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Abstract This paper shows a promising method for
acoustic barrier design using a new acoustic material

called Sonic Crystals (SCs). The configuration of these

SCs is set as a multiobjective optimization problem

which is very difficult to solve with conventional op-
timization techniques. The paper presents a new par-

allel implementation of a Multiobjective Evolutionary

Algorithm called ev-MOGA (also known as ǫր-MOGA)

and its application in a complex design problem. ev-

MOGA algorithm has been designed to converge to-
wards a reduced, but well distributed, representation

of the Pareto Front (solution of the multiobjective op-

timization problem). The algorithm is presented in de-

tail and its most important properties are discussed.
To reduce the ev-MOGA computational cost when ob-

jective functions are substantial, a basic parallelization

has been implemented on a distributed platform.
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1 Introduction

Noise control has long been considered a standard topic
in science and technology. There are three phases at

which noise can be controlled: in the generation (source

of noise), in the transmission (from the source to the

receiver) and in the reception (receiver of noise). The
use of acoustic barriers is the most suitable method for

controlling the noise in the transmission step.

The acoustic effect of barriers can be explained as

follows: the transmitted noise travels from the source to
the receiver in a straight line. This path is interrupted

by an acoustic barrier situated between the source and

the receiver. A portion of the transmitted acoustic en-

ergy is reflected or scattered back towards the source,

and another portion is transmitted through the barrier,
diffracted at the top edge or absorbed by the mate-

rial of the barrier. Thus, as one can see in Fig. 1, the

receiver is exposed to the transmitted and diffracted

noise. Transmission depends on the barrier’s material
properties and refraction depends on the dimensions,

location, and shape of the barrier. Acoustic design con-

siderations include aspects regarding the material, lo-

cation, dimensions, and shape of the barrier.

In last decade new acoustic materials called sonic

crystals (SCs) have been developed (Martínez-Sala et al.,

1995; Sánchez-Pérez et al., 1998; Kushwaha, 1997; Shen

and Cao, 2001; Cervera et al., 2002), which can be

presented as an alternative to classic acoustic barri-
ers. These materials consist of periodic distributions of

acoustic scatterers in another medium with different

physical properties. These composite materials have an

important acoustic characteristic related with the at-
tenuation of sound: they contain spectral band gaps

that prevent the propagation of sound in a predeter-

mined range of frequencies, depending both on the pe-
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Fig. 1: Acoustic effect of a barrier.

Fig. 3: Transversal scheme of an SC formed by isolated cylinders
in a triangular array used as an acoustic barrier. ’a’ represents
the lattice constant of the array, and ’d’ is the cylinder diameter.

riodicity of the array formed and on the configuration of

the unit cell. Specifically, some authors (Sánchez-Pérez

et al., 2002) have demonstrated the possibility of us-

ing 2D SCs formed with isolated cylindrical scatterers

made with rigid materials to construct acoustic barriers
(Fig. 2).

The use of these materials as acoustic attenuation

devices is advantageous because they can be installed

without foundations. This is because their structure al-

lows air to pass through them, so reducing the air pres-
sure on the SC barrier. Nevertheless, their technological

use must be developed in order to solve the acoustical

disadvantages they present compared to classical bar-

riers. The main problem is the creation of large atten-
uation bands for wide ranges of frequencies - because

the size of an attenuation band depends on both the

physical characteristics of the cylindrical scatterers and

on their positioning. Specifically, the number, size, and

lattice constant, of the cylinders arrays must be taken
into account (Fig. 3). In other words, the attenuation

peaks widen when we increase the number and diam-

eter of the cylinders and, moreover, the position of an

attenuation band in the frequency spectrum depends on
the distance between cylinders. Obtaining an optimum

arrangement of cylinders to ensure the best acoustic

attenuation is not a trivial problem.

