Document downloaded from:

http://hdl.handle.net/10251/148184
This paper must be cited as:

Alventosa, FJ.; Alonso-Jorda, P.; Vidal Macia, AM.; Pifiero, G.; Quintana-Orti, ES. (2019).
Fast block QR update in digital signal processing. The Journal of Supercomputing.
75(3):1051-1064. https://doi.org/10.1007/s11227-018-2298-5

The final publication is available at

https://doi.org/10.1007/s11227-018-2298-5

Copyright - gpringer-Verlag

Additional Information

Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Fast Block QR Update in Digital Signal Processing

Fran J. Alventosa - Pedro Alonso -
Antonio M. Vidal - Gema Pinero -
Enrique S. Quintana-Orti

Received: date / Accepted: date

Abstract The processing of digital sound signals often requires the computation
of the QR factorization of a rectangular system matrix. However, sometimes, only
a given (and probably small) part of the system matrix varies from the current
sample to the next one. We exploit this fact to reuse some computations carried out
to process the former sample in order to save execution time in the processing of
the current sample. These savings can be critical for real time applications running
on low power consumption devices with high mobility. In addition, we propose a
simple out-of-order task-parallel algorithm for the QR factorization using OpenMP
that exploits the multicore capability of modern processors. Furthermore, in the
presence of a Graphics Processing Unit (GPU) in the system, our algorithm is
able to off-load some tasks to the GPU to accelerate the computation on these
hardware devices.

Keywords QR factorization, QR Update, jagged matrix, real-time, block QR.

1 Introduction

The QR factorization of an m X n matrix A is given by A = QR, where Q is
an m X m orthogonal matrix and R is an m X n upper triangular matrix. This
factorization is often used to solve overdetermined linear systems characterized
by having more equations than unknowns (m > n). The computational cost is

Fran J. Alventosa - Pedro Alonso - Antonio M. Vidal

Depto. de Sistemas Informdticos y Computacién, Universitat Politeécnica de Valéncia, Spain
Fran J. Alventosa E-mail: fraalrue@Qupv.es

Pedro Alonso E-mail: palonso@Qupv.es

Antonio M. Vidal E-mail: avidal@dsic.upv.es

Gema Pinero

Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM), Universitat Politécnica
de Valéncia

E-mail: gpinyero@iteam.upv.es

Enrique S. Quintana-Orti

Dept. Ingenieria y Ciencia de Computadores, Universidad Jaume I, Castellén, Spain
E-mail: quintana@uji.es

2 Fran J. Alventosa et al.

2n?(m — n/3) flops (floating point operations per second) using Householder re-
flections [9]. Many algorithms have been proposed in the past to improve the com-
putation of the QR factorization. Any new hardware architecture or configuration
has resulted in a new method to compute efficiently the QR factorization, yielding
large number of versions for a wide range of sequential and multicore processors,
including also accelerators like Graphics Processing Units (GPUs). Many of these
proposals correspond to block algorithms which improve performance on proces-
sors with a hierarchical organization of the memory system [10,5]. In this work we
commence with a sequential block algorithm that performs this factorization [13],
that we then modify to incorporate our ideas.

The computation of the QR factorization in this work aims to extract the most
approximate solution of a linear least squares problem arising as the main com-
putational kernel involved in the evaluation of a digital sound signal. The digital
sound signal is sampled in real time, which implies that there exists a short time
slot to perform all the computations associated to process a sample before the next
one is available. Furthermore, the time constrain becomes more critical because
we are interested in the use of devices with low computational capabilities (mobile
phones, tablets, etc.). Hence, we propose to speed-up the computation of the QR
factorization by reusing some computations performed during the factorization of
the previous sample.

