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Abstract

This report generalises recent results on stability analysis and estimation of

the domain of attraction of nonlinear systems via exact piecewise affine Takagi-

Sugeno models. Algorithms in the form of linear matrix inequalities are pro-

posed that produce progressively better estimates which are proved to asymp-

totically render the actual domain of attraction; regions already proven to be-

long to such domain of attraction can be removed and the estimate can contain

significant portions of the modelling region boundary; in this way, level-set ap-

proaches in prior literature can be significantly improved. Illustrative examples

and comparisons are provided.

Keywords: Domain of Attraction, Stability, Piecewise Lyapunov Function,

Piecewise Affine Takagi-Sugeno, Linear Matrix Inequalities

1. Introduction

Takagi-Sugeno (TS) models, systematically obtained via the sector nonlin-

earity approach [1], have proved to be suitable for generalisation of linear tech-

niques to handle nonlinear stability issues [2], since they are convex sums of

linear systems weighted by membership functions (MFs). When combined with
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the direct Lyapunov method, TS models naturally lead to linear matrix in-

equalities (LMIs) [3], which can be efficiently solved via convex optimization

techniques already implemented in commercially available software [4]. The

TS modelling approach has been also extended to distributed-parameter sys-

tems governed by partial differential equations [5, 6]; nevertheless, this class of

systems are out of the scope of this work.

Though the TS and nonlinear models are locally equivalent in some compact

Ω, also known as the modelling region, the LMI stability analysis is conservative

[7, 8, 9]. This is mainly due to the fact that only vertex (linear) models are con-

sidered, i.e., MFs are ignored, thus introducing the so called shape-independent

conservatism [7].

Within shape-independent approaches, piecewise analysis is known for re-

ducing conservatism by lowering the separation among the vertex models via a

partition of Ω. Moreover, affine terms can be introduced in TS models if the

region under consideration does not include the origin [10]. This allows consider-

ing more general piecewise-quadratic Lyapunov functions (PWQLF) [11]; other

piecewise options are considered in [12, 13, 14] for stability analysis. Piecewise

TS approaches for control design have also been reported but they usually are

in BMI form [15]; the work [16] presents a piecewise control synthesis proce-

dure keeping the LMI structure, at the cost of conservatism in some steps; as

we discuss a non-conservative stability-analysis setup, the issues in [16] will not

be considered here. Practical applications of affine TS models appear in, for

instance, [17], and those of piecewise models have been reported in [18].

The problem to be addressed in this paper is the determination of the

“largest” estimate of the domain of attraction (DA) of the origin of a non-

linear system ẋ = f(x) in a modelling region Ω. To be precise, considering

every conceivable C 2 Lyapunov function which might exist for a system with

continuous f(·), with enough computational resources, the proposal will prove

any point in the interior of the union of all level sets (see below) in Ω to be part

of the DA.

The problem of estimating the DA has been partially addressed in prior liter-
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ature. Indeed, if 0 ∈ Ω, level sets of Lyapunov functions for which V̇ < −γxTx,

γ > 0, for all x ∈ Ω, x 6= 0, belong to the DA; this is the approach pursued in

most stability analysis proposals in literature [19]; these level sets are usually

“tangent” to the boundary of Ω and have been already extended to the piecewise

case [20]. However, the DA can contain significant portions of the boundary of

Ω if the trajectories “point” towards its interior; hence, standard level-set re-

sults can be expanded [21]. Also, a related approach was pursued in [22] in

the polynomial-fuzzy arena, introducing the idea of getting progressively better

estimates of the domain of attraction by subtracting already-proven estimates.

More recently, with non-piecewise models but piecewise Lyapunov functions, a

shape-independent approach for maximal DA computation for TS systems has

been presented in [12]; in [15, 14] a piecewise Lyapunov function defined by the

minimum or maximum of quadratics (or higher-order polynomials) is consid-

ered. However, in such cases the delimitation of the regions is not fixed a priori

and the problem ends up being a bilinear matrix inequality (BMI).

The most related prior-literature work on the ideas here is [20], based on

exact piecewise affine TS models (PWATS) and iteratively changing the mod-

elling region Ω. The work here presented generalises [20], by considering the fact

that level sets can exit Ω, introducing more general multipliers, exploiting previ-

ously proven DA estimates (lifting decrescence and continuity constraints inside

them), and modifying the above-mentioned iterations on the modelling region

shape accounting for the more powerful results, within an LMI framework. The

proposal in this investigation, based on the Farkas lemma, is asymptotically

exact; hence, if a particular point belongs to the interior of the “true” DA, a

suitable fine enough partition will prove it to belong to the DA.

This work is organized as follows: extensive preliminaries are introduced in

section 2, covering the definition of DA, the different TS piecewise modelling

options, basic results on piecewise stability, and the relevance of the Positivstel-

lensatz (S-procedure) argumentation; in section 3 new results and algorithms

are inferred that generalise previous approaches for estimation of the DA; the

important subject of asymptotic exactness of the proposed results is treated in
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section 4; illustrative examples are given along the contents of the paper. Con-

clusions in section 5 gather some final remarks, and an appendix collects the

proofs of the main results.

2. Preliminaries

Consider an autonomous nonlinear model

ẋ(t) = f(x(t)) (1)

with x(t) ∈ R
n as the state vector and f(·) : Rn → R

n being a C 2 nonlinear

vector field, i.e., with continuous second partial derivatives. By assumption, the

origin will be an equilibrium point, i.e., f(0) = 0. The solution of (1) for initial

condition x0 will be denoted as φ(t, x0).

The domain of attraction [19] of x = 0 for (1) is the set

D := {x ∈ R
n : lim

t→∞
φ(t, x) = 0}. (2)

2.1. Affine Fuzzy Modelling

The well-known sector nonlinearity technique [1] allows finding an equiva-

lent Takagi-Sugeno model in a compact set Ω of the state space including the

origin. This work considers regions which do not contain the origin; the sector-

nonlinearity ideas can be generalised to such a case, following [10].

Indeed, as f is linearisable at the origin, denoting as A its Jacobian, we can

rewrite f in (1) as

f(x) = Ax+

p
∑

j=1

Mjρj(x) (3)

with ρj : Rn 7→ R, for j = {1, 2, . . . , p}, being some nonlinearities whose lin-

earisation is zero1, and Mj being column vectors indicating how nonlinearity ρj

1There is no loss of generality, as the Jacobian (first-derivatives) can be embeeded in A;

for instance, sin (x) = x+ g(x), with g(x) = sin (x)− x, ∂g/∂x = 0.
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enters in each of the equations of (1). As Ω is compact and f is C 2, each ρj

can be bounded in Ω by two affine functions:

zj(x) ≤ ρj(x) ≤ z̄j(x) (4)

where:

z̄j(x) = aj1Hjx+ bj1, zj(x) = aj0Hjx+ bj0, (5)

being aji , b
j
i scalars, and Hj row vectors, configuring arbitrarily tight linear

bounds on ρj(x). Once the bound (4) is available, we can express:

ρj(x) =

1
∑

i=0

wj
i (x)

(

ajiHjx+ bji

)

(6)

being the memberships given by the well-known interpolation expression:

wj
0(x) :=

zj(x)− ρj(x)

zj(x) − zj(x)
, wj

1(·) := 1− wj
0(·). (7)

Operating with all ρj , for j ∈ {1, 2, . . . , p}, then r = 2p membership functions

can be defined as

hi(x) :=

p
∏

j=1

wj
ij

(

x), (8)

with i ∈ {1, 2, . . . , r}, building a binary-digit expression of i as i = ip × 2p−1 +

. . . + i2 × 2 + i1 + 1, ij ∈ {0, 1}. Obviously, the MFs hold the convex sum

property, i.e.,
∑r

i=1 hi(x) = 1, hi(x) ≥ 0. Using such memberships, (1) can be

expressed as:

ẋ :=
r

∑

i=1

hi(x)



Ax +

p
∑

j=1

Mj

(

ajijHjx+ bjij

)



 (9)

If the standard shorthand notation Υh :=
∑r

i=1 hi (z(t))Υi is adopted, from

(9), denoting Ai := A +
∑p

j=1Mja
j
ij
Hj and bi :=

∑p
j=1Mjb

j
ij
, the nonlinear

model (1) in Ω can be compactly written as the following affine-TS model:

ẋ
(

t
)

= Ahx (t) + bh, x(t) ∈ Ω, (10)

Remark 1. Several options for affine piecewise TS modelling are available; the

examples worked out in this paper used the minimum-weighted area approach

in [10].
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2.1.1. Piecewise Affine TS models

Consider a connected modelling region Ω, which is partitioned into q subre-

gions with disjoint interiors, Ωk, k ∈ {1, 2, . . . , q}, i.e.,

q
⋃

k=1

Ωk = Ω, int(Ωk) ∩ int(Ωl) = ∅.