All of these physical arguments, together with the

complexity of the mathematical functions involved in

the attenuation SC calculus, indicate that SCs are suit-

able for using optimization algorithms to improve their

attenuation capability. In fact, some researchers have
used genetic algorithms (GA) in order to optimize the

lens behaviour of these materials, by varying the di-

ameter and the position of the cylinders, and creating

vacancies in the starting SC (Hakkansson et al., 2005;
Sanchis et al., 2004). Other research groups have used

GA as a strategy to enhance the attenuation capabil-

ity of the SCs by creating vacancies in the cylinder ar-

ray (Romero-García et al., 2006; Hussein et al., 2006;

Gazonas et al., 2006; Hussein et al., 2007).

The physical problem to solve is how to optimize

the attenuation properties of SCs by creating vacan-

cies in the starting and complete SC. Acoustically, this

means: (i) maximize the attenuation level in a prede-
termined wide frequency range, and (ii) minimize de-

viation from the average attenuation value within the

predetermined frequency range. Until now, all previous

work has attempted to find optimal SCs by formulating

the problem as a single objective optimization prob-
lem. However, we propose improving the solution by

reformulating the problem as a multiobjective problem

(MOP).

The problem is very complex and has a high compu-
tational cost - requiring new optimization algorithms to

solve it. One interesting alternative in resolving MOPs

is based on the use of evolutionary algorithms (EAs)

- allowing several elements of the Pareto optimal set

to be generated at the same time, in parallel and in a
single run. This is made possible thanks to the popu-

lational nature of EAs. A number of authors have de-

veloped different operators, or strategies, for converting

the original EAs into multiobjective optimization evo-
lutionary algorithms (MOEAs) that converge towards

the Pareto optimal set and are diverse enough to be

able to characterize it. The good results obtained with

MOEAs, together with their capacity to handle a wide

variety of problems with different degrees of complexity,
explains why they are being used more frequently. In-

deed, they are currently one of the branches where the

most progress is being made within the field of EAs.

(Fonseca, 1995; Zitzler, 1999; Coello et al., 2002; Alan-
der, 2002; Coello et al., 2005).

This article shows a new parallel implementation

of a multiobjective optimization algorithm (ev-MOGA)

and its application in the improvement of the attenu-

ation properties of SCs. Different strategies for creat-
ing the vacancies have been used because of the prob-

lem complexity: X symmetry, Y symmetry, X plus Y

symmetry, and random. Throughout this work, we have
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(a) (b)

Fig. 2: (a) SC used as acoustic barrier; (b) Classical acoustic barrier.

considered 2D SCs made with an array of cylinders sur-

rounded by air.

2 Theoretical considerations

2.1 Multiple Scattering Theory

Analysis of sound propagation in periodic structures

such as SCs needs the use of mathematical methods.

In recent years some authors have developed several

tools to reproduce the acoustic behaviour of SCs. These

methods can be classified as either theoretical and phe-
nomenological. The theoretical methods are based ei-

ther on mathematical functions with fixed symmetry, or

on numerical resolution of the wave equation (Chen and

Ye, 2001; García-Pablos et al., 2000). Phenomenologi-
cal methods are based on experimental data obtained

in specific experimental situations (Fuster et al., 2006).

Several modelling methods have been developed -

depending on the characteristics of the SCs analyzed.

The Plane-wave (PW) method (Sigalas and Economou,
1992) is a powerful technique, but it presents conver-

gence problems in some special cases, for example, pe-

riodic (or non-periodic) structures with large density

contrasts in the physical properties between the scat-

terers and host material. These difficulties can be re-
duced if we use a Multiple Scattering (MS) method.

For this situation, Multiple Scattering Theory (MST)

seems more numerically efficient than the PW method.

The physical mechanism of this method can be ex-

plained as follows: when sound is propagated through
a medium with many scatterers, waves are scattered

by each scatter. Acoustic waves may be scattered yet

again by other scatterers. This phenomenon is repeated

infinitely to establish a multiple scattering process. The
Multiple Scattering Theory (MST) (Chen and Ye, 2001;

Kafesaki and Economou, 1999), based on the well known

Korringa-Kohn-Rostoker theory (KKR) (Korringa, 1947;

Kohn and Rostoker, 1954), is a self-consistent method

for calculating acoustic pressure, including all orders of

scattering for mixed composites and for high-contrast

composites. Moreover, with this method we can calcu-

late transmission through finite arrays of these compos-
ites.