In addition, we are interested in leveraging the multicore capability of mod-
ern processors. Parallel algorithms for the solution of basic linear algebra kernels
like the LU, Cholesky or QR factorizations on multicore processors are particularly
productive, and there exist libraries that include efficient implementations of these
kernels. Furthermore, there exist several runtimes that dynamically schedule sub-
problems for parallel execution once the problem has been previously partitioned
into subtasks. These runtime-assisted parallelization approach targets advanced
shared-memory parallelism by borrowing out-of-order scheduling techniques from
sequential superscalar architectures [13]. One effort in this direction is Super-
Matrix [6-8] whose runtime system enqueues the “tasks” conforming the linear
algebra operation on a queue, builds a Directed Acyclic Graph (DAG) to encode
dependencies, and executes tasks as the dependencies are satisfied. SuperMatrix
contains implementations, e.g. of the LU factorization with incremental pivoting,
and a closely related algorithm-by-blocks for the QR factorization. Both algorithms
are based in turn on an originally design for out-of-core computation [11]. This is
also the idea behind PLASMA project [5,4] which, similarly to SuperMatrix, pro-
vides an implementation of many BLAS and LAPACK routines. The OmpSs [1]
programming model equips the programmer with the ability to express tasks de-
pendencies and a runtime to run a DAG. These proposals were motivated by
the fact that the regular algorithmic notation used to write algorithms in which
tasks and operations are arranged in loops limits the capability to express the
out-of-order execution nature of some tasks. The scenario, however, has changed
considerably with OpenMP 4.0 since now it is easier to describe the dependencies
among suboperations/tasks.

In order to achieve the level of performance required to fully exploit current
processor architectures, the programmer has to meet several requirements at the
same time, such as data locality, load balancing, etc. This challenge becomes more
dramatic with the addition of an accelerator to the team of computational re-
sources. Several strategies offer support for heterogeneous CPU-GPU systems in

Fast Block QR Update in Digital Signal Processing 3

A_10|A_11]| A2 Ap,o | Ao,1 | Aoy2

Ap,o | Ao,1 | Aoz Aro |A11 |A12
Alk) — — Ak+1) —

Aro |A11 |A12 Az |A21 |Azg2

Az |A21 |Az2 Azo |A31 | Azz2

Fig. 1 Updating of system matrix A from iteration k to k + 1.

order to map work to the CPU or the GPU. Some strategies are in the concep-
tual basis of the task programming library StarPU [3], or have been incorporated
to the OmpSs [1] programming model. However, these tools must be previously
installed in the system and require the use of a proprietary library or macro lan-
guage. In this paper, we have tested that a simple strategy of scheduling tasks
to the CPU or GPU subsystem based on task type is enough to exploit a SoC
like the NVIDIA Jetson, a processor consisting of 4 ARM A57 cores and a GPU
NVIDIA Pascal with 256 CUDA cores. In particular, the main contribution of this
paper is a Hybrid-Tiled QR Factorization Algorithm (FQRFA) annotated with
OpenMP 4.0 directives that computes a reduced QR factorization taking benefit
of previously computed QR factorizations.

The rest of the paper is organized as follows. Section 2 explains the problem we
tackle: the QR update in the context of Digital Signal Processing. In the following
section we explain the implementation of a QR tiled algorithm and our proposal to
improve performance on this factorization. In Section 4 we analyze the computa-
tional cost of the algorithm and the savings achieved. Section 5 elaborates on the
parallelization of the algorithm in a hybrid architecture. The results are presented
in Section 6 and we close the paper with some conclusions.

2 The QR Update Problem

Let k = 0,1,... denote the iteration space for the sampling problem where the
integer k represents the order of the sample at instant k. Processing a sample
involves the QR factorization of the system matrix A®) | Assume this matrix is
partitioned into square blocks, referred to as tiles, of size ts x ts (Fig. 1). Matrix
A™) is then “updated” with new data to form the system matrix of the following
iteration A%TD as follows: 1) the “oldest” rows, which are the first ¢s rows, are
deleted; and 2) a set of ts rows which come from the sampled signall are appended
to the bottom of the system matrix. The orthogonal factor @ is not explicitly
formed since it is not needed.

At each iteration k& we have to compute the QR factorization of the system
matrix, i.e. AR = QrRk. In order to save operations in each factorization we
propose to work on a different type of matrix that we denote as jagged (matrix J

1 For the sake of simplicity we omit here the exact procedure to build the new rows of the
system matrix from the sample.

4 Fran J. Alventosa et al.

Jo11 | J-1,2 Jo,1 Jo,2
J71,0 -]0,0
J Jo 1 J(),Q J Jl 1 -]1 2
gk = 700 — gt — 10
Jii | Ji2 J21 | J2,2
J1,0 JQ,O
Ja1 | J22 J31 | Js2
JQVO J3,0

Fig. 2 Updating the jagged system matrix J from iteration k to k + 1.