If the above-discussed affine fuzzy modelling techniques are used, we can

express the original nonlinear dynamics as a piecewise affine TS model (PWATS)

[11] in the form2:

ẋ(t) = Ak
h
x(t), x(t) ∈ Ωk, k ∈ K0,

ẋ(t) = Ak
h
x(t) + bk

h
, x(t) ∈ Ωk, k ∈ K1,

(11)

where K0 := {k : 0 ∈ Ωk} is the set of indexes of those regions Ωk that include

the origin and K1 := {k : 0 6∈ Ωk} is the set of indexes of the remaining ones

(not containing the origin).

For later analysis, each of the regions Ωk will be described by a set of con-

straints Ωk := {σk
j (x) ≥ 0, j ∈ {1, 2, . . . , nk}}. If σk

j (x) are affine functions of x,

the partition of Ω is a so-called polyhedral partition; these polyhedral partitions

are the ones appearing in the seminal literature [11]; non-polyhedral partitions

with circular boundaries are considered in [23]. Polyhedral partitions of the

state space have the form σk(x) := Ēkx̄ � 0, where Ēk =
[

Ek ek

]

, x ∈ Ωk,

k ∈ {1, 2, . . . , q}. A systematic procedure for their construction is described in

[11, 24]. Note that if ek = 0 the inequality Ekx � 0 defines a polyhedral cone

with its vertex at the origin.

For each region Ωk, all constraints can be joined in a vector of functions

σk(·) :=
[

σk
1 (·) . . . σk

nk
(·)

]T

; thus, we could define Ωk = {x : σk(x) � 0},

where “� 0” stands for element-wise “greater than 0”.

2In this work, as in [11], upper indexes of matrix expressions such as k in Ak

h
are not

powers, but only for indexation purposes.
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2.2. Lyapunov-based domain of attraction estimation for PWATS

Classical estimates of the domain of attraction of the origin resort to well-

known invariant set ideas such as Lyapunov level sets [19]. The Lyapunov level-

set concept can be generalised including prior estimates of the DA. In particular,

the following result will be later exploited:

Theorem 1 ([22]). Consider two sets A, B, such that B ⊂ A. If A is invariant

and there exist γ > 0 and V (x), bounded in A, such that V̇ (x) < −γ for all

x ∈ (A−B), where A−B := {x|x ∈ A, x 6∈ B}, then all trajectories starting in

A enter B in finite time.

LMIs in stability analysis of TS systems usually resort to expressions of the

form AT
i P + PAi < 0. Let us review some already-known stability results for

PWATS systems.

Defining an augmented state and augmented matrices:

x̄ :=





x

1



 , Āk
i :=

[

Ak
i bki
0 0

]

, i ∈ {1, 2, . . . , r}, k ∈ K1. (12)

the PWATS stability analysis in [11] can be straightforwardly applied if Ωk

conform to a polyhedral partition of the operating region in the state space.

To see this, consider PWQLFs of the form

V
(

x
)

:= x̄T P̄kx̄, x ∈ Ωk, (13)

so that V (0) = 0, with continuity of the Lyapunov function across the bound-

aries, i.e., Vk
(

x(t)
)

=Vl
(

x(t)
)

, ∀x(t) ∈ (Ωk ∩ Ωl), guaranteed by parameterising

P̄k as

P̄k := F̄T
k T F̄k, (14)

where T is a symmetric matrix of adequate dimensions, F̄k =
[

Fk fk

]

with

fk = 0 for k ∈ K0, satisfying F̄kx̄ = F̄lx̄ for x ∈ (Ωk ∩Ωl), k, l ∈ {1, 2, . . . , q}.

Partition information can be systematically incorporated into the analysis via

the S-procedure [3]. Notation Iγ := blkdiag(γI, 0), and 0γ := diag(0, 0, . . . , 0, γ)

will be later used. “blkdiag(·)” stands for a square block-diagonal matrix in
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which the diagonal elements are the matrices in the argument. Thus, the fol-

lowing slight generalisations of [11, 20] are given:

Theorem 2. If there exist symmetric matrices T , Uk � 0, and Wki � 0 such

that, for a given small γ > 0, the LMIs

P̄k − ĒT
k UkĒk ≥ Iγ

(

Āk
i

)T
P̄k + P̄kĀ

k
i + ĒT

k WkiĒk ≤ −Φk
γ

(15)

hold for i ∈ {1, 2, . . . , r}, being Φk
γ = Iγ if k ∈ K0, and Φk

γ = 0γ if k ∈

K1, then x
(

t
)

tends to zero exponentially for every continuous differentiable

piecewise trajectory in Ω =
⋃q

k=1 Ωk satisfying the model equations (11) with

initial conditions x0 ∈ Vβ , where Vβ := {x : V (x) < β} is any level set of the

piecewise V (x) defined in (13) such that Vβ ⊂ Ω.

Proof outline. Proof follows standard argumentations: first condition proves

V (x) > γxTx in region Ωk, and second one proves V̇ (x) ≤ −γxTx in regions

Ωk, k ∈ K0, and V̇ (x) ≤ −γ in regions Ωk, k ∈ K1.

Remark 2. From (13), in regions containing the origin (k ∈ K0), V (x) is a

standard quadratic form without constant or linear terms. As quadratic forms

are positive in cones, only the set of conditions with Ēk =
[

Ek 0
]

are

relevant if k ∈ K0. In the original reference [11], conditions (15) were separated

in two groups according to k ∈ K0 or k ∈ K1; however, such separation is

implicitly considered in Φγ above. In fact, in a region where ek = 0 and the

model is given by TS representation Āk
i = blkdiag(Ak

i , 0), LMIs (15) would

entail the Lyapunov function to be forcedly homogeneous quadratic if V (0) = 0

were enforced. Due to this reason, such separation between K0 and K1 will be

no longer pursued in this work.

Theorem 2 has been extended to the case of non-polyhedral partitions with

circular boundaries in the conference paper [23]. For brevity, it will not be

discussed here as it will be a particular case of the proposal in this work.
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2.3. Farkas Lemma and Positivstellensatz

The above-reviewed prior results can be understood as proving positiveness

of quadratic functions in regions with affine/quadratic boundaries; they are

instances of the Positivstellensatz argumentation [25, Theorem 1], which in the

quadratic-only case amount to the S-procedure [3], and in the affine-only case

are a version of Farkas lemma [26]. Computationally, conditions are posed

as linear programming (affine case), LMIs (quadratic case) or generic sum-of-

squares constraints [25]. However, the latter exacerbates the computational

cost, so it is intentionally left out of the scope of this paper.

Decision variables Uk and Wki are generically known as multipliers. In gen-

eral, the above multiplier-based conditions are only sufficient for emptiness of

semialgebraic sets or for sign-definiteness of some polynomial functions of the

state in particular regions3.

However, there are a few well-known situations in which exact results can

be asserted with few computational resources. These situations are: the S-

procedure with a single quadratic constraint, and the Farkas Lemma for affine

constraints (in linear programming setups). The latter can be stated as:

Lemma 1 (Farkas Lemma [26]). Consider an affine function V (x) = pTx + δ,

where p ∈ R
n×1 and δ ∈ R, and a polyhedral region Ω := {σ(x) � 0} being

σ(x) :=
[

E e
]

x̄, where E ∈ R
N×n and e ∈ R

N×1. Let σl(x) be the l-th

element of vector σ(x). Then, the following expressions are equivalent:

a) V (x) = pTx+ δ ≥ 0 for all x ∈ Ω

b) There exist τl ≥ 0, l ∈ {1, 2, . . . , N} such that

V (x)−
N
∑

l=1

τlσl(x) ≥ 0, ∀x ∈ R
n (16)

Corollary 1. Under the same settings, the following expressions are equivalent:

3More general conditions may be obtained by transforming the multipliers into polynomials

of arbitrary degree; however, as pointed out at the introduction, it is at the expense of a heavy

computational cost [22].
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a) V (x) = pTx+ δ = 0 for all x ∈ Ω, and Ω 6= ∅.

b) There exist arbitrary τl, l ∈ {1, 2, . . . , N} such that

V (x)−
N
∑

l=1

τlσl(x) = 0, ∀x ∈ R
n (17)

Proof. See Appendix.

In the next sections, earlier results will be generalised using the ideas in

Sections 2.3 and 2.2; asymptotical exactness of the proposed approach will be

established via universal-approximation argumentations.

3. Main Results

Let us consider a connected modelling region Ω partitioned into q subregions

Ωk with disjoint interiors where each region is defined4 as:

Ωk =
{

x : Ekx̄ � 0, x̄TQlkx̄ ≥ 0, l ∈ {1, 2, . . . , ℓk}
}

(18)

where x̄ is obtained from x using (12). The j-th affine constraint, corresponding

to the j-th row of Ek will be denoted as Ejk
5. The “faces” of Ωk will be defined

by changing just one of the affine or quadratic inequalities to equality.