In this work, the simulation of the sound scattered

by each analyzed structure will be performed by a two-
dimensional (2D) MST. If we consider the pressure and

normal continuous velocity across the interface between

a scatterer and the surrounding medium, the acoustic

pressure at any point outside all the cylinders can be
expressed by

P (r) = iπH
(1)
0 (k|r|) + (1)

+

N
∑

l=1

q=∞
∑

q=−∞

iπAlqH
(1)
lq (k|r − rl|) exp(iqφr−rl

),

where N is the number of cylinders with radius r

located at rl (with l = 1, ..., N), k is the wave number,

i is the imaginary unit, H
(1)
0 is the 0-th order first kind

Hankel function and φr−rl
is the azimuthal angle of

the vector r − rl to the positive x-axis. Alq are the

coefficients of the series expansion of the pressure, and
Hlq is the q-th order first kind Hankel function.

2.2 Complexity and Objectives

There are several reasons why classical optimization

methods are difficult to use in the problems presented

in this work: the type of dependencies, the dimension
of the search space, and the computational time.

The coefficients of the series expansions in the MST,

Alq, which are determined numerically from the equa-
tions obtained by means of the boundary conditions,

depend on the parameters defining the crystal, and on

the frequency. As a consequence, the acoustic pressure,
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equation (1), depends simultaneously on discrete and

continuous variables. Therefore, equation (1) is difficult

to optimize.

The dimension of the search space in optimization

methods is an important parameter to take into ac-

count. The larger the search space, the more difficult

the resulting optimization problem. In this work, the
dimension of the search space is large due to the great

number of variables involved in the MST.

Finally, the computational time to calculate Alq in-

creases to the third power of the number of cylinders,

N3, so large numbers of cylinders implies a high com-

putational time. The use of SCs as acoustic barriers
means structures with many scatterers, and this again

indicates the complexity of the problem.

The objectives used in this paper are based on the

acoustic attenuation properties of an array of scatterers.

The theoretical acoustic attenuation at a point (x, y),

for an incidence frequency ν and an array of cylinders
of radius rl placed at (Xcyl, Ycyl) coordinates is:

Attenuation(dB) = 20 log
|Pdirect(x, y)|

|Pinterfered(x, y, Xcyl, Ycyl, ν, rl)|

(2)

where the interfered pressure is determined by the

MST, equation (1). And Xcyl, Ycyl represent the x and

y coordinates of cylinders that form the array of scat-
terers.

To maximize the sound attenuation in a predeter-
mined range of frequencies at a point of coordinates

(x, y) two objective functions are defined, setting the

problem as a multiobjective,

J1(θ) = p̄ =

Nν
∑

j=1

|pj(θ)|

Nν

(3)

J2(θ) =

√

∑Nν

j=1(p̄ − |pj(θ)|)2

N2
ν

(4)

where Nν represents the number of frequencies con-
sidered in this range and θ is a vector that contains

the information about the space configuration of the

structure.

J1(θ) represents the mean pressure in the range of

frequencies [ν1 = 2300, νN = 3700]Hz, and J2(θ) repre-

sents the mean deviation. In our case, we use Nν = 29,
meaning △ν = 50Hz. The design variable under study

θ is a vector that indicates the existence, or not, of a

cylinder in each position of the SC.

2.3 Analyzed Structures

The base SC structure (see Fig. 3) is made of 73 cylin-

ders located in 7 rows, in a triangular array which lat-

tice constant of 6.35cm.

The optimized structures are obtained by means of

the creation of vacancies by removing cylinders in the
base SC structure. Thus, we analyze the search space

by varying the design variable, θ.

In this work, several rules to create vacancies in the

starting SC have been analyzed: (a) symmetry around
the X axes, (b) symmetry around the Y axes, (c) sym-

metry around both the X and Y axes, and (d) no sym-

metry (random). Fig. 4 shows an example of each sym-

metry used.