Jo,1 Jo,2
Jo,o
J Ji1 Ji,2
gk o gy = M0 o Jglk4D)
Ja,1 Ja,2
J2,0
Az | A31 | A3

Fig. 3 Intermediate matrix (denoted as j(k)) between jagged matrices J®) and J*k+1),

in Fig. 2). Each block row of J®) is the triangular factor obtained from the QR
factorization of the corresponding row in A®).

In order to form J*1) from J*) there exists an intermediate step that consists
of performing the QR factorization of the new ¢ rows, i.e. the last rows of A*+1
and which are represented by (Az,0 A31 As2), to obtain the last ¢s rows of JEFD,
i.e. (J37o J3,1 J3,2) Clearly, computing the QR factorization of the jagged matrix

J*+1) s cheaper than computing the QR factorization of the full matrix A*+1),

3 The tiled QR factorization algorithm

The idea to obtain an algorithm-by-blocks for the QR factorization can be obtained
following the out-of-core algorithm in [10]. Our approach is also based on the
techniques introduced in [13].

As stated before, we consider the matrix as a collection of square tiles of size
ts Xts. Each tile is an array of elements stored in contiguous positions into memory.
This implies that, if the matrix is stored in the usual column-major order required
by BLAS/LAPACK routines, a previous transformation is needed to reorganize
the matrix as a collection of tiles. However, this step is only necessary before
processing the first sample. For now on in all our discussion and experimental
results we use a matrix consisting of 4 x 3 tiles as that shown in Fig. 1. This is not
a limitation since our proposal can be extended to any other grid arrangement of
tiles. Also, the problem size is always a multiple of the tile size. This assumption

©00 DUk W

Fast Block QR Update in Digital Signal Processing 5

Algorithm 1 QRTiled(A): factorizes a rectangular matrix A partitioned in square tiles.

#pragma omp parallel
#pragma omp single private(i,j,k)
for(k = 0; k < N; k++) {
#pragma omp task depend(inout: A(k,k))
D_QR(C A(k,k))
for(j = k+1; j < Nj j++) {
#pragma omp task depend(in: A(k,k)) depend(inout: A(k,j))
D_QT(A(k,k), A(k,j))
}
for(i = k+1; i < M; i++) {
#pragma omp task depend(inout: A(k,k), A(i,k))
TD_QR(A(k,k), A(i,k))
for(j = k+1l; j < N; j++) {
#pragma omp task depend(in: A(i,k)) depend(inout: A(k,j), A(i,j))
TD_QT(A(i,k), A(k,j), A(i,j))
¥
}
}

is not a hard constraint since the underlying physical problem addressed in our
proposal allows some degree of freedom in the choice of the tile size.

Algorithm 1% (QRTiled(A)) shows the tile algorithm for the QR factorization of
an Mx N tiled matrix of the form shown in Fig. 1. This algorithm uses four different
types of tasks (those already identified and used in [13]). Their description is the
following (we only specify the tiles of A involved in the computation as input
parameters, omitting other factors):

D_QR: Computes the QR factorization of tile Ay i. This operation (colored in red)
produces a triangular factor on the pivot tile (subfigures a), i), and 0)).

D_QT: Applies the factor QT obtained from the QR factorization of the diagonal
block Ay to tile Ay ;. (The Householder reflectors of QT are stored in the
lower triangular part of Ay x.) This operation (colored in cyan) can be found
in subfigures b) and j), which comprise the execution of the outermost loop
indexed by j.

k,k

ik
triangular, so that tile A; j is completely annihilated. This is represented by a
dotted square tile in subfigures c), e), g), k), m), and p). Notice that, as tile
A, is modified by this operation, its color becomes darker.

TD_QT: Applies the factor Q7 obtained by operation TD_QR within the same block
row ¢. This operation modifies tiles Ay ; and A; ;, with the last one labeled
with the name of the operation. The operation also reads tile A; ; because it
keeps the Householder reflectors implicitly representing factor Q7.

. . A .
TD_QR: Computes the QR factorization of matrix (A >, where Ay 1 is upper

In order to factorize matrices of the jagged form (Fig. 2) we have added two
types of tasks more:

. N . . . (A
TD_QR_T: This operation is equivalent to TD_QR when the matrix to reduce is < Jk’k)
ik

implying that the “lower” factor is triangular.