If Qlk = 0, or, equivalently, ℓk = 0, the partition will be said to be polyhedral.

Given that the regions have disjoint interior by assumption, the intersection of

two regions Ωk and Ωl must be a subset of a face in each of them. The region

Ωk will have a number of vertices located at the intersection of n faces.

4For notational simplicity, denoting constraints associated to regions containing the origin

with Ek, and those where 0 6∈ Ωk with Ēk (established in [11]), will no longer be used. All

matrices in (18) will be assumed to apply on the extended state x̄. In this way cluttering all

matrices with barred notation is avoided while leaving Ē available for future definitions.
5Following notation in [11], indexes will be stacked together in order to avoid long expres-

sions; system matrices will use upper and lower ones.
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3.1. Continuity in the Piecewise Lyapunov Function

Continuity of the piecewise Lyapunov function was enforced via (14) in prior

works. A more flexible alternative will be proposed next. Consider a non-empty

set X := {x̄ : Ex̄ = 0, x̄TQ1x̄ = 0, x̄TQ2x̄ = 0, . . . , x̄TQℓ̄x̄ = 0}, such that Ωk ∩

Ωm ⊂ X , for some k, m.

Lemma 2. The piecewise quadratic function

V (x) =







x̄T P̄kx̄ for x ∈ Ωk,

x̄T P̄mx̄ for x ∈ Ωm,

is continuous in the “face” Ωk ∩ Ωm if, given X in the above form such that

Ωk∩Ωm ⊂ X , there exists an arbitrary multiplier matrix U and arbitrary scalars

τj such that:

P̄k − P̄m + UE + ETU +
ℓ̄

∑

j=1

τjQj = 0 (19)

Proof. Since 0 = x̄T (P̄k − P̄m+UE+ETU +
∑ℓ̄

j=1 τjQj)x̄ = x̄T (P̄k − P̄m)x̄ for

x̄ ∈ X , then the result is trivial.

In this way, matrices F and decision variables T parameterising the sought

Lyapunov functions, used in prior literature, are not needed in this proposal,

giving more clarity and flexibility, in exchange for additional multipliers.

Remark 3. Note that, from analytical prolongation (or Taylor series), if two

functions coincide on an infinitesimal fragment of a face (i.e., a small lower-

dimensional affine or quadratic region), they do on all prolongations. This

is the reason of considering the above set X which disregards inequalities in

Ωk ∩ Ωm (for instance, with Ω1 = {9 − xTx ≥ 0, xTx − 1 ≥ 0, x2 ≥ 0}, Ω2 =

{1 − xTx ≥ 0, x2 ≥ 0}, we would have that Ω1 ∩ Ω2 = {1− xTx = 0, x2 ≥ 0},

and X = {1 − xTx = 0}; adding a multiplier associated to constraint x2 ≥ 0

would be useless).
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3.2. Extension of piecewise quadratic stability analysis

In Theorem 2, taken from [11], only multipliers Uk in ET
k UkEk (and Wki,

with the same role) appeared to enforce local positiveness (negativeness) of the

Lyapunov function (and its derivative).

However, we can state a more general condition.

Lemma 3. Consider the set

X :=































x ∈ R
n :

Ex̄ � 0

x̄TQlx̄ ≥ 0, l ∈ {1, 2, . . . , ℓ}

Rx̄ = 0

x̄TQjx̄ = 0, j ∈ {1, 2 . . . , ℓ̄}































Consider, too, a quadratic polynomial x̄TΞx̄. Then, x̄TΞx̄ ≥ 0 for all x ∈ X

if there exist arbitrary scalars ξj , j ∈ {1, 2, . . . , ℓ̄}, arbitrary matrix Z, positive

scalars τl, l ∈ {1, 2, . . . , ℓ}, and element-wise positive matrix U such that the

following matrix inequality holds:

−Ξ +

ℓ
∑

l=1

τlQl + ĒTUĒ +

ℓ̄
∑

j=1

ξjQj + ZTR+RTZ ≤ 0 (20)

where6

Ē :=





[0 0 · · · 1]

E



 . (21)

Proof. Indeed, for any x ∈ X , we have
∑ℓ

l=1 τlQl + ĒTUĒ +
∑ℓ̄

j=1 ξjQj +

ZTR + RTZ ≥ 0. Hence, if (20) holds, it proves that −x̄TΞx̄ ≤ 0 in X , i.e.,

x̄TΞx̄ ≥ 0.

Corollary 2. Letting Ξ = diag(0, 0,..., 0,−1), if there exists the above-mentioned

multipliers then X is empty.

Proof. Indeed, we proved 0 ≥ 1 on X so forcefully X should be empty.

6Recall Ē carrying the meaning in [11] is henceforth no longer in use.
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Corollary 3. If x̄TΞx̄ is a degree-1 polynomial, and X is a full-dimensional

polyhedron (Ql = Qj = 0, R = 0), then conditions in Lemma 3 are necessary

and sufficient.

Proof. It can be shown that the choice of multipliers encompasses those in

Farkas lemma, i.e., the multipliers τl in (16) from Lemma 1. Details omitted

for brevity.

Remark 4. The fact that the last element of x̄ is equal to 1, as well as the seem-

ingly “trivial” addition of 1 ≥ 0 in the construction of Ē, introduces additional

multipliers, which were not considered in prior literature; this enables the above

generalisation and exactness in the affine case (Corollary 3). Without Ē, (20)

cannot be written as (16) in the polyhedral case (Ql = Qj = 0). Apart, com-

bined affine/quadratic boundaries are considered, as well as equalities which do

not appear in (18), but will be relevant when geometric conditions are pursued.

Consider now a PWATS model (11) defined over a quadratic/polyhedral

partition of a region Ω with sets Ωk = {x : σk
j (x) ≥ 0, j ∈ {1, 2, . . . , nk}},

k ∈ {1, 2, . . . , q} defined as (18), i.e. being each of the constraints σk
j (·) either

affine or quadratic.

The following definition will single out constraints which take part in the

shape of the overall modelling region Ω = ∪kΩk defining its outer boundary:

Definition 1. The face generated by constraint σk
j (·) will be denoted as:

Fk
j := {x : σk

j (x) = 0} ∩Ωk (22)

Such face (and the constraint σk
j itself) is called “outer” if:

Fk
j 6⊂

⋃

l 6=k

Ωl (23)

An illustration of the meaning of the above definition appears on Figure 1,

where outer faces are labelled with Fk
out, k = {1, 2, 3, 4}.

Obviously, the boundary ∂Ω, fulfills ∂Ω ⊂
⋃

Fk
j

is outer F
k
j .
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F3
out
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out

Figure 1: Bounding hyperplanes Fk
out

delimiting Ω.

Let us denote as ∂Ω↓ as the set of points in the boundary of Ω such that

system trajectories which contain them “enter” Ω, i.e., in formal terms:

∂Ω↓ := {x ∈ ∂Ω : ∃h > 0 s.t. φ(ǫ, x) ∈ Ω ∀0 < ǫ < h}

Let us denote as ∂Ω↑ the complementary of ∂Ω↓ in ∂Ω, i.e., the points in the

boundary of Ω such that trajectories do not immediately enter the interior of

Ω.

For later use, we will denote the set of all outer constraints as:

Ik := {j : σk
j (·) is outer}

Given an arbitrary point x ∈ ∂Ωk, let us denote as Γk(x) the set of outer

constraints in Ωk which are active at x, i.e., the ones associated to the outer

faces x belongs to:

Γk(x) := {j ∈ Ik : σk
j (x) = 0}

Proposition 1. Given x ∈ ∂Ωk∩∂Ω, if σ̇k
j (x) > 0 for all j ∈ Γk(x), then x ∈ ∂Ω↓.

Proof. First, note that, for the active constraints σk
k(x) = 0, σ̇k

j (x) > 0 entails

σ(φ(ǫ, x)) > 0 for all ǫ such that 0 < ǫ < h for small enough h. Given that

σ(x) > 0 for inactive constraints, then for small enough h, σ(φ(ǫ, x)) > 0 will

still hold for such constraints for all 0 < ǫ < h. Hence, no other constraint

will be active and all active ones will render inactive: φ(ǫ, x) will belong to the

interior of Ω.

14



Consider, given x and the constraints indexed in Γk(x), that a particular

active constraint is either affine σk
j (x) = Ejkx̄, being Ejk a row vector, or

quadratic σk
j (x) = x̄TQjkx̄, being Qjk a matrix of adequate size.

Corollary 4. Given x ∈ ∂Ωk ∩ ∂Ω, if, for all i ∈ {1, 2, . . . r}, for all j ∈ Γk(x)

either:

• EjkĀ
k
i x̄ > 0, if σk

j (·) is affine, or

• x̄T
(

QjkĀ
k
i + (Āk

i )
TQT

jk

)

x̄ > 0 if σk
j (·) is quadratic,

then x ∈ ∂Ω↓.