The design variable is a vector (chromosome) whose
coordinates (genes) represent the existence, or not, of a

cylinder in a specific position of the starting SC. Each

gene is related with the coordinates of a scatterer of the

starting SC. Every possible position of a cylinder in the
SC is localized with a matrix of positions (Xcyl, Ycyl). In

this problem, the matrix has 73 rows and two columns

(the first column represents x position and the second

column represents y position). So the i–gene is related

with the i–row in matrix (Xcyl, Ycyl). The value in each
gene of the design variable θ can vary in the [0, 1] range.

A gene with a value in ]0.5, 1] represents the existence

of a cylinder in the position associated with it, and a

value in [0, 0.5] means the existence of a vacancy at this
position.

If symmetric vacancies are analyzed, the chromo-

some only presents the genes corresponding to the po-

sitions of the symmetric part of the SC, and to obtain

the complete chromosome, a mirror image of this coor-
dinate is made. This methodology ensures that cylinder

location are not overlapped.

2.4 Multiobjective evolutionary algorithm

The ǫ−MOGA variable (ev-MOGA) is an elitist multi-

objective evolutionary algorithm based on the concept
of ǫ−dominance (Laumanns et al., 2002).

With regard to MOP, a completed and detailed ver-

sion of the ev-MOGA algorithm is developed in (Her-

rero, 2006) where the algorithm is compared with the

ǫ−MOEA (Mishra et al., 2005) by means of a set of five
classical benchmarks for MOPs (MOP1 to MOP5 ex-

tract from (Coello et al., 2002)). ǫ−MOEA algorithm is

also based on the concept of ǫ−dominance. In (Mishra

et al., 2005), a comparison between the ǫ−MOEA and
other well known algorithms such as NSGA-II, PESA,

SPEA2, etc. shows the superiority of the ǫ−MOEA. As

stated in in (Deb, 2007), ǫ−MOEA is computationally
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Fig. 4: Creation of vacancies in an SC; (a) X symmetry; (b) Y symmetry; (c) X plus Y symmetry; (d) no symmetry constraints.

faster and achieves better distributed solutions than

NSGA-II or SPEA2.

Generally, the ev-MOGA algorithm presents bet-

ter values for classical MO metrics (Pareto solutions

(PS) generational distance (GD), hyperarea ratio (HR),
spacing (SP) and box ratio BR1) as shown in Table 1.

The algorithms optimize each problem ten times with a

different initial population (randomly created) and the

average values for each metric are shown in this table.

PS GD HR SP BR

MOP1

ev-MOGA 25 0.00292 0.929 0.00767 0.5145

ǫ−MOEA 25 0.00296 0.929 0.00765 0.5143

MOP2

ev-MOGA 42 0.00101 0.981 9.625e-7 0.9223

ǫ−MOEA 42 0.00107 0.9798 4.676e-6 0.883

MOP3

ev-MOGA 39.8 0.0158 0.9605 0.0632 0.8379

ǫ−MOEA 38.8 0.0222 0.9603 0.0658 0.8374

MOP4

ev-MOGA 53 0.00299 0.9803 0.0118 0.938

ǫ−MOEA 49.7 0.00309 0.975 0.0168 0.9323

MOP5

ev-MOGA 53.6 0.00364 0.0182 0.6057
ǫ−MOEA 30.6 0.00531 0.02818 0.6412

Table 1: Comparative values of the PS, GD, HR, SP and BR metrics

for the MOP1 to MOP5 problems between ev-MOGA and ǫ−MOEA

algorithm. Bold numbers show the better values obtained for each

metric and problem.

ev-MOGA obtains an ǫ−Pareto set, Θ̂
∗

P , that con-
verges towards the Pareto optimal set ΘP in a dis-

tributed way and utilizes limited memory resources.

1 For more details about these metrics see (Coello et al., 2002).

Another difference with ǫ−MOEA is that ev-MOGA

is able to adjust the limits of the Pareto front dynam-

ically and prevent solutions belonging to the extremes
of the front from being lost.

