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Abstract 

The aim of this work was to study linear deterministic models to predict tissue 

temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes 

such as electrode temperature, power and impedance between active and dispersive 

electrodes. The concept involves autoregressive models with exogenous input (ARX), 

which is a particular case of the autoregressive moving average model with exogenous 

input (ARMAX). The values of the mode parameters were determined from a least 

squares fit of experimental data. The data were obtained from radiofrequency ablations 

conducted on agar models with different contact pressure conditions between electrode 

and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L/min). 

Half of all the ablations were chosen randomly to be used for identification (i.e. 

determination of model parameters) and the other half were used for model validation. 

The results suggest that: 1) a linear model can be developed to predict tissue 

temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables 

applied power, impedance, and electrode temperature; 2) the best model provides a 

reasonably accurate estimate of tissue temperature with a 60% probability of achieving 

average errors better than 5ºC; 3) substantial errors (larger than 15ºC) were found only 

in 6.6% of cases and were associated with abnormal experiments (e.g. those involving 

displacement of the ablation electrode); and 4) the impact of measuring impedance on 

the overall estimate is negligible (around 1ºC). 

 

Keywords agar phantom, autoregressive modeling, black−box modeling, cardiac 

ablation, catheter ablation, non−structured model, temperature prediction, 

radiofrequency ablation, temperature measurement. 
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Introduction 

Radiofrequency (RF) catheter cardiac ablation (RFCA) is a minimally invasive 

procedure for destroying a zone of the myocardial tissue causing an arrhythmia. The 

procedure uses an active electrode placed at the tip of a percutaneous catheter. The RF 

(≈500 kHz) electrical current is delivered to the patient through the active electrode and 

a dispersive electrode placed on the patient’s back or thigh. RFCA is generally 

performed by means of a constant−temperature protocol, which means that RF power is 

modulated by the RF generator to maintain a constant target temperature value (Te) 

measured by a sensor embedded in the active electrode (see Fig. 1A). The thermal effect 

(i.e. tissue necrosis) occurs exclusively in the cardiac tissue underneath the active 

electrode, as the current density is highest in that zone. Consequently, the maximal 

temperature reached in the tissue is located at 1−2 mm from the electrode−tissue 

interface using dry (i.e. non cooled) electrodes [1]. Unfortunately, no information can be 

obtained on tissue temperature (Tt) during RF heating by means of direct measurement. 

Only the progress of Te and the electrical parameters (power, voltage, current and 

impedance) can be displayed and recorded with conventional RF generators. However, 

the estimation of Tt could avoid excessive heating or thermal injury to contiguous 

tissues during RFCA. 

We hypothesized that the progress of Te, RF power (Pe) and electrical impedance (Ze) 

could provide enough information to estimate Tt (on which the other electrical variables 

would be dependent). The rationale for this hypothesis is based on: 

(1)  Once RF power raises the temperature in the tissue, a thermal flux is created and 

heat is transferred towards the electrode by thermal conduction. It could therefore be 

assumed that Te and Tt will be directly related by the thermal conductivity of the 

in−between tissue. 
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(2) During a constant−temperature ablation, RF power requirements are directly 

related to the convective cooling effect on the electrode and tissue surfaces caused by 

the circulating blood [2]. In addition, there is also a direct relation between RF power 

and depth of the lesion [2]. For these reasons, RF power changes could provide 

information on changes in this cooling effect, and hence on Tt. 

(3) Impedance changes are closely associated with tissue heating [3]. 

Previous work has been conducted to estimate lesion progress on−line by studying 

the impedance progress [3−5]. Numerical modeling (based on e.g. finite element 

method) has also been proposed to estimate tissue temperature during RFCA [6]. 

However, as far as we know, no study has attempted to estimate Tt from the combined 

progress of all the above mentioned variables. 

Our interest lies in creating linear deterministic models to predict Tt (i.e.T ) from the 

progress of all the variables (see Fig. 1B). The structure of the proposed models is not 

defined a priori, moreover they are completely data−driven as both the model 

parameters and structure are obtained from the data, so that neither physical constant 

determination nor mathematical simplification are needed [7,8]. If required, a number of 

local linear models can be obtained to eventually predict non−linear behavior. In 

general, non−structured models, also known as black−box models, have been employed 

to predict dynamic behavior in different scientific areas. To date, previous works have 

reported the use of black−box modeling to predict tissue temperature in therapeutic 

ultrasound [7,9] and hyperthermia cancer treatment [8]. These studies employed neural 

networks to estimate the temperature change using the temporal echo−shifts extracted 

from collected backscattered ultrasound signals. 

t̂

The main aim of the present research was the study of linear deterministic models to 

predict tissue temperature during RFCA processes by measuring related magnitudes 
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(i.e. electrode temperature, power and impedance). 