Proof. The conditions on the vertices of the PWATS model are sufficient to

ensure that conditions in Proposition 1 hold, as ˙̄x belongs to the convex hull of

the vertex derivative estimates Āk
i x̄.

Now, we are in conditions to state the main result of the paper:

Theorem 3. Consider a nonlinear system (1), and a PWATS model (11) of

it, defined over a partition of a compact region Ω with sets Ωk, k ∈ {1, 2, . . . , q}

defined as in (18). Consider, too, a collection of ellipsoids Ek
s = {x : x̄T Ḡksx̄ >

0} for s ∈ {1, 2, . . . , s̄k}, such that Ek
s ∩ Ωk belongs to the DA of x = 0 for the

nonlinear system (1), and a second collection of ellipsoids Êk
js = {x : x̄T Ĝkjsx̄ >

0}, s ∈ {1, 2, . . . , ŝkj}, associated to each face Fk
j such that Êk

s ∩F
k
j , too, belongs

to the DA of x = 0. Then, if there exist symmetric matrices P̄k satisfying the

continuity conditions7

x̄T P̄kx̄ = x̄T P̄mx̄, ∀x ∈ (Ωk ∩ Ωm) , (24)

symmetric matrices U1
ki � 0, U2

kji � 0, arbitrary row vectors Zjk, positive scalars

τ1kl, τ
2
ks, τ

3
kl, τ

4
ks, τ

5
kji, τ

6
kjs, i ∈ {1, 2, . . . , r}, and arbitrary scalars τ7kj , j ∈ Ik,

m ∈ {1, 2, . . . , q}, yielding a feasible solution for the following inequalities, given

7Which can be enforced via LMI conditions (19) on all shared faces.
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x1

x2

∂Ω

Ωk

Êk ∂Ω↓

∂Ω↑

Ek

Figure 2: Subsets Ωk , Ek, Êk, ∂Ω, and ∂Ω↓.

γ > 0, first:

P̄kĀ
k
i +

(

Āk
i

)T
P̄k+Ē

T
k U

1
kiĒk+

ℓk
∑

l=1

τ1klQlk−
s̄k
∑

s=1

τ2ksḠsk ≤ −Φk
γ ; (25)

being Φk
γ = Iγ if k ∈ K0, and Φk

γ = 0γ if k ∈ K1;

and, second, either, if σk
j = Ejkx̄ (affine constraints):

ZT
jkEjk+(∗)+P̄k−ET

kjiU
2
kjiEkji−

ℓk
∑

l=1

τ3klQlk+

s̄k
∑

s=1

τ4ksḠsk +

ŝkj
∑

s=1

τ6kjsĜkjs≥0, (26)

where

Ekij =





Ēk

−EjkĀ
k
i



 ; (27)

or, if σk
j = x̄TQjkx̄ (quadratic constraints):

τ7kjQjk +P̄k−Ē
T
k U

2
kjiĒk + τ5kji

(

QjkĀ
k
i +

(

Āk
i

)T
QT

jk

)

−
ℓk
∑

l=1

τ3klQlk+

s̄k
∑

s=1

τ4ksḠsk +

ŝkj
∑

s=1

τ6kjsĜkjs≥0, (28)

then, {x : x̄T P̄kx̄ < 0} ∩ Ωk belongs to the DA of x = 0 for every k, for the

nonlinear system under study.

Proof. See Appendix.

Remark 5. Theorem 3 requires a prior estimate of the DA of the origin E . In

order to apply the above result to prove stability of a PWATS model without

16



(P1) (P2) (P3)

Figure 3: Example partitions: (P1) is not a honeycomb; (P2,P3) are.

such “initialisation” (to get results with the same a priori assumptions as usual

literature), the theorem should be modified by setting Ḡks = 0, thus initialising

the ellipsoids Ek
s to empty sets (equivalently, forgetting about the terms with G

in the LMIs, letting s̄k = 0). The result is as follows.

Corollary 5. A PWATS model (11), defined over a partition of a region Ω with

sets Ωk, k ∈ {1, 2, . . . , q} defined as in (18), is locally stable if there exist decision

variables fulfilling Theorem 3 with s̄k = 0 and ŝkj , such that the set V in (A.3)

is not empty.

Proof. Indeed, applying the prior theorem, {x : x̄T P̄ x̄ < 0} ∩ Ω belongs to

the DA of x = 0 and, by assumptions in the corollary statement, it is not

empty. In this particular situation, contrarily to footnote 12, the set Wε would

be empty, and W = V = W¬ε, actually containing the origin, deduced with

an identical argumentation to the one in the theorem’s proof for this particular

case E = ∅.

Note that non-emptiness of V can be enforced in the LMI conditions with

some geometric conditions. This is the objective of next subsection.

In order to avoid conservatism, we will assume that the chosen partition con-

forms a honeycomb [27], defined as a partition where vertices of the regions are

common to neighboring ones (a region Ωj will be understood to be neighboring

to Ωk if Ωj ∩ Ωk 6= ∅, int(Ωj) ∩ int(Ωk) = ∅; vertices will be the points formed

by intersection of n faces).

For instance, Figure 3 shows a partition (P1) which does not fulfill the

honeycomb assumption, and a pair of another ones which do. The reason of such

assumption is that the faces of the central region in partition (P1) (marked as

17



a thick blue line) are outer, so the theorem would preclude a level set including

the subset of the face where trajectories enter the neighboring regions, which is

clearly undesired. The second partition (P2) is a honeycomb and such issue does

not appear. Partition (P3) is, too, a honeycomb with quadratic boundaries.

3.3. Geometric optimisation

In order for the theorem to be useful, some additions enforcing how to ob-

tain the “largest” estimate of the domain of attraction should be added, for

instance, maximising the size of some prefixed-shape set which can be fit inside

the obtained DA estimate (via maximisation of scaling factors).

Consider a prefixed-shape region in the form:

Ω̂ := {x : Ẽx̄ � 0, x̄T Q̃1x̄ ≥ 0, . . . , x̄T Q̃q̃x̄ ≥ 0}

where some affine inequalities (rows of Ẽ) and q̃ quadratic ones hold. Let us

define the geometric transformation below:

x̄λ :=





xc + λ−1(x− xc)

1



 = Λx̄

where Λ :=





λ−1I xc − λ−1xc

0 1



, being λ a “scaling factor” and xc a “scaling

centroid”, both parameters assumed known. The scaled region Ω̃ by factor λ

around xc is defined as:

Ω̃(λ) :={x :ẼΛx̄ � 0, x̄TΛT Q̃1Λx̄ ≥ 0,...,x̄TΛT Q̃q̃Λx̄ ≥ 0}. (29)

Note that setting xc = 0 reduces the scaling to the standard scaling around the

origin.

Theorem 4. Consider a PWATS model (11) defined over a partition of a region

Ω with sets Ωk, k ∈ {1, 2, . . . , q} defined as in (18). Consider, too, a collection

of ellipsoids Ek
s = {x : x̄T Ḡskx̄ > 0} for s ∈ {1, 2, . . . , s̄k}, such that Ek

s ∩ Ωk

belongs to the DA of x = 0 for the nonlinear system (1), and a second collection

of ellipsoids Êk
js = {x : x̄T Ĝkjsx̄ > 0}, s ∈ {1, 2, . . . , ŝkj}, associated to each

18



face Fk
j such that Êk

s ∩ Fk
j , too, belongs to the DA of x = 0. Then, if there

exist symmetric matrices P̄k, U
1
ki � 0, U2

kji � 0, U3
k � 0, U4

k � 0, arbitrary

column vectors Zjk, arbitrary scalars τ7kj , and positive scalars τ1kl, τ
2
ks, τ

3
kl, τ

4
ks,

τ5kji, τ
6
kjs, τ

8
k′l, τ

9
k′m, τ10k′s, i ∈ {1, 2, . . . , r}, j ∈ Ik, m ∈ {1, 2, . . . , q̂}, yielding a

feasible solution for the inequalities (24), either (25) or (26), (28), and, for a

given k′, and γ > 0:

P̄k′ + ĒT
k′U3

k′Ēk′ + ΛT ẼT
k′U4

k′Ẽk′Λ +

ℓk′
∑

l=1

τ8k′lQlk′

+

q̂
∑

m=1

τ9k′mΛT Q̃mΛ−

s̄k′

∑

s=1

τ10k′sḠsk′ ≤ −0γ , (30)

then, the region Ω̂(λ) ∩ Ωk′ belongs to the DA of x = 0.

Proof. See Appendix.

Note that Ê has not been used in conditions (30); indeed, such Ê is formed

by fragments of outer faces with no volume, but Ω̂(λ) ∩ Ωk′ will have nonzero

volume except in degenerate cases, so behaviour at the faces is irrelevant for the

level sets of P̄k′ in Ωk.