The objective function space is split into a fixed

number of boxes forming a grid. For each dimension,

n_boxi cells of ǫi width calculated as

ǫi = (Jmax
i − Jmin

i )/n_boxi (5)

This grid preserves the diversity of J(Θ̂∗

P ) since one

box can be occupied by only one solution. This fact

prevents the algorithm from converging towards just

one point or area inside the function space (Fig. 5).

The concept of ǫ−dominance is defined as follows.
For a model θ, boxi(θ) is defined by

boxi(θ) =

⌈

Ji(θ) − Jmin
i

Jmax
i − Jmin

i

· n_boxi

⌉

∀i ∈ [1 . . . s] (6)

Let box(θ) = {box1(θ), . . . , boxs(θ)}. A solution

vector θ
1 with function value J(θ1) ǫ−dominates the

vector θ
2 with function value J(θ2), denoted by:

J(θ1) ≺ǫ J(θ2), (7)

if and only if:

(

box(θ1) ≺ box(θ2)
)

∨

∨
((

box(θ1) = box(θ2)
)

∧
(

J(θ1) ≺ J(θ2)
))

. (8)

Hence, a set Θ̂
∗

P is ǫ−Pareto if and only if ∀θ
1, θ2 ∈

Θ̂
∗

P , θ
1 6= θ

2

Θ̂
∗

P ⊆ ΘP ∧ (box(θ1) 6= box(θ2)) (9)
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Fig. 5: The concept of ǫ−dominance. ǫ−Pareto Front J(Θ̂∗

P
) in a two-dimensional problem. Jmin

1
, Jmin

2
, Jmax

1
, Jmax

2
, limits space;

ǫ1, ǫ2 box widths; and n_box1, n_box2, number of boxes for each dimension.

Next, the procedure to obtain an ǫ−Pareto front

J(Θ̂∗

P ), which is a well-distributed approximation sam-

ple of the Pareto front J(ΘP ), is described. The algo-

rithm, which adjusts the width ǫi dynamically, is com-
posed of three populations (see Fig. 6).

1. Main population P (t) explores the searching space

D during the algorithm iterations (t). Population

size is NindP .
2. Archive A(t) stores the solution Θ̂

∗

P . Its size NindA

can be variable and will never be greater than

Nind_max_A =

∏s

i=1(n_boxi + 1)

n_boxmax + 1
(10)

where n_boxmax = maxi n_boxi.
3. Auxiliary population G(t). Its size is NindG, which

must be an even number.

The pseudocode of the ev-MOGA algorithm is given

by

1. t:=0

2. A(t):=∅
3. P(t):=ini_random(D)

4. eval(P(t))

5. A(t):=storeini(P(t),A(t))

6. while t<t_max do

7. G(t):=create(P(t),A(t))

8. eval(G(t))

9. A(t+1):=store(G(t),A(t))

10. P(t+1):=update(G(t),P(t))

11. t:=t+1

12. end while

The main steps of the algorithm are briefly detailed

as follows2:

2 A more detailed description can be obtained in (Herrero
et al., 2007).

Step three. P (0) is randomly initialized with NindP

individuals (design vectors θ).

Step four and eight. Function eval calculates function

values (equations (3) and (4)) for each individual in
P (t) (step four) and G(t) (step eight).

Step five. Function storeini checks individuals of P (t)

that might be included in the archive A(t) as follows:

1. Non-dominated P (t) individuals are detected, ΘND.
2. Function space limits are calculated from J(ΘND).

3. Individuals in ΘND that are not ǫ−dominated

will be included in A(t).

Step seven. Function create creates G(t) by means of

crossover (extended linear recombination technique)
and mutation (using random mutation with Gaus-

sian distribution) operators.

Step nine. Function store checks which individuals in

G(t) must be included in A(t) on the basis of their
location in the function space (see Fig. 7). Thus

∀θ
G ∈ G(t)

1. If θ
G lies in the area Z1 and is not ǫ−dominated

by any individual from A(t), it will be included

in A(t). Individuals from A(t) which are ǫ−dominated
by θ

G will be eliminated.