2 In order to save space in the document we have annotated the algorithms with OpenMP
tags that will be explained later. The sequential version arises from simply deleting these
OpenMP directives.

©O00 DUk W

6 Fran J. Alventosa et al.

Algorithm 2 QRTiledJagged(J): performs the QR factorization of a matrix of the form
J&) (Fig. 3).

#pragma omp parallel
#pragma omp single private(i,j,k)
{
#pragma omp task depend(inout: J(M-1,0))
D_QR(J(M-1,0));
for(j = 1; j < N; j++) {
#pragma omp task depend(in: J(M-1,0)) depend(inout: J(M-1,j))
D_QT(J(M-1,j), J(M-1));
}
for(i = 1; 1 < M; i++) {
#pragma omp task depend(inout: J(0,0), J(i,0))
D_QR_T(J(0,0), J(i,0));
for(j = 1; j < N; j++) {
#pragma omp task depend(in: J(i,0)) depend(inout: J(0,j), J(i,j))
D_QT_T(J(i,0), J(0,3), J(i,j));
}
}
QRTile (J(1:M,1:N));

Jo,1 Jo,2 _ Jon Jo,2
JO,O JO,O

Jia Ji,2 Jia J1,2
J1,0

=

Jo1 J2,2 Jan J2,2
J2,0

J31 J3,2 J31 J3,2
J3,0

Fig. 4 Reduction of the first block column of matrix J**1) to upper triangular form.

TD_QT_T: As in the previous case, this operation is equivalent to TD_QT when the
factor QT was generated with TD_QR_T.

The algorithm for the QR factorization of a jagged matrix has the form shown
in Algorithm 2. This algorithm includes the QR factorization of the bottom s
rows of matrix J*) (Fig. 3) in lines 4-9. Instructions in lines 10-17 perform the
QR factorization of the first block column of matrix J*Y . This operation is
represented in Fig. 4. Finally, submatrix Ji.as,1: 5 is reduced to triangular form by
using routine QRTiled (Algorithm 1), as it is illustrated in Fig. 5.

4 Model for the tiled QR factorization algorithm

This section analyzes the cost in flops of the QR factorization of a jagged matrix,
i.e. the cost of routine QRTiledJagged (Algorithm 2). An interesting point that
shows the cost model is that the savings when operating with a jagged matrix
compared with the cost of the original one are larger than the proportion of zeros
in a jagged matrix with respect to the matrix size.

Fast Block QR Update in Digital Signal Processing 7

- Joa | Joz2 - Joa | Joz
Jo,0 Jo,0

j1,1 j1,2 = jl,2

Ji1
=
Ja1 | J22 -
J2,2
,]73,1 j3,2

Fig. 5 Reduction of submatrix Jil:M,LN to upper triangular form.

Consider Figure 2 and 3. The cost of computing (J3,0 J3,1 J3,2) from the new
rows (As o Asz,1 Asz2), denoted as c1, can be approximated as:

o1 = i (3(ts —i+1) +4(ts — i+ 1)(n — 1))

2 s
2nt§ + §t§ — 7t§ = 2t§ (n — %) flops.

Q

2 3

The reduction of a jagged matrix to upper triangular form is divided into two
steps. The first one, which consists of the reduction of the first block column to
upper triangular (Fig. 4), can be approximated as

e =S B+ D) + 46+ - (™ -1
D26+ D)+t + (=) (7 1)

S

~ (Qnti + %ti — %tg) (tm — 1) = (Qti (n — ;ts)) (tﬁ — 1) flops.

The cost of the second step, plotted in Fig. 5, has the following form

3 = 2(n — ts)> <(m_ts)_ n;t)

3

Merging the three costs and operating with the result we obtain an approxi-
mation T’y of the theoretical cost to execute routine QRTiledJagged (Algorithm 2)
on matrix J*) in order to obtain the QR factorization of matrix J*+1):

4
Ty=c1+co+c3= <2nt§ — %ti) + (277,755 — §t§> (m — 1)

4
= 2n? (m — E) — <4tsmn + §t§ — 2t m — QtEn) flops.