Remark 6. The above theorem can be extended to forcing shape constraints

in several regions, by repeating (30) for different k′ in a selected set (or even all

of them). The fixed-shape conditions above can be particularised to spherical

regions, polytopes (boxes), or intersections thereof, extending analogous geo-

metrical conditions in LMI setups for classical (non-affine) TS systems [3, 28].

Remark 7. Theorem 4 provides only feasibility conditions. Trivially, they can

be converted to optimisation ones on the centroid/size “shape” parameters (xc,

λ). If only one of them is to be optimised (either scale or translation), such

optimisation setups can be cast as bisection problems and, in some particular

cases as GEVP ones or even LMI ones in Lyapunov and shape parameters.

Such developments are transcriptions to the affine case of well-studied geometric
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Figure 4: Estimation of the DA for example 1: quadratic TS case (region in red, [28]), Thm.

2 (region in blue, [20]), and Thm. 4 (region in green). Yellow region also depicts the result of

a second execution of Theorem 4 only on the squares at the right of the magenta boundary,

seeding it with the prior green region.

problems8 and are omitted for brevity, leaving details to particular examples

later.

The following corollary shows that our result extends prior literature.

Corollary 6. In the polyhedral partition case, if LMIs in Theorem 2 are feasible,

and Ω contains a neighborhood of the origin, then conditions on Corollary 5 hold

for some non-empty domain of attraction.

Proof. See Appendix.

Our proposal, apart from giving the same (or better) solutions as Theorem 2

in an identical setting, improving over [11, 20], applies to regions with quadratic

boundaries, it is less conservative (due to Ē, and to the fact that the level set

can get “out” of Ω) and, last, Ω can even not contain the origin as long as a

fraction of it is proven (elsewhere) to belong to the DA of the origin.

8For instance, the smallest or largest circle inside an ellipsoid, the largest ellipsoid inside

a polytope, etc. in [3].
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Example 1 ([22]). Consider the following nonlinear system:

ẋ1 = 0.5x2 − 3x1, ẋ2 = (3 sinx1 − 2)x2 (31)

where the state is assumed to lie in the compact set Ω = {x : |xi| ≤ 1.2, i = 1, 2}.

Consider a partition of the compact set Ω in q = 16 subsets, as it is shown

in Figure 4. An initial estimation of the DA was obtained using a quadratic

Lyapunov function and a standard 2-rule TS model resulting from choosing

ρ(x) = 3 sin(x1)x2, computed in a smaller modelling region ΩTS = {x : |xi| ≤

0.72, i = 1, 2}. The resulting largest level set in ΩTS is given by VQ = {x :

xT P̄Qx < 0}, with:

P̄Q =







1.9104 −0.2365 0

−0.2365 1.9104 0

0 0 −1






.

Such level set is depicted in red in the referred figure.

Now, a PWATS model has been generated with the same choice of ρ(x)

applying the optimisation setup discussed in [10].Theorem 4 was applied in

order to find the largest circle Ω̃(λ) = {x : −λ−1xTx+1 ≥ 0} inside the proven

domain of attraction, minimising λ−1 by bisection, stating conditions (30) for

all the regions. The knowledge that the red region already belonged to the

DA has been exploited in the LMI conditions. In Figure 4, the larger resulting

level-set V is shown in green. The level set intersects with the frontier of Ω, as

the theorem allows for it; the only regions out of it are the top and bottom right

white zones.

For comparison, a estimation of the DA using classical Theorem 2 for the

same PWATS model is shown in blue. In this case, level sets from earlier results

cannot exit Ω.

Last, the 8 squares containing the yellow regions in the figure are used in a

new estimation of the DA with a partition which does not contain the origin

but contains as initial DA estimates both the prior green piecewise-ellipsoidal

fragments conforming E and the magenta lines conforming Ê . With the same

geometric objective, the referred yellow region can be proved to belong to the
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domain of attraction9. Some simulated trajectories show that, indeed, the DA

estimate is correct.

3.4. Iterative Enlargement of the Domain of Attraction

The basic idea in this section is proving a large DA estimate by modifying

Ω as the region proved with Theorem 4 grows larger, removing “empty” regions

(in order to be less conservative at next iteration), and adding new neighboring

regions around the ones that contain any points in the proven DA, i.e. around

those in which there exists an ellipsoid Ek
s such that Ek

s ∩ Ωk 6= ∅. In order to

carry out such operation, the following result will be used:

Lemma 4. Consider a region Ωk defined as in (18) and a collection of ellipsoids

Ek
s = {x : x̄T Ḡksx̄ > 0} for s ∈ {1, 2, . . . , s̄k}. Then, the two assertions below

are true:

a) if ∃τ1s ≥ 0, τ2l ≥ 0, U = UT � 0 such that 01 −
∑s̄k

l=1 τ
1
s Ḡks + ÊT

k UÊk +
∑ℓk

l=1 τ
2
l Qlk ≤ 0, then Ωk ⊂ ∪s̄k

s Ek
s .

b) if ∃τ1s ≥ 0, τ2l,s ≥ 0, Us = UT
s � 0 such that, for all s, 01+τ

1
s Ḡks+Ê

T
k UsÊk+

∑ℓk
l=1 τ

2
l,sQlk ≤ 0, then Ωk ∩ ∪s̄k

s Ek
s = ∅.

Proof. The first condition a) proves that Ωk∩
(

∩s̄k
s=1{x : x̄T Ḡksx̄ ≤ 0}

)

is empty

from Corollary 2, and therefore Ωk ⊂ ∪s̄k
s Ek

s , because ∩s̄k
s=1{x : x̄T Ḡksx̄ ≤ 0} is

the set of x̄ lying outside the union of the ellipsoids Ek
s .

The second condition b) proves that Ωk ∩Ek
s = ∅ for every s, from Corollary

2, and, hence, so it is Ωk ∩ ∪s̄k
s Ek

s = ∅.

If the ellipsoids are those in Theorem 3, Lemma 4 ensures that regions ful-

filling the first LMI have been totally proven to belong to the DA, and regions

fulfilling the second set of LMIs (one for each s) have no point in them proven

to belong to the DA. The former ones will be labelled as “full” and the latter

ones, as “empty”.

9Actually, as complete faces are in the DA, instead of being considered in Êk , they can be

equivalently removed from the set of outer faces, details omitted for brevity.
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3.4.1. Algorithm

Based on Theorem 3 and the discussed idea above, Algorithm 1 on top of

next page is proposed, initialising on a prior feasible solution and iteratively im-

proving the DA estimate by suitably modifying the partition (adding, removing

and dividing regions). Some remarks are presented below detailing the ideas in

some of its steps.

Remark 8. [Initialization] The algorithm will be initialised with any piecewise

partition of an initial compact set Ω[0] where a PWQLF has been obtained via

a feasible solution of any LMI in literature, for instance:

• a single region with a TS model, as done in Example 1,

• a feasible piecewise-quadratic DA estimate from Johansson’s Theorem 2

or, better,

• a solution from Corollary 5 (with some geometric optimisation, Theorem

4) with initial empty DA estimate, proved to be more general than Theo-

rem 2.

Remark 9. [Neighbouring region generation] Depending on the geometry of the

chosen partition (simplicial, parallelotopic, etc.), generating these new neigh-

bouring regions might require different code implementations; in later examples,

a particular hyper-cube-based setting will be explained, based on the fact that

a space-filling tessellation is possible with congruent copies of any parallelotope.

Remark 10. [Removing fully covered regions ] If full(k)=1, as the whole region is

proved to belong to the DA of the origin, such a region can be actually removed

from Ω[c] in step 2 of Algorithm 1; in order to keep this information, the faces

of neighboring regions can be “marked” to belong to the DA via suitable set up

of ellipsoids Êk.

Remark 11. [Geometric optimisation goal ] In general, there are no LMI con-

ditions to maximise the volume of a piecewise estimation of the DA. An indirect
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Algorithm 1. Start from a compact set Ω[0] defined by a list of sets from a associated

partition Ωk, k ∈ {1, 2, . . . , q}. Consider a previous estimate of the DA, see Remark 8,

as a list of sets in the form E
[0]
k

= {x : x̄T Ḡ0
kx̄ > 0} ∩ Ωk. Set c = 1 and perform the

following steps:

1. Test Lemma 4 for each region Ωk ∈ Ω[c−1].

(a) If a) is feasible, set full(k) = 1 else full(k) = 0.

(b) If b) is feasible, set empty(k) = 1 else empty(k) = 0.

2. Generate the list of sets for a new partition Ω[c], as follows:

(a) If empty(k) = 1, then reject Ωk, do not add it to Ω[c];

(b) Else, add Ωk to the list Ω[c], and enlarge the region of study adding to Ω[c] a

neighbouring region Ω′, see Remark 9.

(c) if full(k) = 1, Ωk can be taken out, if so wished, from Ω[c], if the steps in

Remark 10 are taken.