 

Experimental set-up 

The experimental setup was based on an agar phantom as tissue−equivalent material 

[10]. This methodology (previously employed in similar studies [10,11]) facilitates the 

precise positioning of very small temperature sensors (e.g. micro−thermocouples), and 

achieves reproducible conditions between RF ablations. Details on the phantom 

construction can be found in [11]. Figure 2 shows a diagram of the phantom and 

experimental setup. The agar phantom was constructed utilizing a methacrylate tube 

container with 50 mm external diameter and 30 mm in height. We situated a T−type 

thermocouple IT−21 of 0.41 mm diameter (Physitemp Instruments, Crifton, NY, USA) 

at a depth of 4.5 mm to measure tissue temperature (Tt), which is the prediction target. 

The thermocouple tip was always placed on the catheter axis. The phantom was 

submerged in a bath (polycarbonate container of 25×20×18 cm) containing 12 L of 

0.5% NaCl solution as blood−equivalent [12], and maintained at 37ºC throughout the 

experiments with an immersion thermostat Microtherm 3000423 (JP Selecta, Abrera, 

Barcelona, Spain). A hydraulic circuit (see Fig. 2) was set up to simulate blood flow 

inside the cardiac chamber, and consequently removed heat from the agar and cooled 

electrode surfaces during ablation. This circuit was set up using a Stöckert roller pump 

(Shiley, Irvine, CA, USA) which re−circulated the saline solution from the bath and 

irrigated the phantom surface and the ablation electrode by means of an 18 mm diameter 

tube located 25 mm from the ablation catheter [12]. Three flow rate values were 

considered: 1.0, 1.5 and 2.0 L/min. 

The ablations were conducted using a Blazer II 7Fr/4 mm ablation catheter (Boston 

Scientific, Natiok, MA, USA).  A methacrylate scaffold was used in order to accurately 
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locate the axis of the catheter on the symmetry axis of the phantom, establishing a total 

distance of 4.5 mm between the point of RF application (i.e. the electrode tip) and the 

tissue temperature measurement point (Tt). The scaffold allowed the ablation electrode 

to apply constant pressure on the agar, ensuring good reproducibility throughout the 

experiments. Two values of pressure were considered: 0 (zero pressure) and 20 grams, 

so that six experimental groups were considered (3 flow values × 2 pressure values). An 

ablation generator EPT−1000XP (EP Technologies, Boston, MA, USA) was utilized to 

deliver unmodulated 500 kHz sinusoidal current between the ablation electrode and a 

large metallic plate (20×20 cm) located on the bottom of the bath. The ablations were 

conducted by programming a constant temperature of 55ºC at the electrode tip (Te), 

simultaneously limiting the output power to 50 W. The duration of the ablations was 

120 s in all the experiments. Twenty ablations were conducted for each group (i.e. 120 

ablations in all). The signals provided from the thermocouple (Tt) and from RF 

generator (Pe, Ze and Te) were sent to a PowerLab 8sp data acquisition system 

(ADInstruments, Colorado Springs, CC, USA), sampled to 100 Hz and digitalized with 

16−bits resolution for subsequent analysis. 

 

Analytical methods 

Proposed ARX model 

The initial hypothesis of this work was based on the assumption that tissue 

temperature rise in RFCA can be adequately predicted with a linear dynamic model. I.e. 

the tissue temperature can be predicted by a linear combination of previous 

measurements of tissue temperature, electrode temperature, ablation power and 

recorded impedance. This model can be expressed as follows: 
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where Tt represents the present tissue temperature at evenly spaced instants in time (∆t), 

Te corresponds to the electrode temperature, Pe delivered power, and Ze measured 

impedance, again at evenly spaced instants in time. e corresponds to a white noise 

signal uncorrelated to any of the above variables, whereas k = 0, 1, 2… The choice of a 

linear model to predict tissue temperature, rather than other more complex (e.g. a 

non−linear) model, is a reasonable hypothesis by taking into account previous results 

obtained from ex vivo RFCA experiments in which a linear model was found between 

Te and Pe [13]. 