2. If θ
G lies in the area Z2 then it is not included

in the archive, since it is dominated by all indi-

viduals in A(t).
3. If θ

G lies in the area Z3, the same procedure is

applied as was used with the function storeini

but now applied over the population P ′(t) =

A(t)
⋃

θ
G. In this procedure, new function limits

and ǫi widths could be recalculated.
4. If θ

G lies in the area Z4, all individuals from

A(t) are deleted since they are all ǫ−dominated

by θ
G. θ

G is included and function space limits

are J(θG).
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Fig. 6: ev-MOGA algorithm structure. P (t), the main population; A(t), the archive; G(t) the auxiliary population.
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J
1
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J
1
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J
2

min

J
2

max

J
1

minJ
3

min

J
3

max
Z1

(a) (b)

Fig. 7: Objective function space areas (Z) and limits (J). Showing (a) two-dimensional case (b) three-dimensional case

Step 10. Function update updates P (t) with individ-

uals from G(t). Every individual θ
G from G(t) re-

places an individual θ
P that is randomly selected

from among the individuals in P (t) that are domi-
nated by θ

G. θ
P will not be included in P (t) if there

is no individual in P (t) dominated by θ
G.

Finally, individuals from A(t) compound the solu-

tion Θ̂
∗

P of the multiobjective optimization problem.

2.5 Parallelization

The high computational cost of the SC attenuation
property optimization problem produces huge execu-

tion times, i.e. average execution time for a popula-

tion P (t) of 120 individuals, population G(t) of 8, and

tmax =6500 generations is around 417035 seconds3 (4

days, 19 hours, 50 minutes and 35 seconds). Improve-

ments of execution time have been obtained with a par-

allel implementation of the ev-MOGA described. Sev-
eral alternative for parallelization are possible (Cantú-

Paz, 1997) the Master-Slave configuration being selected.

For this architecture, there is one processor working as

Master, executing tasks of the ev-MOGA, and the rest
evaluate the fitness function of a subpopulation (see

Fig. 8).

The Master has to send a subpopulation to each

Slave, who makes a fitness evaluation and returns re-
sults to the Master. The Master works in a synchronous

way, waiting for all fitness values from all the Slaves.

3 Execution is performed with one of the computers on the
distributed platform described later.
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Fig. 8: Master/Slave architecture for ev-MOGA.

After receiving all the fitness values the Master per-

forms the evolution to produce the next iteration and
sends to the Slaves the new population for fitness evalu-

ation. This type of implementation is the simplest and

does not change ev-MOGA operators and behaviour.

The time reduction is significant since the overall time
is theoretically divided by the number of Slaves - if the

evolution procedure and Master-Slave communication

tasks have no computational cost. With the proposed

implementation, the evolution cost is important and

the theoretical reduction is not achieved. Even then,
the time saving is quite large, for the proposed prob-

lem, with eight Slaves, the total execution is reduced

to 104204 seconds (1 day, 4 hours, 56 minutes and 44

seconds). The distributed platform is built with eight
computers as described:

– All computers are Intelr Pentiumr D 3.4GHz.

– The master computer has 2 GB RAM and the op-
erating system is Windows Server 2003. This com-

puter works as master and has one slave.

– Slave computers have 1GB RAM and Windows XP.

– Local network with Gigabit Ethernet.

All developments (ev-MOGA and SC models) have

been made in Matlabr, parallelization has been per-

formed with Matlab Distributed Computing Toolbox
and Matlab Distributed Computing Engine.

3 Results

Multiple execution of the algorithm has been performed
to increase the reliability of the results. The executions

started with different constraints and initial popula-

tions. An increasing SC structure complexity policy is

selected (figure 4)- the three first run constraints to so-

lutions with SC symmetry in both axes, X symmetry

plus Y symmetry; the next six run constraints only in

one axis, three with X symmetry and three with Y sym-

metry. The final three executions impose no symme-
try restriction. The computational complexity is lower

when symmetry constraints are imposed - as no sym-

metry restriction means more complex calculus.