3. Obtain a new PWATS model from the new region.

4. Obtain a PWQLF from Theorem 4 under some chosen geometric performance max-

imisation, see Remark 11.

5. If Theorem 4 is feasible, then add {x : x̄T P̄ c

k x̄ < 0}∩Ωk to the list of sets conforming

the current DA estimate, and set c = c+ 1.

6. If Theorem 4 is not feasible, then subdivide some of the regions where empty(k) = 0

and full(k) = 0. See Remark 12.

7. Check a suitable termination criteria (see Remark 13), and if it not satisfied, go to

Step 1.

way to achieve this goal is to maximise the radius of a sphere centered at the

origin [10], but it may be inadequate for nonconvex regions. An alternative

to the sphere-based maximisation is trying to maximise in a region the scaling

(29) of a degenerate ellipsoid (with very small axis length in all directions but

a random one) with a random center point.
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Remark 12. [Finer partition granularity] As expected, there are several ways of

dividing regions as to apply the algorithm above; in later examples in this work,

the regions have been split into 2n equal smaller parallelotopes. Obviously, other

implementations may be conceivable, such as generating a random splitting

direction for some regions.

Remark 13. [Termination] There might be different options to be used as

termination criteria: (a) some geometric goal reached, or slow progress of it, (b)

number of regions or computation time at step 4 above a predefined limit.

Comparative analysis with other DA analysis proposals

In [20], an algorithm to get progressively better estimates of the DA was

given. Nevertheless, in contrast with Algorithm 1 above, the proposal in [20]

(a) is unable to establish asymptotical exactness (see next section); (b) it in-

cludes no geometrical optimisation conditions, thus stopping when any arbitrary

piecewise Lyapunov set which fits the DA is found; (c) it is computationally

over-demanding since at each step the whole region is reconsidered in the new

partition. All these issues make the prior algorithm provide worse numerical

results than the one here presented (see example below).

Example 2. Consider the following nonlinear system

ẋ1 = −x2, ẋ2 = x1 − x2 + x2x
2
1. (32)

The system has one equilibrium point at the origin and one unstable limit cycle,

which implies the DA is bounded by the latter. In order to obtain the largest

possible estimate of the DA, Algorithm 1 comes at hand. We started it with the

region Ω[0] = {x ∈ R
2 : |xi| ≤ 0.99}, i ∈ {1, 2}, on which a quadratic Lyapunov

function has been used as an initial estimate of the DA.

Figure 5 plots the limit cycle (outermost blue closed curve, obtained with

backwards-in-time simulation) and compares it with different estimates of the

DA obtained by the iterations of Algorithm 1. The figure shows, in different

colors, the estimate of DA for each iteration of Algorithm 1. Note that, in

this example, the chosen geometry partition is based on a square tessellation,
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and we maximised the radius of a sphere center at the origin as the geometric

optimisation goal. A colored square means that the entire region belongs to the

DA. The different sizes of the regions are caused by the splitting into smaller

squares at step 6 of the Algorithm. The region proven to belong to the DA is

the union of all colored regions.

Figure 6 shows the DA estimate in Figure 5 as a red line, very close to

the actual exact limit cycle (black line). For comparison, it also shows the

result applying the approach in [20] with a blue closed solid line. The approach

in [20] does not incorporate the geometric border conditions neither previous

estimates, reaching a high computational cost with slow progress, obtaining

inferior results. Both algorithms were stopped when 4 GB of memory were

exhausted in the computations.

As the algorithm progresses, it gets progressively closer to the actual domain

of attraction of the origin (the open set inside the limit circle). However, as the

boundary of the limit cycle is not quadratic, we would, in theory, need an

infinite amount of piecewise-quadratic fragments to approximate it, this is why

the number of regions ends up increasing greatly.

Figure 5: Estimation of the DA for Example 2.

Next section analysis in depth the algorithm behaviour when the number

of regions increases: it can be proved that, under some assumptions, as the

partitions get finer, the accuracy of the DA estimate improves, reaching asymp-
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Figure 6: Estimation of the DA for Example 2 (Black: exact Limit Cycle; red: proposal here;

blue: estimate in [20]).

totical exactness i.e., limited only by finite computational resources in DA es-

timation (disturbances and controller design induce other limitations as more

complex/BMI problems arise, out of the scope of this work).

4. Asymptotical exactness

In this section, Farkas Lemma (here recalled as Lemma 1) will allow to prove

asymptotical exactness of the above algorithm: with enough computational re-

sources, the algorithm is non-conservative in the precise sense to be discussed

next.

Indeed, Theorems 3 and 4, obviously, apply to the particular case in which

the Lyapunov function has the form

Vk(x) = x̄T













0 0 · · · 0.5p1k
0 0 · · · 0.5p2k
...

...
. . .

...

0.5p1k 0.5p2k · · · pn+1
k













x̄ = x̄T P̄kx̄ (33)

These Lyapunov functions are piecewise-affine, as Vk(x) =
∑n

i=1 p
i
kxi + pn+1

k ,

shorthanded to PWALF. In this way, piecewise-polyhedral level sets could be

proven to belong to the DA of the origin.
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The key fact about the use of the above class of functions is that, due to

Lemma 1, the proposed conditions in Theorem 3 are necessary and sufficient in

the sense that, if conditions in the referred theorem with the above Lyapunov

function structure (33) are not feasible then there is no PWALF for the set

partition fulfilling the needed Lyapunov condition10 with a single affine expres-

sion for the PWALF in each Ωk. So, forcedly, the partition must be changed,

because no other theorem would find a PWALF on it if Theorem 3 does not

work.

The above idea, jointly with universal-approximation capabilities of PWALF

and PWATS models as regions get smaller, allow to prove the following key

result, which states that if there exists any smooth Lyapunov function proving

that a particular point x∗ belongs to the DA of the origin, a PWALF will also

prove that x∗ belongs to such DA for a fine enough partition.

Lemma 5. For any ε1 > 0, ε2 > 0, there exist a fine enough partition of a

compact set Ω such that a PWALF in the form (33), VPW (x) := Vk(x) for

x ∈ Ωk, approximates any function V of class C 2 and its gradient as follows,

for all x ∈ Ω:

‖VPW (x) − V (x)‖ ≤ ε1, (34)

‖∇VPW (x) −∇V (x)‖ ≤ ε2. (35)

Proof. See Appendix.

Lemma 6. For any ε > 0, there exist a fine enough partition of a compact set Ω

such that, given a continuous function f(x), a PWATS model can be obtained

10Contrarily, in the quadratic case, such a Lyapunov function might exist but might be only

provable to be so with higher-degree Positivstellensatz multipliers, requiring a Sum-of-Squares

version of the theorems; anyway, there are also positive polynomials which are not SOS [25] so

these conservatism sources cannot be removed in general, except in the above-referred affine

case.
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fulfilling:

∥

∥

(

Ak
i x+ bki

)

− f(x)
∥

∥ ≤ ε, (36)

∀ i ∈ {1, 2, . . . , r}, ∀x ∈ Ωk

Proof. Consider the 2-rule PWATS model given by Ak
i := 0, bk1 := minx∈Ωk

f(x),

bk2 := maxx∈Ωk
f(x), where maximum and minimum have been considered to

be computed element-wise (bk1 and bk2 are vectors) on a compact set Ωk. As

f(x) is continuous, by assumption, there exists a fine enough partition such

that ‖bki − f(x)‖ ≤ ‖bk2 − bl1‖ ≤ ε for any arbitrary choice of ε.

Now, we can state the key result of this paper, proving that we can be at

least as good as any conceivable algorithm based on Lyapunov level-sets.

Theorem 5. Let x = 0 be an asymptotically stable equilibrium point for the

nonlinear system

ẋ = f(x) (37)

where f : Ω → R
n is locally Lipschitz, Ω ⊂ D is compact. Assume that a

(possibly small) polyhedron B containing the origin has been proved to belong to

the DA, and define a compact set Θ := Ω − int(B). If there exists a function

V : Θ → R, and ε > 0 such that:

1. V (x) is of class C
2 in an open set including Ω.

2. V̇ (x) =
∂V

∂x
· f(x) ≤ −ε, for all x ∈ Θ.

3. There exists a level set in the form Vα2
:= {x : V (x) ≤ α2}, for some

α2 > 0 such that Vα2
⊂ Ω.

Then, there exist a fine enough partition of Θ such that any PWATS model ful-

filling conditions in Lemma 6 allows finding a PWQLF (VPW (x)) which fulfills

conditions in Theorem 3, and a level set of the PWQLF allowing to prove that

any point in the interior of Vα2
belongs to the DA of the origin.

Proof. See Appendix.

29



2

1

0

−1

−2

x
2

−2 −1 0 1 2
x1

Figure 7: Estimation of the DA for Example 3. (Red: estimate in [14]; Green: proposal here;

magenta: some trajectories inside the DA; blue: some trajectories outside DA.