5 n 4 3 2 2
+ 2n (m g) <4tsmn + gts 2tsm 2tsn>
2 m n 4
< (2nt§ - gti’) (t—) + 212 (m - g) - (4t5mn + gti’ —2%m — 2t§n)

— 22 (m — %) - <§t§’ - <§m + 2n) 2+ 2mnts)

:TA*TS7

8 Fran J. Alventosa et al.

Table 1 Theoretical speed-up obtained when working on jagged matrices compared with the
“naive” algorithm.

mxn/ ts 1 2 8 32 80 160 320 640
1280 x 960 1.00 1.00 1.01 104 1.11 121 135 1.33
2560 x 1960 | 1.00 1.00 1.01 1.02 1.05 1.11 1.21 1.35

where T4 denotes the cost (in flops) of performing the QR factorization of an
m X n matrix A and Ts denotes the savings.

The speed-up (S) of the QR factorization of matrix J*) (Fig. 3) compared to
the QR factorization of matrix ACFD (Fig. 1) can be approximated as

Ta 2n?(m — 5)
Ty —Ts 2n2 (m—1%)— (%tﬁ — (%m + 2n) 2 + 2mnts)
1
11— (28— (2m+n) 2 +mnts) / (n2(m - 2))

S =

As the speed-up S does not vary linearly with ¢, we need to use numerical
examples to see the impact of working on jagged matrices instead of the original
ones. Table 1 shows numerical examples for several values of the block size ts and
two matrix sizes.

5 The Hybrid-Tiled QR Factorization Algorithm

A multithreaded version of the tiled QR factorization algorithm based of Open-
MP is quite straightforward here for the two loops indexed by j. There exists,
however, a more efficient approach that unleash an out-of-order execution of the
operations that can be run concurrently, regardless of whether they belong to the
same loop or not. To this end the algorithm can be formulated as a collection of
operations on tiles that are related by a set of dependencies. In our formulation
we use OpenMP 4.0. A task-oriented design for a Parallel Tiled QR Factorization
Algorithm can be written by annotating the sequential version with the OpenMP
directive task (Algorithm 1). Furthermore, the clause depend can be leveraged to
specify the dependencies among tasks. The OpenMP runtime schedules the opera-
tions according to a Direct Acyclic Graph (DAG) that represents the dependency
relationships among operations on tiles. This DAG is illustrated in Fig. 6, where
we distingish each type of task with a diferent color. The same strategy is used
to implement the multithreaded version of the Tiled QR Factorization Algorithm
that works on matrices of the form J*) (Fig. 3) as shown in Algorithm 2. The
DAG of routine QRTiledJagged is very similar to the one shown in Fig. 6.

In addition, we have enhanced our parallel algorithms with the ability to use
a NVIDIA GPU in the system yielding the Hybrid-Tiled QR Factorization Al-
gorithm. There exist different options at the time of scheduling a task either to
the CPU or the GPU. We have chosen a natural choice that makes the decision
based on the task consisting in that D_QR and TD_QR are always executed in CPU,
while D_QT and TD_QT are executed in GPU. The operations carried by the GPU
are differentiated from those carried out by the CPU in the DAG of Fig. 6 because
the node shape is a doubled circle. Analogously, in the case of Algorithm 2, any

Fast Block QR Update in Digital Signal Processing 9

TD_QRO2 -

{
TD_QROI
“

TD_QRO3 -

TD_QR23

TD_QRI3

Fig. 6 Direct Acyclic Graph (DAG) for the execution of the Hybrid-Tiled QR Factorization
Algorithm (Algorithm 1) on a 4 x 3 tiles matrix A(F+1) (Fig. 1).

task of type TD_QR_T is executed by the CPU while tasks of type TD_QT.T are all
uploaded to the GPU.

On the CPU side, we have used OpenBLAS [2] for the essential BLAS/LA-
PACK kernels invoked from each task. The implementation of the tasks executed
by the GPU is subdivided into smaller BLAS routines so they can be easily per-
formed via CUBLAS [12] routines. When the algorithm encounters a task of type
D_QT or TD_QT, the tiles involved in the computation are off-loaded to the GPU,
the GPU performs the computation in GPU and, finally, the results are returned
back to the CPU. This is simple to implement but comes at the cost of increasing
the amount of data CPU-GPU transferences. However, if the GPU is fed with
many tasks, communications and computations can be overlapped hiding thus the
communication cost. This implementation can obtain some benefits from Hyper-Q
on those devices that support this technology. This feature was integrated in the
Kepler architecture to exploit the throughput of a device that receives operations
from multiple threads concurrently. These requests, that are enqueued in the same
default stream, are not yet “falsely” serialized [14].