To improve results in each execution, the following
procedure is followed:

– symxy: X plus Y symmetry and random initial

population.

– symxy2: X plus Y symmetry and the solution of

symxy solution is included in the initial population,
the rest of the population is generated randomly.

– symxy3: X plus Y symmetry and the solution of

symxy and symxy2 solutions are included in the ini-

tial population, the rest of the population is gener-
ated randomly.

– symy: Y symmetry and random initial population.

– symy2: Y symmetry and the solution of symy and

symxy3 solutions are included in the initial popu-

lation, the rest of the population is generated ran-
domly.

– symy3: Y symmetry and the solution of symy2 so-

lution is included in the initial population, the rest

of the population is generated randomly.
– symx: X symmetry and random initial population.

– symx2: X symmetry and the solution of symx and

symxy3 solutions are included in the initial popu-

lation, the rest of the population is generated ran-

domly.
– symx3: X symmetry and the solution of symx2 so-

lution is included in the initial population, the rest

of the population is generated randomly.

– nosym: Without symmetry constraint and random
initial population.

– nosym2: Without symmetry constraint and the so-

lution of nosym, symy3, symx3 and symxy3 solu-

tions are included in the initial population, the rest

of the population is generated randomly.
– nosym3: Without symmetry constraint and the so-

lution of nosym2 solution is included in the initial

population, the rest of the population is generated

randomly.

The fact that each problem is executed several times
with the best solutions of the previous runs is a com-

mon technique to prevent early exhaustion when the

population diversity drops below a threshold. In the lit-

erature it is known as ’restart and phase’, for instance,
see CHC algorithm (Eshelman, 1991). The three runs of

the algorithm can be understood as a unique run with a

mechanism of ’restart and phase’. When the algorithm
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Fig. 9: Comparison of the best result for each symmetry constraint.

is exhausted, it is restarted with a new population that
includes the best individuals.

Fig. 9 shows the best results for all symmetries and

the relative position compared with ideal point. The
ideal point is the one with the best value for each ob-

jective (Miettinen, 1998). This point is not feasible, but

the distance to this point is a classical index of quality

(tradeoff between objectives) of the solution in a mul-

tiobjective optimization problem. In this example, the
ideal point is formed by the best attenuation and mean

deviation obtained with the best values of points P1 and

P9 of nosym3 Pareto Front. This point is not achiev-

able; but gives an order of magnitude of the best perfor-
mances attainable. As can be seen, execution without

symmetry constraints presents the best results because

the structure has more flexibility. Y symmetry and X

symmetry offer similar results. The worst results are for

XY symmetry - due to the limited degree of freedom in
the creation of vacancies.

Figures 10, 11, 12 and 13 show attenuation supplied

by some of the points of the Pareto front obtained in
the optimization phase, the points are labelled as P1,

P2, etc. (see Fig. 9) in decreasing order of mean atten-

uation. For the fronts of more than two points, such as

nosym3 and symxy3, for simplicity’s sake and without
loss of generality, only the extremes of the front and

the nearest point to the ideal are considered for the

next analysis.

Figure 10 represents the results of points P1, P4 and

P6 of the Pareto front of symxy3. P1 has the best mean

attenuation in the range of optimization ([2300, 3700]

Hz) and P6 the best mean deviation in the same range;
P4 is an intermediate solution between P1 and P6, and

the nearest to the ideal point. An interesting character-

istic is that P1 has the worst mean deviation, but when

observing the frequency diagram of attenuation this is

seen not to be a drawback because the larger variations
in attenuation are in a positive sense and this behavior

is favourable for the main objective. In essence, the ob-

jective is to obtain a high attenuation and all variations

in this sense are positive. Even with a higher variation
in attenuation with respect to P4 and P6, the attenua-

tion for nearly every frequency in the range of interest

is normally above the values of P4 and P6. Then a good

solution for a final choice with XY symmetry is point

P1.

