ + ρTMTPMρ. As ρ is O(x2), then the first
term isO(x3) and the second one isO(x4). So, in order to
minimise the discrepancy close the origin, concentrating on
the terms of the order ofx3 will suggest setting, in this case,

Ξ(x) = 2xTATPMρ(x) (51)

B. Diagonalisation ofΞ(x)

With PM=I (or ATPM=I in the discrete case), we have:

Ξ(x) = 2xTρ(x) (52)

Consider, too, that a suitable TS model for each element
of ρ(x), yielding a shape-independent interval of uncertainty
ρsii (x), is available. Denote the interval of uncertainty ofΞ as
Ξsi, given by:

Ξsi(x) = 2
∑n

i=1 xiρ
si
i (x) (53)

obtained with standard interval arithmetic from intervalsρsii .

Proposition 10. In the above case, the interval of uncertainty
Ξsi fulfills:

w(Ξsi(x)) ≤ 2‖x‖ ·
√

∑n

i=1 |ρsii (x)|2 (54)

Proof. Proof is a consequence of Proposition 4 and linearity
in x of Ξ.

Otherwise, withPM 6= I, such bound would need to
include terms regarding the norm (singular values) ofPM ,
and not all elements ofρ would have the same relevance
in Ξ (depending on alignment with the worst-case singular
vectors). As handlingPM 6= I results quite cumbersome,
the objective of the next developments is showing that some
changes of variable can lead to a TS model in whichΞ(x)
has the expression (52) above (in the relevantq-dimensional
subspace given by the failing LMIs).

In that way, all directions would have the same influence
(so measuring uncertainty on the unit circle is meaningful)and
sums in (54) will be carried only fori ranging from 1 toq.

Restrictions: As discussed in Section II, constraints (8)
actually fail in aq-dimensional subspaceC. Considering the
change of variableT leading to canonical form (12), the ex-
pression ofΞ(x) in (50) can be written in the new coordinates
xc = (ξT , ηT )T beingη the subspace coordinates as:

Ξ(x) = 2(ξT ηT )T
T
PMρ(Txc)

= ξTΓ1ρ(Txc) + ηTΓ2ρ(Txc) := xTc Γρ(Txc)
(55)

where matrixΓ1 is formed by selecting the firstn − q rows
of Γ := 2T

T
PM andΓ2 is built with the lastq rows of Γ.

Abusing the notation, we will defineρ(ξ, η) := ρ(Txc).
As subspaceC is the one withξ = 0, the proposed goal of

the optimal TS modelling is producing a WCW-optimal model
of ρ̃(η) := Γ2ρ(ξ, η) in C in order to avoid losing performance
with respect to (12), because the restriction ofΞ to C is

Ξ|C(η) = ηT ρ̃(0, η) (56)

Such optimal model of̃ρ can be obtained by the techniques
in previous sections.

Note that (56) is a reduced-dimensionality version of (52).
Hence, with straightforward modifications Proposition 10 ap-
plies to bound uncertainty inΞ|C(η), simply changingρ(x) to
ρ̃(0, η) and summing overq dimensions (instead ofn) in (54).

Last, regarding the remaining nonlinearities inΓ1ρ(ξ, η), a
TS model of them can be crafted using any available technique
and choice of coordinates as, from (55), it will not influence
modelling accuracy in the requested subspace.

VII. D ISCUSSION

To conclude the theoretical part of the paper, let us discuss
potential limitations and future lines of research.

The first issue is the resulting number of rules. For instance,
the inspection-based model ofx21 –case (a) in Example 3– has
two rules, whereas the ones arising from our recommended
changes of variables have four rules. In a quadratic case, it
can be shown that, for a nonlinearityxTMx, with M being
of rank m, the overall number of rules associated to theq-
dimensional subspaceC where it should be optimal will be
equal to2ϑ, beingϑ = min(q,m). Now, regarding the model
on the orthogonal subspaceC⊥ , which must forcedly be
carried out to build a global model, the nonlinearities should be
modelled in the simplest possible way, but, of course, it would
require at least two more rules, so the total number of rules
will be 2ϑ+1 or higher, for each of the involved nonlinearities.
Hence, our approach may result in a larger number of rules
than inspection-based ones looking for “simple” TS represen-
tations. In complex cases, combining our approach with the
approximate complexity reduction techniques mentioned inthe
introduction might be needed.