For the proposed model to be useful for prediction, not only have the values of the 

different parameters to be calculated (a1 … an, b1 … bm, c1 … co, d1 … dp), but also an 

estimation must be made of the number of parameters, i.e. n, m, o and p. The total 

number of parameters of each model is Ψ = n + m + o + p. However, different 

combinations can provide the same value of Ψ. These combinations are  known 

collectively as “model structure”. It can be shown that m, o and p are always smaller or 

equal to n for physically consistent models. The integer value n is also known as the 

order of the model. 

The proposed model corresponds to the widely known Autoregressive Model with 

exogenous input (ARX). This model is a particular case of the Autoregressive Moving 

Average Model with exogenous input (ARMAX). The values of the different constants 

are obtained from a least squares fit of experimental data. However, the order of the 

model and the integer values m, o and p have to be fixed. A careful choice of the 
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aforementioned parameters is paramount for the validity of the model, as small n, m, o 

and p values will yield high prediction errors, whereas too large values of these 

parameters will lead to unrealistic small errors and poor extrapolation performance due 

to overparametrization. 

 

Parameter identification 

In the most general case, the model parameters (a1,a2,…,an; b1,b2,…,bm; c1,c2,…,co, 

d1, d2,…dp) are calculated using non-linear optimization techniques aiming at 

minimizing the error between estimated (T ) and measured (Tt̂ t), tissue temperature. The 

procedure carried out to calculate the model parameters can be explained briefly as 

follows. For each instant in time, the difference between actual and estimated tissue 

temperature is obtained: 

( ) ( ) ( )tkTtkTtk tt ∆−∆=∆ ˆε  
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Then, the model parameters are estimated by minimizing the cost function: 
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where N is the number of data points to be considered, which may correspond to 

different samples (see later for details). 

The cost function can be minimized analytically considering: 
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In the most general case, the cost function is minimized using optimization techniques, 

such as the Newton−Raphson method. 

 

Influence of sampling frequency and decimation 

Initial parameter estimations were carried out from signals sampled at 100 Hz. 

However, the results obtained were not entirely satisfactory because: 

(1) The sampling frequency was far too high for the evolution of the tissue 

temperature. Tissue temperature usually reaches an almost constant value after 120 s, so 

consecutive measurements at 100 Hz show little difference, leading to a model very 

sensitive to measurement noise and calculation errors due to truncation. 

(2) The number of calculations required for cost function optimization greatly 

increases with the length of the data samples used for parameter identification. With 100 

Hz and 120 s samples, a total of 12,000 data points are considered for each ablation 

experiment. As a minimum of 10 ablation experiments are simultaneously used for 

parameter identification, it is clear that the number of required calculations vastly 

increases with sampling frequency, without any clear advantage in terms of the 

accuracy of the prediction model obtained. 

To avoid these problems, the measured signals were downsampled (decimated) by 

factors of 10, 20, 50 and 100, obtaining sampling intervals (∆t) of 0.1, 0.2, 0.5 and 1 s. 

The decimation was always performed after the corresponding anti-aliasing filtering of 

all the downsampled signals. The use of longer sampling intervals served the purpose of 

solving the numerical, computational and noise problems. On the other hand, the 

proposed method provides tissue temperature estimates for t=k∆t from measurements at 
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t=(k−1)∆t, hence successive predictions will be calculated at ∆t increments. Therefore, 

the use of larger sampling intervals implies larger prediction intervals. 

 

Estimation of the number of parameters and construction of local models 

The values of the different parameters were obtained from a least squares fit of 

experimental data [Equations (2) and (3)]. However, the number of parameters to be 

used for the least squares fit (i.e. Ψ = m+n+o+p) had to be fixed. A small number of 

parameters will yield high prediction errors whereas too many parameters will lead to 

unrealistic small errors and poor extrapolation performance due to overparametrization. 

It is therefore necessary to ascertain the influence of sampling time and model 

complexity, with the goal of finding the simplest model (with the fewest possible 

number of parameters) which could adequately predict the behavior of the tissue 

temperature. 

The first step was to build local models using only data from each experimental 

group. I.e., half of the experiments (60 ablations including 10 from each group) were 

chosen randomly for identification, whereas the other half were used for validation 

purposes. In each case, five sampling intervals were considered: 0.01, 0.1, 0.2, 0.5 and 

1 s. In order to determine the influence of the number of parameters, n was varied from 

1 to 5 and each of m, o and p varied from 0 to n. Consequently, more than 6,000 

different models were calculated for each group of 20 ablations, which makes an overall 

total of more than 60,000 different models. Each of these models was validated against 

the subset of experiments in the corresponding group that was not used for parameter 

estimation.  