Figure 11 represents the results of points P1 and

P2 of symx3, in this case the complete Pareto front

obtained in the optimization process. P1 has the best
mean attenuation in the range of optimization ([2300,

3700] Hz) and P2 the best mean deviation in the same

range. In both cases, the mean attenuation is quite simi-

lar. The deviation analysis in the optimization range re-
produces similar characteristics as in the case symxy3.

The higher deviation of P1 is not a drawback because

the main deviation are in a positive sense. Again, a good

choice for a final solution can be point P1.

For results of Fig. 12 the analysis is quite similar to

the previous one and the best choice for a final solution

with Y symmetry is P1.

Figure 13 represents the results of points P1, P7,

and P9 of the Pareto front of nosym3. P1 has the best
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mean attenuation in the range of optimization ([2300,

3700] Hz) and P9 the best mean deviation in the same
range, P7 (the nearest to the ideal point) is an inter-

mediate solution between P1 and P9. The analysis of

XY, X, and Y symmetries shows an important char-

acteristic in all symmetries: those responses with high
deviations are not necessarily the worst - because the

higher deviations are mostly in a positive sense which

is good for higher attenuation. A good choice for a final

solution could be P1 point. Moreover, this solution can

be the best choice for all symmetries because it obtains
the best mean attenuation.

A conclusion of this initial analysis is that the mean

deviation seems to be less important than initially sup-
posed in all solutions, and the higher deviation is not

a drawback because it is in a positive sense. Two so-

lutions could have the same mean attenuation but dif-

ferent deviations, in this case it is intuitively better to

say that the lower deviation is better; and for this rea-
son it is, a priori, a relevant quality indicator. But the

results show that high deviations are mostly produced

by high positive attenuation peaks (this phenomenon

was not predicted, as positive and negative peaks with
similar magnitudes were expected) while under average

peaks of attenuation are less sharp. The positive peaks

do not reduce the quality of attenuation: they increase

the mean, but unfortunately, they also increase the de-

viation.

Therefore, future methodologies for the improve-

ment of the SC attenuation properties should modify

this second objective taking into consideration charac-

teristics that improve attenuation over a range of fre-

quencies. Some works in the literature have already be-
gun to explore these new possibilities (Hussein et al.,

2006) where both a performance metric and a design

metric were considered for the second objective.

Another analysis that is more closely related with

the constructive aspects can be made. From the point
of view of the final implementation of this type of sonic

barrier, the creation of vacancies following symmetries

can play an important role. If it is supposed that struc-

tures with symmetry constraints are better in the pro-

ductive process, Y and X symmetries can produce in-
teresting results. For instance, in figure 9 it could be

seen that points P4 and P5 of nosym3, P1 of symy3,

and P1 of symx3, produce quite similar solutions. In

these cases, symmetries may be chosen if necessary for
constructive purpose. Again, the multiobjective point

of view offers a new perspective for obtaining satisfac-

tory designs.
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4 Conclusions

A new parallel multiobjective optimization algorithm
has been developed and applied to a very difficult prob-

lem (optimization of SC attenuation properties by means

of the creation of vacancies). A wide description of the

algorithm is provided and a brief summary of its perfor-
mances have been shown. This work also demonstrates

that Multiobjective Optimization techniques, and in

particular the ev-MOGA, can improve the acoustic prop-

erties of sonic crystals made by two-dimensional arrays

of rigid cylinders. The starting SC presents an average
attenuation of 8.29 dB in the predetermined range of

frequencies, and the best structure obtained, presents

an average attenuation of 26.79 dB. These results show

an a 300%improvement in the attenuation capability of
the SC compared with starting SC. Parallelization of

the ev-MOGA used here presents a significant time re-

duction and could be increased simply by adding new

slave computers to the cluster.

With this new framework, future developments point

to testing with new materials and/or new objective

functions to take into account of, for example, atten-

uation in wider areas, and constructive requirements.
New results that contribute a new multiobjective point

of view have been obtained. The mean deviation of at-

tenuation has demonstrated that it is not so important,

and should be modified to achieve better attenuation
properties.

All these developments have required a multidisci-
plinary team with sufficient expertise in different areas:

evolutive optimization techniques and physical devel-

opments models for SCs.
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