Now, the discussion on what is more conservative, few
inexactrules (classical approach) versus our new proposal of
more rules withoptimal fit in a subspaceshould be addressed.
If the modelling region is small enough, it has been proved
that our model will fit inside the projections ontoC of the
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vertex models of any other TS model. Of course, this fit
might not be true onC⊥ but such possible worse accuracy
in the complementary subspace is irrelevant due to the excess
performance margin implicit in thestrict inequality (10). So,
for small-enough modelling regions our approach will yield
performance equal to or better than alternative options.

In larger modelling regions, for a heavily nonlinear system,
the geometry of the state trajectories might change substan-
tially from that around the origin; hence, our proposal cannot
claim optimality in such a situation, because the directions
critical for performance cease to be those in subspaceC from
the linearised LMIs (9). Further research is needed in orderto
generalise the idea in Proposition 1 to, for instance, LMIs
arising from preexisting TS models, incorporating a set of
Ai instead of the linearisationA; however, some technical
difficulties arise. Detailed analysis of the issues arisingwith
non-quadratic nonlinearities far from the origin is also needed
in further research.

A last observation is the fact that, if LMIs were shape-
dependent (such as [12]), in an ideal case, as “all” possible
TS models are equivalent rewritings of the nonlinearities,
a “perfect” shape-dependent approach should give the same
results whichever the TS model used; however such perfect
algorithm has not yet been discovered.

VIII. A DDITIONAL EXAMPLES

Example 4. This first example illustrates the advantages of
the proposed approach in order to obtain an optimal model in
the sense of finding the maximum decay rate of the following
continuous nonlinear system:

ẋ =





−3x1 − 2x2 − x3
−4x2 − x3

−8(x21 + x1) + x2 − 2x3



 (57)

wherex ∈ Ω, Ω ⊂ R
3 being a spherical modelling region

(several values for its radius being tested later on). Taking
into account the single nonlinearityx21 in (57), a conventional
inspection-based 2-rule TS model can be obtained:

ẋ =

2
∑

i=1

µi(x)





−3 −2 −1
0 −4 −1

−8(αi + 1) 1 −2



 x (58)

with µ1(x) = x1−α2

α1−α2

, µ2(x) = 1 − µ1(x), α1 = max
x∈Ω

x1,

α2 = min
x∈Ω

x1. Maximum decay rateγopt for V = xTPx under

TS model(58) is obtained maximisingγ > 0 subject to:

P > 0, AT
i P + PAi ≤ −2γP, i = {1, 2} (59)

These conditions fulfill Assumption 1 and are in GEVP form.
The above model’s performance will be compared with the

maximum decay rate obtained from the proposed modeling
technique. To that end,(57) is rewritten as(68), i.e.,

ẋ = Ax+Mρ(x) (60)

whereA is the linearization of (57), M =
(

0 0 −8
)T

and,ρ(x) = x21. Onceρ(x) is defined, the GEVP test of decay
rate (59) was applied for the linearised system, i.e.(60) with
ρ(x) = 0, and achieved aγopt = 1. No TS model will be able,
of course, of getting a faster decay (Proposition 2).
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Fig. 1. Comparison of performance of the proposed approach in a solid line
against the TS model (58) in dotted lines.

The one-dimensional subspaceC = {x ∈ R3 : x =
(

−0.1764 0.3014 0.9371
)T
η, η ∈ R} is the one which

prevents the linearised decay-rate problem to progress any
further: its basis correspond to the eigenvector of the matrix
ATP + PA + 2γoptP associated to the minimal eigenvalue
(λmin = 0 due toγopt).

Following identical modelling procedures to those in Ex-
ample 3 with the above subspace, the resulting TS model (4
rules), when used in decay-rate optimisation, gives the results
in Figure 1 (solid red line), which clearly improve over the first
proposed TS model(58) (dashed-blue line). For instance, the
improved modelling can prove marginal stability (γ = 0) up to
a radius of the modelling region of 3, whereas the conventional
non-optimised model only proves stability up to radius 0.7.For
any of the radius values in the figure, the proposed TS model
gets a faster decay (largerγ).