During the validation stage, the prediction error was calculated for each experiment i 

as: 
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The average prediction error for each model (ε ) was defined as: 

∑
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where M is the number of experiments used for the construction of the model. In the 

case of the local models, M=10 since ten experiments were used for parameter 

validation. All the models with the same number of parameters (Ψ) were ordered by 

their average prediction error value. The minimum average prediction error of each 

group was considered to be the best average prediction error ( minε ) and this value was 

distinctive for each value of Ψ. 

 

Construction of a global model 

The procedure described in the previous section was also applied to determine 

whether a single model can adequately predict tissue temperature without explicit 

information of electrode pressure and liquid flow, i.e. by grouping together samples 

from the six experimental sets. In this case all the ablations (120 experiments) were 

grouped, after which 60 experiments were chosen randomly to be used for 

identification, whereas the other half were used for validation purposes. In this case 

M=60 in Equation (5). Once more, all the models with the same Ω (number of 

parameters) were ordered by the average prediction error, and of these the model with 

the minimum value was considered (i.e. the value of minε was determined). 

Finally, in order to asses the potential a single global model, we searched for the 

optimum model by using the following criterion: 1) models with high minε were 

discarded; 2) the smallest values were chosen from models with similar minε , and 3) of 
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these, the model with the fewest number of parameters (Ω) was selected. 

  

Information content of the measured magnitudes 

As previously stated, the developed models consider the contribution of Pe, Ze and Te 

to estimate temperature rise (T ) . However, whereas all three quantities are known to 

influence or be affected by tissue temperature, they do not provide the same amount of 

information when estimating tissue temperature. In order to ascertain the contribution of 

each measurement to the overall estimate, the contribution factor for each measurement 

was calculated, so the overall estimate can be expressed as: 

t̂

( ) ( ) ( )eeet ZCPCTCT ++=ˆ        (6) 

where C(Te), C(Pe) and C(Ze) are the contribution factors of each of the measured 

magnitudes. 

 

Results 

Local models and estimation accuracy 

First, the effect of changing the sampling intervals was assessed. The values of 0.01, 

0.1, 0.2, 0.5 and 1 s were considered, and corresponded to the cases of non−decimated, 

and decimated by factors of 10, 20, 50 and 100, respectively. The decimated sampling 

interval of 1 s was chosen for two reasons: 1) smaller prediction error and 2) reduced 

parameter calculation time.  

Figure 3 shows the best average prediction error ( minε ) as a function of the number 

of parameters (Ψ) for each experimental group (i.e. for flow rates of 1, 1.5 and 2 L/min 

and pressure values of 0 and 20 g). For the same flow rate the obtained models clearly 

yield improved prediction when 20 g of pressure was applied to the ablation electrode. 

This result implies that the ablation experiments with higher pressures have less 
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variability and indicate that the electrode−tissue pressure is relevant for experiment 

repeatability. On the other hand, prediction errors are clearly smaller when the flow rate 

is 1.5 L/min. 

 

Global model 

The procedure described in the previous section was also applied to determine 

whether a single model can adequately predict tissue temperature without explicit data  

of electrode pressure and liquid flow, i.e. by grouping together samples from the six 

experimental groups. Figure 4 shows the best average prediction error ( minε ) as a 

function of the number of parameters to be identified. As the number of free parameters 

was increased, minε decreased up to a point where a higher number of parameters did not 

lead to lower prediction errors. Based on this result, the model with 11 parameters and 

the smallest prediction error was chosen. Table 1 shows the parameters of Equation (1) 

for this model. 

The minε for the global model is higher than that of the models for the group of 1.5 

L/min, however, its value is in line with the minε  obtained in the local models for 2 

L/min and definitively better than the ones obtained at 1 L/min. The reason could be a 

higher variability of the experiments with 1 L/min being compensated by experiments 

with higher liquid flows. 