Remark 14. Note that, by Theorem 1, all trajectories of the nonlinear system

inside the level set Vα2
will enter B, because forcedly Vα2

∩ B 6= ∅, as the

trajectories should abandon Vα2
in at most α2/ε time units, and they cannot

abandon Ω if they start in the interior of Vα2
. For any of such interior initial

conditions, a PWQLF proving that it belongs to the DA of the origin can be

found because of the same argumentations.

Example 3. As a last example, for the sake of comparison, consider the system

in [14, Example 3]:

ẋ1 = −x1 + x21 + x31 + x21x2 − x1x
2
2 + x2, ẋ2 = − sinx1 − x2,

altogether with a PWATS model of it, [10], as an input to Algorithm 1. Figure

7 shows the DA estimate in the referred work (obtained via BMIs and SOS

tools) with a red closed solid line whereas our estimate is shown with a green-

coloured area. Clearly, our proposal reaches much better estimations than [14],

as expected due to the asymptotical exactness; however, region size needs to be

decreased as the border of the “true” domain of attraction is approached, as

discussed in earlier examples.

Remark 15. With prefixed regions, our proposal renders LMI conditions (even

linear programming ones, in some cases) so the computational cost is basically
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identical to prior PWATS literature (increasing just a small amount due to the

handful of extra multipliers proposed here). However, the actual DA of non-

linear systems is, in general, not piecewise quadratic, so the exact domain of

attraction cannot be obtained with finite computational resources with our ap-

proach11.: as the required estimation accuracy increases, the number of regions

must increase (with decreasing size). Hence, Theorem 5 can only prove that fi-

nite computational resources are needed to find a particular point in the interior

of the “true” DA.

5. Conclusion

In this paper, an iterative linear matrix inequality methodology has been

presented for estimation of the domain of attraction of a nonlinear model. The

proposal, based on a systematic exploitation of geometrical and stability facts

via piecewise affine Takagi-Sugeno models and piecewise Lyapunov functions,

has been shown to outperform the most relevant works on the subject. Estimates

of the domain of attraction have been increased by “emptying” previously proven

regions and extending the modelling region in “promising” neighboring areas.

Moreover, based on universal-approximation properties of TS models, it has

been proved that the estimate of the domain of attraction approaches the level

set of any existing C 2 Lyapunov function of the original nonlinear system, as the

partition where the piecewise TS model is obtained gets finer (smaller regions):

the proposed procedures are asymptotically exact.

Appendix A. Proofs

Proof of Corollary 1. The result can be proved considering V (x) = 0 as V (x) ≥

0, −V (x) ≥ 0, and applying twice the above lemma, i.e., for V (x) = 0, ∀x ∈ Ω,

11In fact, neither with any alternative conceivable approach: it is well known that nonlin-

ear differential equations rarely admit explicit solutions (or DA expressions) in closed form,

requiring numerical simulation [29]
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there exist c1 ≥ 0 and c2 ≥ 0 such that:

V (x)−
N
∑

l=1

τ ′lσl(x) = c1 ≥ 0, −V (x)−
N
∑

l=1

τ∗l σl(x) = c2 ≥ 0

where linearity of V forces c1 and c2 being constants. Adding, we would have:

−
N
∑

l=1

(τ ′l + τ∗l )σl = c1 + c2

but, if we assume the region Ω is not empty, the above cannot happen unless

c1 = c2 = 0 (standard Positivstellensatz). Now, subtracting and dividing by 2,

we obtain:

V −
N
∑

l=1

1

2
(τ ′l − τ∗l )σl = 0

so τl = 0.5(τ ′l − τ∗l ).

Proof of Theorem 3. Consider the regions Êk :=
⋃nk

j=1

(

⋃ŝk
s=1 Ê

k
js ∩ Fk

j

)

and

Ek := Ωk ∩
⋃s̄k

s=1 E
k
s . Consider, too, the regions E :=

⋃q

k=1 Ek and Ê :=
⋃q

k=1 Êk.

Then, by assumption, each Ek, Êk, and, evidently, the whole Ê , and E belong to

the DA of the origin.

Using the argumentations in Lemma 3 with Ξ = V̇k(x)+γ‖x‖2 and Vk(x) :=

x̄T P̄kx̄, we can state that (25) ensures that the time derivative of Vk(x) is strictly

negative for nonzero x (lower or equal than −γ‖x‖2), in Ωk − Ek, because such

set is given by:

Ωk − Ek = {x : Ekx̄ � 0, x̄TQlkx̄ ≥ 0, x̄T Ḡskx̄ ≤ 0},

for l ∈ {1, 2, . . . , ℓk} and s ∈ {1, 2, . . . , s̄k}, so suitable multipliers U1
ki � 0,

τ1kl ≥ 0, τ2ks ≥ 0 are introduced.

Let us discuss now inequality (26). In this case, we want to show that the

level set {Vk(x) < 0} ∩ (Ωk − Ek − Êk) does not intersect ∂Ω↑, as ∂Ω↑ is the

subset of ∂Ωk where the trajectories of the system do not immediately enter Ω.

In order to show that, we will combine Corollary 4 with Lemma 3, posing

the conditions of P̄ ≥ 0 for all x in the set ∂Ω↑ ∩ (Ωk − Ek − Êk).
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As ∂Ω↑ ⊂
⋃

j∈Ik
{x : σ̇k

j (x) ≤ 0} we can assert that, if the following assertion

holds for all j ∈ Ik:

P̄ ≥ 0 ∀x ∈ Σk
j (A.1)

where Σk
j := {x : σ̇k

j (x) ≤ 0}∩(Ωk−Ek−Êk), then P̄ ≥ 0 on ∂Ω↑∩(Ωk−Ek−Êk).

Now, we replace Σk
j by the larger (shape-independent) set on which at least

one of the vertices of the PWATS model proves σ̇k
j (x) ≤ 0, as discussed on

Corollary 4. Then, application of Lemma 3 for each of the outer constraints in

(A.1) and model vertices yields conditions (26) if the constraint in consideration

is affine, and (28) if it were quadratic.

Now, by considering all regions we have:

1. a continuous piecewise quadratic function V (x), defined as Vk(x) = x̄T P̄kx̄

in Ωk;

2. V (x) is non-increasing, i.e., for a sufficiently small ǫ, V (x(t+ǫ)) ≤ V (x(t));

actually V (x(t + ǫ)) < V (x(t)) if x(t) 6= 0. Indeed, along the trajectories

of the nonlinear system (1), V̇ ≤ 0 if x(t) is in the interior of any Ωk; if

x(t) is in the boundary of several regions, we can ensure that:

D+V (t) := lim
ǫ→0+

V (x(t + ǫ))− V (x(t))

ǫ
≤ max
k s.t. x(t)∈Ωk

V̇k ≤ 0 (A.2)

3. V (x) has a level-zero set V0 := {V (x) < 0} that verifies

V0 ∩
(

∂Ω↑ ∩ (Ωk − Ek − Êk)
)

= ∅.

Denoting E := E ∪ Ê , Let us define the following sets:

V := {V (x) < 0} ∩ Ω, W := V − E , (A.3)

W¬ε := {x ∈ W : φ(t, x) 6∈ E ∀t ≥ 0}, Wε := W −W¬ε. (A.4)

With the above definition, W is the set of points who have not (yet) been proven

to belong to the DA. Such set is partitioned in two: W¬ε, i.e., the set of points

of W which do not enter E in finite time, and Wε.

Now, note that when starting in W , it is impossible to abandon W without

entering E, due to:
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• As V (x) is non-increasing in time in W , the boundary V (x) = 0 will never

be reached.

• As σ̇k
j (x) > 0 for all x lying both in the outer faces and in V (x) < 0

(proven due to the third of the above-enumerated conditions), trajectories

cannot exit Ω through such outer faces.

Thus, all points in W either enter E in finite time or remain indefinitely in

W . As the latter points are, by definition, those in W¬ε, forcedly Wε is the set

of points who do enter E in finite time.

Obviously, all x ∈ Wε belong to the DA of the origin, because they enter E

in finite time without leaving Ω, so they converge to the origin later on.

Let us prove that all x ∈ W¬ε belong, too, to the DA of the origin. Indeed,

W¬ε is invariant, because trajectories always remain inside it in future time:

they do not enter E and, due to the above reasons, they do not exit V , and they

do not enter Wε because in such a case they would eventually enter E , which

cannot happen by definition.

As V (x) is continuous, piecewise polynomial, it is bounded on W¬ε, i.e.,

there exist

Vmin := inf
x∈W¬ε

V (x), Vmax := sup
x∈W¬ε

V (x).