Example 5. This example illustrates the advantages of the
proposed approach forH∞ control synthesis. Consider the
following discrete-time nonlinear system

x[k+1]=

(

0.5x1+0.8x2+x1 sinx2+x
2
2+w1−0.2u

0.25x1−0.45x2+1.5x1 sinx2+w2+0.1u

)

y[k] =
(

0.5x1 0.5u
)T

(61)

where x ∈ Ω, Ω ⊂ R2 is the state,w ∈ R2 is the
perturbation,u ∈ R is the control input. For comparison a
set of 4-rule TS models are proposed, based on extracting the
state as a common factor in three different ways:

x[k+1] = ATS
[i] x+Bu+ Ew, i = {1, 2, 3}
y[k] = Cx +Du

(62)

whereATS
[i] denotes the arrangement of nonlinearities of the

i-th TS model as follows (see Remark 4 in Appendix):

ATS
[1] =

(

0.5 0.8 + x1 sincx2 + x2
0.25 + 1.5 sinx2 −0.45

)

ATS
[2] =

(

0.5 + sinx2 0.8 + x2
0.25 + 1.5 sinx2 −0.45

)

ATS
[3] =

(

0.5 0.8 + x1 sincx2 + x2
0.25 −0.45 + 1.5x1 sincx2

)

beingsinc(α) := sin(α)
α

, and the respective constant matrices:

B=

(

−0.2
0.1

)

, C=

(

0.5 0
0 0

)

, D=

(

0
0.5

)

, E=

(

1 0
0 1

)

.
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Of course, all representations are equivalent. Subsequently,
corresponding TS[i] models are obtained using the maximum
and minimum inΩ of each element of its respective2 × 2
matrix ATS

[i] (details omitted).
Now, in order to apply the methodology in this paper, let

us first linearise and then rewrite(61) in the form(68), i.e.,

x[k + 1] = Ax+Bu+ Ew +Mρ(x)

y[k] = Cx+Du
(63)

with

A=

(

0.5 0.8
0.25 −0.45

)

, M=

(

1 1
0 1.5

)

, ρ(x)=

(

x22
x1 sinx2

)

whereρ(x) is the vector of nonlinearities present in the system.
Then, sufficient conditions for the well-knowH∞ Lyapunov

inequality∆V + yT y − γ2optw
Tw ≤ 0 are posed minimising

γ subject to:






−X (∗) (∗)
AiX+BFi −X+Eγ−2ET (∗)
CX+DFi 0 −I






≤0 (64)

whereX andFi are decision variables given by the Lyapunov
functionV = xTX−1x and the control gains, respectively [3].
(∗) refers to completion to obtain a symmetric matrix.

Let us now consider the linearised case, i.e.,(63) with
ρ(x) = 0, in order to obtain the relevant subspaces where
modelling must be precise. In that case, from straightforward
Schur complement manipulations, it can be proved that the
above problem is feasible if and only if it is so for the worst-
case disturbancew∗ = (γ2I − ETPE)−1ETP (A + BK)x.
Replacing such disturbance in theH∞ inequality, it can be
proved that if (64) holds, equivalently,P > 0 and

xT
(

(A+BK)T (P−1−Eγ−2ET )−1(A+BK)−P

+(C+DK)T (C+DK)
)

x ≤ 0 ∀x.
(65)

also hold, withP := X−1 andK := FX−1. These conditions,
too, fulfill Assumption 1 even if(65) is not directly in LMI
form; note that convexity inAi is ensured by the presence of
−X + Eγ−2ET in the constraints in(64).

As(64) is an LMI problem in(X,Fi, γ
−2), solving it for the

linearized system results inγopt = 1.4644. Replacing the ob-
tained optimal decision variables in(65), the one-dimensional
subspace where(65) marginally holds, see expression(9), is
C = {x ∈ R2 : x =

(

0.9518 0.3068
)T
η, η ∈ R}, this allows

to obtain a transformation matrixx = Txc that rewrites(65)
in the form(12), i.e.,

T =

(

−0.3068 0.9518
0.9518 0.3068

)

.