Figure 5A shows the actual and predicted temperature increase for a validation 

experiment (i.e. an experiment not used for model estimation). The graph shows a 

temperature increase over 37.5ºC. This particular validation experiment had the highest 

accuracy of tissue temperature estimation, with estimation errors ( iε ) smaller than 

0.7ºC during the whole ablation process. Figure 6 shows the cumulative probability of 

the average prediction error for the selected model. There was a 60% probability of 
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achieving average errors better than 5ºC. Out of the 60 ablations used for validation, 

four (6.6%) showed average prediction errors larger than 15ºC, which can be considered 

abnormal. One of the abnormal experiments is shown in Fig. 5B. The actual tissue 

temperature rose only about 14ºC, which could have been caused by a slight 

displacement of the ablation electrode. 

 

Information content of the measured magnitudes 

Regarding the assessment of the contribution of each measurement (Pe, Ze and Te) to 

the overall estimate, Figure 7 shows the typical evolution of contribution factors (C(Te), 

C(Pe) and C(Ze)) during the ablation process shown in Fig. 5A. The contribution of 

impedance measurement to the overall estimate is clearly around 1ºC, and although this 

contribution helps to improve overall accuracy, most of the estimated tissue 

temperatures are calculated from information provided by the electrode temperature and 

ablation power. This behavior was observed in all the prediction experiments. 

Moreover, C(Pe) was always higher than C(Te) at the early stages of ablation. However, 

the crossing points between C(Te) and C(Pe) ranged from 30 to 120 s.  

 

Discussion 

Our attention was focused on estimating tissue temperature during RFCA for two 

clinical reasons: 1) To avoid excessive temperatures (above 80ºC) and hence thermal 

injury to adjacent tissues, and 2) To avoid the lack of thermal lesion (temperatures 

lower than 50ºC). In fact, the information on estimated tissue temperature could be very 

useful as an input parameter in the closed-loop control that modulates RF power during 

constant−temperature RFCA [14]. Specifically, this feasibility study presents the proof-

of-concept development of a black-box model to predict tissue temperature for the RF 
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cardiac ablation process from measurements of electrode temperature, ablation power 

and impedance. A methodology has been presented to calculate and select a suitable 

linear model. The selected model provided a reasonably accurate estimate of tissue 

temperature, although substantial errors were observed in some experiments (e.g. those 

in which the ablation electrode had been displaced). 

Regarding the contribution of each variable to the estimation, the presented results 

show that in the early stages of ablation, the power contribution factor C(Pe) was always 

higher than that of electrode temperature C(Te), whereas later in the ablation process 

C(Pe) gradually decreased while C(Te) increased. The behaviour of C(Pe) could be 

explained by the constant−temperature protocol employed in this study, which initially 

augments the applied voltage until reaching the target temperature in the electrode and 

then slowly reduces it to balance power losses (due to blood flow and thermal 

conduction towards deeper tissue) to maintain the target temperature. Once the target 

temperature is approximately constant and there are no changes either in external 

conditions (blood flow, pressure, etc.) or applied voltage, the relation between target 

and tissue temperature is only dependent on thermal conductivity. This could be the 

explanation for the increase in C(Te). 

It was also observed that the contribution of the impedance measurement to the 

overall estimate is small (around 1ºC), which suggests(at least in agar phantoms) that a 

reasonable estimate can be obtained without impedance measurement, unlike the 

procedure employed in intraoperative bipolar RF cardiac ablation to control lesion 

transmurality [15]. In this respect, our results are in close agreement with the model 

proposed by Mattingly et al [8] to predict tissue temperature in hyperthermia, which 

considered only the temperature and applied power variables.  

Although we considered some variability by using three flow rate and two pressure 
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values (which correspond to two electrode-tissue contact values, i.e. insertion depth), 

the application of the proposed method in clinical practice should allow for a high 

degree of variability. In this respect, and although we have focused on prediction 

models not defined a priori and completely data−driven, future work could be 

conducted to include physical information in the parameters, so that the parameters of 

the model are not completely data-driven. This approach could improve prediction 

accuracy, as we consider that the proposed technique could be improved by 

incorporating additional information from other variables. For instance, the application 

of a low power RF pulse prior to RF ablation has been suggested as a method to 

determine and monitor efficiency of heating during ablation [16]. Since this efficiency 

is closely related to the cooling effect of the blood on the electrode and tissue surface, 

this pre-ablation measurement could provide information on flow rate, and hence reduce 

the variability in T  associated with this external variable. Likewise, we only used the 

impedance progress measured at 500 kHz in the study to estimate tissue temperature. 