Given any x ∈ W¬ε, as V (φ(t, x)) is nonincreasing and bounded from below at

all times, there must exist a limit a := limt→∞ V (φ(t, x)), so, as a consequence

limt→∞D+V (φ(t, x)) = 0. As V̇k(x) ≤ −γ in regions Ωk not containing the

origin, and V̇k(x) ≤ −γ‖x‖2 if the region contains the origin, the only point

in which such situation (D+V = maxk s.t. x(t)∈Ωk
V̇k = 0) can happen is the

origin. So, all initial conditions x ∈ W¬ε tend to the origin, i.e., belong to the

DA of the origin12. Given that both Wε and W¬ε belong to the DA of the

origin, so does their union W .

Proof of Theorem 4. In this case, we want to show that Ω̂(λ) belongs to the

12Note that, if 0 ∈ E, forcefully W¬ε = ∅; this is in accordance with Theorem 1.
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domain of attraction of x = 0, by showing that it is included in the subset of

the DA proven in Theorem 3, where constraints for the level set V for being

part of the DA are enforced ((24), (25), (26), (28)).

We want to enforce that the region Ek′ ∪{x̄T P̄k′ x̄ < 0}∩Ωk contains Ω̂(λ)∩

Ωk′ . We will do that by proving that x̄T P̄k′ x̄ ≤ −γ in (Ωk′ −Ek′)∩Ω̂(λ). Indeed,

if that holds, all points of Ω̂(λ) ∩ Ωk′ either lie in Ek′ or in {x̄T P̄k′ x̄ < 0} ∩ Ωk,

both belonging to the DA of the origin.

Thus, conditions for inclusion of x̄T P̄k′ x̄ ≤ −γ in the required set are written

as (30) by using the S-procedure argumentation and positive multipliers τ8k′m

associated to the quadratic constraints in Ω̂(λ), U4
k′ associated to the linear

inequalities in Ω̂(λ), U3
k′ and τ7k′l associated to the corresponding region Ωk,

and positive constants τ9k′s associated to ellipsoids Ek
s .

Proof of Corollary 6. Suppose that a feasible solution {P Joh
k , UJoh

k , W Joh
ki } for

(15) has been obtained, i.e.:

P̄ Joh
k − ĒT

k U
Joh
k Ēk ≥ Iγ ,

(

Āk
i

)T
P̄ Joh
k + P̄ Joh

k Āk
i + ĒT

k W
Joh
ki Ēk ≤ −Φk

γ .
(A.5)

We will prove that there exist some β > 0 such that Vβ in Theorem 2 belongs to

the DA of the origin, provable with Theorem 3. As the level set considered in the

latter theorem is in the form {x̄T P̄kx̄ < 0}, whereas the condition xT P̄ Joh
k x̄ ≥

Iγ in Theorem 2 would need level sets in the form {x̄T P̄ Joh
k x̄ < β}, we will

consider P̄k = P̄ Joh
k − 0β , without loss of generality, for some β. In this way,

{x̄T P̄ Joh
k x̄ < β} ≡ {x̄T P̄kx̄ < 0}.

Consider inequality (25). As partition is polyhedral then ℓk = 0 and if the

prior estimates of the DA are empty, then s̄k = 0 and ŝjk = 0. Furthermore if

only the rows Ek are considered from Ēk, the result is the second LMI in (A.5),

with the notational changes in footnote 4. As subtracting a constant from the

Lyapunov function does not influence its derivative (algebraically, it can be

proved from the fact that the last row of Āk
i is zero), Johansson’s multipliers

W Joh
ki would render (25) feasible (padded with zeros to conform the larger size

of Ēk).
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Consider now that the first inequality in (A.5) holds. Then, we will prove

that there exists β > 0 and arbitrary row-vector multipliers Zjk such that

ZT
jkEjk+(∗)+(P̄ Joh

k − 0β)−E
T
k U

Joh
k Ek≥0, (A.6)

where the above expression has been obtained from (26) removing the absent

elements Qlk, Ḡsk, Ĝkjs, and also setting the multiplier for the term EjkĀ
k
i in

U2
kji equal to zero (hence, the original multiplier U2

kji no longer depends on i,

j), setting the remaining terms equal to the corresponding ones in UJoh
k .

Indeed, consider the problem of finding Ejk such that the following expres-

sion is feasible for all outer constraints Ejk:

ZT
jkEjk+(∗)+ blkdiag(γI,−β)≥0, (A.7)

The above problem is feasible if the circle γxTx ≤ β is inside Ω. So, if there

exists a circle around the origin which is contained in Ω, true by assumption,

a feasible solution for (A.7) exists. Now, adding the first matrix inequality of

(A.5) and (A.7) results in (A.6), proving that (26) was feasible in Theorem 3

with the choice of multipliers in (A.6).

In summary, the above argumentation proves that if (A.5) are feasible, so

they are (25) and (26). Continuity is also enforced in Johansson’s result, so we

proved that Theorem 3 is feasible in all cases (A.5) is, for suitable Ω.

Proof of Lemma 5. First, note that the gradient of a PWALF is a piecewise-

constant function13. If a function V (x) is of class C 2, then its partial derivative

∇V is of class C 1, meaning that ∇V is bounded in Ω and can be approximated

by a piecewise constant function ∇VPW to any arbitrary error ε3, as piecewise

constant functions are universal function approximators, as long as the partition

is fine enough, so there exists ψ(x) such that ‖ψ(x)‖ ≤ ε3 for all x ∈ Ω and

∇V (x) = ∇VPW (x) + ψ(x).

13Understanding the gradient at faces common to several regions to be defined as the average

of the different piecewise gradients. As such faces are zero-measure sets, such formal definition

will not have any influence in the integral-based results in the remaining of the proof.
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Integrating the gradient, we get:

V (x) =

∫ 1

0

∇V (λx)Tx dλ =

∫ 1

0

(∇VPW (λx) + ψ(λx))
T
xdλ (A.8)

where ψ(λx) is the approximation error, which verifies ‖ψ(λx)‖ ≤ ε3. Hence,

V (x) =

∫ 1

0

∇VPW (λx)T x dλ+

∫ 1

0

ψ(λx)T x dλ (A.9)

so we can assert:

‖V (x)− VPW (x)‖ ≤

∫ 1

0

‖ψ(λx)‖ · ‖x‖ dλ ≤ ε3‖x‖ (A.10)

Choosing ε3 such that ε1 ≥ maxx∈Ω ε3‖x‖, and ε3 ≤ ε2, we can prove (34)

and (35). As a result, we can approximate both ∇V and V as closely as desired

by increasing the partition granularity.

Proof of Theorem 5. By Lemma 5, there exists a fine enough partition such that

there exists a PWA function fulfilling: ∇VPW (x)+ψ(x) = ∇V (x), ‖ψ(x)‖ ≤ ε3,

and, by Lemma 6, that for all vertices, for all regions there exists φki (x) such that

Ak
i x+b

k
i +φ

k
i = f(x), ‖φki (x)‖ ≤ ε4, for any ε4 > 0. Then, we can state, denoting

fk
i (x) := Ak

i x+ bki , by continuity of f(x) that there exists f̂ := maxx∈Ω ‖f(x)‖,

and by continuity of ∇V , that there exists V̂ := maxx∈Ω ‖∇V (x)‖. Now, we

have:

∇VPW (x)fk
i (x) = (∇V − ψ(x))(f(x) − φki (x))

= ∇V · f(x)− ψ(x) · f(x)−∇V · φki (x) + ψ(x)φki (x)

≤ −ε+ ε2 · f̂ + ε4 · V̂ + ε4ε2

So, for any 0 < γ′ < ε, a suitable choice of small enough ε2 and ε4 can prove

that there exists a fine enough partition so that:

∇VPW (x)fk
i (x) ≤ −γ′ (A.11)

Now, from Farkas Lemma, the existence of the multipliers U1
ki in (25) in the

affine case (lk = 0, s̄k = 0) are a necessary and sufficient condition for (A.11)

to hold, as the region Ωk does not contain the origin by assumption. Regarding
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the multiplier-based continuity conditions (19), Corollary 1 ensures that they

are also necessary and sufficient for the PWA case.

Last, regarding geometric conditions (level set), any point in the interior of

Vα2
is in the (closed) level set α1 for some α1 < α2.

Consider now ε1 < 0.5(α2 − α1). Then, select any choice of α such that

α1 + ε1 < α < α2 − ε1. In this way, given the above ε1, there exists a fine

enough partition so that (34) holds; hence, the level set of VPW , denoted as

ṼPW (α) := {x : VPW (x) ≤ α}, fulfills

Vα1
⊂ ṼPW (α) ⊂ Vα2

(A.12)

because all x ∈ Vα1
will belong to the level set of VPW given by ṼPW (α1 + ε1),

and also, all elements of the level set ṼPW (α2 − ε1) will be included in Vα2
.

If a fine enough partition is chosen such that both (A.11) and (A.12) hold, we

have found a PWALF fulfilling the required derivative conditions and including

in a level set any desired point in the interior of the level set of the “true”

Lyapunov function. If we consider that piecewise-affine Lyapunov functions are

a particular case of piecewise-quadratic ones, the theorem is proved.
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