Now, in order to generate the optimal TS model, following
analogous reasoning to(51) and (55) in Section VI, nonlinear-
ity enters the Lyapunov equation(65), disregarding quadratic
terms inρ, as:

Ξ = 2xTc T (A+BK)T (P−1 − Eγ−2ET )−1Mρ(Txc)
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Fig. 2. Comparison of proven LMI performance between the proposed
approach in solid line and the TS models in (62) in dotted lines labelled
asTS[i]. A close-up zoom of the radius range [0,0.5] is also provided.

yielding

Ξ = xTc Γρ(Txc) = xTc

(

0.7051 −0.4719
1.3140 2.4020

)

ρ(Txc) (66)

Defining nowρ̂(ξ, η) as ρ̂(ξ, η) := Γρ(Txc), we can express
Ξ = xTc ρ̂(ξ, η) = (ξT ηT )ρ̂(ξ, η). In this way,(66) has the
overall form (52) and the restriction can be written as(56),
after the proposed coordinate changes. By decomposingρ̂ as in
(31), standard TS modelling in the coordinatesξ andη of ρ̂[1]

and ρ̂[2], respectively, is used to find an expression analogous
to (41), which concludes the modelling step (details omitted).

This allows finding a 16-rule TS model fulfilling the bound
in Proposition 10 for subspaceC, with the sum ranging in
a single dimension. Such model has been used for locally
searching for controllers guaranteeing anH∞ norm for the
nonlinear system in circular regions.

For illustrative purposes, we present Fig. 2, which de-
scribes the performance boundγopt using the TS models in
LMIs (64), as the radius of modeling regionΩ increases.
Results corresponding to the proposed modeling technique
are presented in a solid line, whereas those three TS models
in (62) are presented with dotted lines. As expected, all
TS models match the performance of the linearization at
the origin, but as they move away from it, the proposed
subspace-based approach outperforms the alternative ones
(which disregard the linearised geometry), yielding a lower
disturbance-rejection bound (theoretical optimality only for
small modelling regions). For completeness, a time simula-
tion presenting‖y[k]‖ = ‖Cx + Du‖ (whose squared sum
should be minimised, according to the requested performance
criterion) appears in figure 3. The original nonlinear dynam-
ics is simulated with four different controllers arising from
each of the TS modelling alternatives for a step disturbance.
Results show that the achieved figures for‖y[k]‖ with our
proposed methodology are the lowest ones, and time response
is better damped. Of course, we cannot prove that the chosen
disturbance is the worst-case one for the nonlinear system (it
is an unsolved problem) but, at least with the chosenw[k],
the observed performance of our proposal is better than the
classical ones.

Note that optimality in the above examples is only claimed
“close enough” to the origin: in fact, changing parameters in
system matrices, alternative setups can be built in which the
proven performance of the proposed approach is only optimal
up to a certain radius.
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Fig. 3. Time response of‖y[k]‖ for a stepw = (−0.17,−0.09)T of the
nonlinear system, with the four controllers arising from each of the considered
TS modelling options, using a modelling region radius of 0.3.

IX. CONCLUSIONS

This paper has presented a Hessian and subspace based
methodology to minimise the conservatism of TS models
to be later used in shape-independent LMI conditions. The
presented procedure is optimal (in minimax worst-case un-
certainty width) for TS models of quadratic functions, hence
approximately optimal for any smooth nonlinearity close
enough to the origin. Different examples prove that, indeed,
the uncertainty width measures, as well as decay-rate and
H∞ performance figures are better with the proposed TS
modelling technique than those obtained with frequently used
“inspection” and “extraction of factors” ideas. The LMIs
discuss only the preservation of linearised performance. Other
LMI setups and reduction/simplification of the number of
rules, as well as optimality for large modelling regions, are
matter of future research.

APPENDIX

Review of sector nonlinearity approach

Consider a single-input nonlinear functionf : R 7→ R. If
f(0) = 0 and its derivative is continuous, then the function:

f̃(x) =

{

f(x)x−1 x 6= 0

limx→0 f(x)x
−1 x = 0

can be defined, because the required limit exists; furthermore,
f̃(x) is continuous. Asf(x) = f̃(x)x, we can trivially express,
in any compact regionΩ ⊂ R:

f(x) = h(x)f̃0x+ (1− h(x))f̃1x (67)

being f̃0 = maxx∈Ω f̃(x) and f̃1 = minx∈Ω f̃(x).
In a multi-input case, a nonlinear model (1), asf is

linearisable at the origin, can be expressed as:

ẋ(t) = f̂(x, ρ(x))

being f̂(·, ·) a linear function andρ a vector of nonlinearities,
i.e., there existsρ(x) : Rn 7→ R

s such that (1) is equivalent to

ẋ = Ax+Mρ(x) (68)

being A the Jacobian off at x = 0, from (2). Note that
representation (68) may be not unique (there might be several
options in choosingM andρ). Each element ofρ, denoted as
ρi(x) will be a functionρi(x) : Rn 7→ R; subindex will be
omitted in notation ifρ has a single element.