6 Experimental Results

All the experiments have been realized in a NVIDIA Jetson TX2 development
kit. This platform features a Quad ARM® A57 and a NVIDIA Pascal™ with
256 CUDA cores. We compile the CPU code with the GNU compiler gcc 6.2, a
version which is compliant with OpenMP 4.5. We note here that a version > 4.9

10 Fran J. Alventosa et al.

Table 2 Time in seconds of QR factorization of matrix A (Fig. 1) vs. matrix J (Fig. 3) for
problem sizes 1280 x 960 and 2560 x 1920 varying the tile size and the block size.

m X n = 1280 x 960 m X n = 2560 x 1920

bs ts QR(AKTD) QR(JKHD) g ts QR(AGKTDY) QR(J*+D) g

20 0.094 s. 0.102 s. 1.43 0.691 s. 0.695 s. 1.41
32 e 0.100 s. 0.113 s. 132 oo 0.714 s. 0.734 s. 1.35
40 0.108 s. 0.124 s. 1.21 0.740 s. 0.772 s. 1.30
80 0.142 s. 0.176 s. 0.88 0.887 s. 0.992 s. 1.04
20 0.089 s. 0.097 s. 1.51 0.692 s. 0.698 s. 1.41
32 .00 0.095 s. 0.108 s. 138 o0 0.693 s. 0.708 s. 1.40
40 0.102 s. 0.119 s. 1.27 0.710 s. 0.741 s. 1.35
80 0.131 s. 0.166 s. 0.95 0.811 s. 0.920 s. 1.13

is needed in order to use the depend clause introduced in OpenMP 4.0. For the
GPU code we used CUDA 8.0 and the CUBLAS library provided for BLAS.

The results for our first experiment were obtained in a single ARM Cortex-
AB7 core of our target machine. The purpose of experiment is to demonstrate
the benefits of using a jagged matrix compared with the naive regular rectangular
matrix. Table 2 shows the time in seconds to perform the QR factorization of
each matrix A®) (column QR(A®))), and the factorization of the jagged matrix
J®) (column QR(J™)). The speed-up S achieved is also compared. We show the
results on matrices of two problem sizes and two different tile sizes (¢s) for each
problem size. The implementation of the tasks is parametrized by an algorithmic
block size (bs) so that different block sizes result in different execution times. Both
the block size bs and the tile size ts affect the performance of the algorithm. There
exist some freedom to select the block size bs provided it is always integer divisor
of ts. In the exposition so far and for clarity, the tile size has been assumed to be
equal to the number of rows to be updated, but in the actual implementation the
tile size can be an integer divisor of the number of rows to be updated. Table 2
shows that the best performance of the QR factorization of the two matrices, i.e.
QR(A™) and QR(J®), is obtained always for the same combination of values
(ts,bs). In these cases, the speed-up of QR(J(k)) with respect to QR(A®)) is in
the range = [1.41, 1.45]. These numbers are slightly higher than those obtained by
our theoretical model in Table 1.

We have evaluated matrices with M = 4 and N = 3 tiles. The two rectangular
problems thus differ in the tile size, which is ¢s € {320,640}, yielding matrix sizes
m X n = 1280 x 960 and m X n = 2560 x 1920.

The plots in Fig. 7 report the execution time for the two problem sizes tackled
(1280 x 960 and 2560 x 1920, respectively). The purple line shows the execution
time obtained with the algorithm in Fig. 2, which uses the four ARM cores. The
green line shows the hybrid version, i.e. which adds the GPU to the computation.
The two plots are both compared with the OpenBLAS implementation of the QR
factorization that also uses the four ARM cores. (Note that the tile size does not
affect to the OpenBLAS version.) The block size is the best determined in the
previous experiment.

Fast Block QR Update in Digital Signal Processing 11

CPU (4 cores) —+——— CPU+GPU OpenBLAS
1280 x 960
0.3
0.25
0.2
g 0.15 —
0.1 e
0.05 .
>
0
0 20 40 80 160 320

ts

CPU (4 cores) ——+— CPU+GPU ——<—— OpenBLAS

2560 x 1920
2
15
m —
0.5 T
-
0
02040 80 160 320 oo

Fig. 7 Execution time of the Hybrid-Tiled QR Factorization Algorithm.