Consider a modelling regionΩ. The objective of sector-
nonlinearity TS modelling is bounding inΩ each element
ρi(x), by two linear functions: actually , finding linearηi(x)
such thatαηi(x) ≤ ρi(x) ≤ βηi(x) for someα, β in R.

Considering, then, a particularρi(x). Assume there exists a
function of the stateηi(x) : Rn 7→ R, such thatρi(x) = 0 for
all x in B = {x ∈ Ω : ηi(x) = 0}. Defining ρ̃i(x) as:

ρ̃i(x) =
ρi(x)

ηi(x)
, for x 6∈ B (69)

Then, if the following limit exists for allx ∈ B:

γ(x) = limξ→x ρ̃i(ξ)

then, the definition of̃ρi(x) can be extended, i.e., defined ev-
erywhere inΩ (including the setB), by definingρ̃i(x) = γ(x)
for x ∈ B, and (69) elsewhere. It is well known that the limit
γ(x) exists, and the resulting extendedρ̃i(x) is continuous in
Ω if ρi(x) has continuous first derivatives (which it does, by
assumption). Hence, the relationship

ρi(x) = ρ̃i(x)ηi(x)

holds in allΩ. By compactness ofΩ, the bounding:
(

min
y∈Ω

ρ̃i(y)

)

ηi(x) ≤ ρi(x) ≤
(

max
y∈Ω

ρ̃i(y)

)

ηi(x) (70)

entails that eachρi(x) can be expressed as an interpolation
ρi(x) = wi(x) × ρ̃i0 + (1− wi(x)) × ρ̃i1 where:

ρ̃i0 = max
y∈Ω

ρ̃i(y), ρ̃i1 = min
y∈Ω

ρ̃i(y), wi(x) =
ρ̃i(x)− ρ̃i1
ρ̃i0 − ρ̃i1

When bounding eachρi, i = {1, . . . , s} as above discussed,
ηi(x) are linear, sayηi(x) = NT

i x, denoting byM[i] the i-th
column ofM in (68), andµi0(x) = wi(x), µi1(x) = 1 −
wi(x), the result will be an expression in the form:

ẋ=
s

∑

i=1

1
∑

j=0

µij

(

A+M[i]ρ̃ijN
T
i

)

x:=
s

∑

i=1

1
∑

j=0

µijAijx (71)

which is a box-like parameter uncertainty description [18,Eq.
(2)]. Converting box representations to tensor-product ones [3],
[19], [7] can be done in a straightforward way. Indeed, as
∑1

j=0 µij(x) = 1 we can express (71) as:

ẋ=
∑s

i=1

∑1
j=0

(

µij

(

∏

k 6=i

∑2
j=1 µkj

)

Aij

)

x

=
∑2s

k=1

(

∏s

i=1 µi biti(k)Abiti(k)i

)

x =
∑2s

k=1 hkAkx (72)

wherebiti(k) ∈ {0, 1} is thei-th bit (1 ≤ i ≤ s) of the binary
representation of integerk − 1, andhk is thus formed as the
product of a specific combination ofwi (or 1−wi, depending
on the corresponding binary digit).

In summary, onceM , ρ(x) and the linear functionsηi(x)
are chosen, the above well-known steps end up in a TS system
with power-of-two vertex models (box or tensor-product form).

Ideally, the TS model of a scalar expressionρ(x) = λx2

is λ
(

µ1x+ (1 − µ1)x
)

x, being x and x the minimum and
maximum values ofx in a modelling region. For quadratic
multivariable functions, the idea is generalised to the Hessian
coordinates applying the above to each of the squares in (13).
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Remark 4. In some references, TS models are generated from
a representation

ẋ = A(x)x (73)
instead of(68), such thatlimx→0A(x) exists; then, maximum
and minimum in the modelling region of each element of
matrix A(x) are sought. Evidently, this is a particular case
of the above procedure, consideringηi = xi.
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