7 Conclusions

Real time applications are characterized by performing the same computation
repeatedly over new coming data. Sometimes, data, which frequently is represented
as a system matrix, changes from one iteration to the next one only in a small part.
If the computation on this matrix is expensive, as it is the QR factorization, we can
use this fact to save processing time. We propose to work on a modified matrix,
called jagged, instead of on the original system matrix. With this simple idea, it
is possible to increase performance by a factor close to 1.45 in the particular case
we tackled in this paper, i.e. when data is represented by a 4 x 3 tiles matrix and
50% of data (25% discarded rows and 25% new rows) changes from one iteration
to the next one.

The parallel algorithm proposed partitions the computation in a set of tasks
with a dependency relationship. This dependency is easily expressed without hav-
ing to modify the sequential algorithm, just annotating the code with OpenMP
directives introduced in standards 3.0 and 4.0. We have exploited all the capabili-
ties of our target machine which consists of 4 CPU cores and 1 GPU by driving a

12

Fran J. Alventosa et al.

task either to a CPU core or to the GPU depending on its type. The results show
that our solution can be used for applications with real-time if the problem size is
not very large.

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitive-
ness under MINECO and FEDER projects TEC2015-67387-C4-1-R and TIN2014-
53495-R; and the Generalitat Valenciana PROMETEOII/2014/003.

References

N =

10.

11.

12.
. Gregorio Quintana-Orti, Enrique S. Quintana-Orti, Robert A. Van De Geijn, Field G. Van

14.

. The OmpSs Programming Model. https://pm.bsc.es/ompss. Accessed on May 2017.
. Openblas. http://www.openblas.net. Accessed on May 2017.
. Cédric Augonnet, Samuel Thibault, and Raymond Namyst. StarPU: a Runtime System for

Scheduling Tasks over Accelerator-Based Multicore Machines. Research Report RR-7240,
INRIA, March 2010.

. Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled QR

factorization for multicore architectures. Concurrency and Computation: Practice and
Experience, 20(13):1573-1590, 2008.

. Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel

tiled linear algebra algorithms for multicore architectures. Parallel Computing, 35(1):38 —
53, 2009.

. Ernie Chan, Enrique S. Quintana-Orti, Gregorio Quintana-Orti, and Robert van de Geijn.

Supermatrix out-of-order scheduling of matrix operations for smp and multi-core architec-
tures. In Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’07, pages 116-125, New York, NY, USA, 2007. ACM.

. Ernie Chan, Field G. Van Zee, Enrique S. Quintana-Orti, Gregorio Quintana-Orti, and

Robert De Van Geijn. Satisfying your dependencies with supermatrix. In Proceedings
- 2007 IEEE International Conference on Cluster Computing, CLUSTER 2007, pages
91-99, 2007.

. Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Orti, Gregorio

Quintana-Orti, and Robert A. van de Geijn. Supermatrix: a multithreaded runtime
scheduling system for algorithms-by-blocks. In Siddhartha Chatterjee and Michael L.
Scott, editors, PPOPP, pages 123—-132. ACM, 2008.

. G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins Studies in the

Mathematical Sciences. Johns Hopkins University Press, 2013.

Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation and up-
dating the QR factorization. ACM Transactions on Mathematical Software, 31(1):60-78,
March 2005.

Thierry Joffrain, Enrique S. Quintana-Orti, and Robert A. van de Geijn. Rapid devel-
opment of high-performance out-of-core solvers. In Applied Parallel Computing, State
of the Art in Scientific Computing, 7th International Workshop, PARA 2004, Lyngby,
Denmark, June 20-23, 2004, Revised Selected Papers, pages 413-422, 2004.

NVIDIA. The cuBLAS library. http://docs.nvidia.com/cuda/cublas.

Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for thread-level paral-
lelism. ACM Trans. Math. Softw., 36(3):14:1-14:26, July 2009.

Florian Wende, Thomas Steinke, and Frank Cordes. Multi-threaded kernel offloading to
gpgpu using hyper-q on kepler architecture. Technical Report 14-19, ZIB, Takustr.7, 14195
Berlin, 2014.