Measuring at lower frequencies (5−50 kHz) could therefore be considered since they 

have been shown to have a close correlation with lesion size [5] and heating efficiency 

[17]. On the other hand, the proposed technique could be improved to cope with 

unusual situations in which substantial prediction errors were observed, or at least, 

provide some information on the validity of the current estimate. This is especially 

relevant if the proposed models are to be used for in vivo ablation processes, although 

our models were developed using agar phantoms so that the effect of physiologic 

variability was not taken into account. This methodology could also be applied to other 

RF ablation techniques in which there is even less variability in some external factors. 

For instance, in RF hepatic ablation to destroy tumors, a needle electrode is inserted into 

the liver totally surrounded by tissue, hence controlling the quality of contact between 

t̂
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electrode and tissue. 

It is also important to point out that we focused on the prediction of tissue 

temperature at a depth of 4.5 mm. Although future experiments could be conducted at 

other depths, the clinical value of an accurate estimation of tissue temperature at ≈5 mm 

is without doubt very important. 

 

Conclusions 

The results from this feasibility study suggest that: 

1) A suitable linear model can be developed to predict tissue temperature during 

RF cardiac ablation by using the variables of applied power, impedance between 

active and dispersive electrodes, and electrode temperature. 

2) The best model provides a reasonably accurate estimate of tissue temperature (a 

60% probability was found of achieving average errors better than 5ºC). 

3) Substantial errors larger than 15ºC were found in 6.6% of cases associated with 

abnormal experiments (e.g. those showing displacement of the ablation 

electrode). 

4) The contribution of impedance measurement to the overall estimate is small 

(around 1ºC). 
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Table 1. Parameters [following Equation (1)] of the global model chosen. The number 

of parameters (Ψ = n + m + o + p) was 11. 

Related variable  

Estimated tissue 

temperature (T ) t̂

Electrode temperature 

(Te) 

Power 

(Pe) 

Impedance 

(Ze) 

a1 = 2.82 

a2 = − 3.311 

a3 = 2.467 

a4 = − 1.312 

a5 = 0.3358 

b1 = 0.001847 

b2 = − 0.001377 

c1 = 0.002383 

c2 = − 0.002128 

d1 = − 0.001326 

d2 = 0.001257 

n = 5 m = 2 o = 2 p = 2 
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Figure 1  A: Diagram of the physical situation during RF catheter cardiac ablation, 

which is conducted by constant−temperature, i.e. RF generator adapts the 

RF power (Pe) to maintain electrode temperature (Te) to a target value. 

No information about tissue temperature (Tt) can be obtained by direct 

measurement. B: The progress of these two variables (Pe and Te) during 

RF heating, along with the electrical impedance measured between the 

ablation and dispersive electrodes (Ze) could be employed to predict 

tissue temperature (T ) by means of a black−box model. t̂
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Figure 2  Schematic side view (not to scale) of experimental set-up. The agar 

phantom included a temperature sensor at a distance of 4.5 mm to 

measure tissue temperature (Tt). The ablation electrode included a 

temperature sensor at its tip to measure electrode temperature (Te). The 

phantom also included a 20×20×2.5 mm compartment placed at top 

center in the phantom, in which agar fragments of equal dimensions 

(gray rectangle) were replaced after each ablation (since the agar closest 

to the RF electrode often melted during ablation). The phantom was 

submerged in a saline bath maintained at 37ºC. A hydraulic circuit 

simulated blood flow (F) inside the heart. The effect of varying the 

pressure of the electrode on the tissue was assessed by adding a weight 

on the catheter (P). 
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Figure 3.  Best average prediction errors as a function of the number of parameters 

(Ψ = m + n + o + p) employed in the models for each experimental 

group.
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Figure 4 Best average prediction error as a function of the number of parameters 

(m + n + o + p) employed in the global model. As the number of 

parameters was increased, the average prediction error decreased until an 

increase in the number of parameters did not lead to better prediction 

errors. The model with 11 parameters (arrow) and smallest best 

prediction error was chosen. 
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Figure 5 (A) Example of progress in actual (Tt) and estimated (T ) temperature 

increase. This example corresponds to a 1.5 L/m flow and 20 g pressure 

and was the one with the highest accuracy in tissue temperature 

estimation, giving estimation errors smaller than 0.7ºC during the whole 

ablation process. (B) Example of irregular experiment where the actual 

tissue temperature rose only about 14ºC, which could have been caused 

by a slight displacement of the ablation electrode. 

t̂
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Figure 6 Average estimation error cumulative probability. Notice that there was a 

60% probability of achieving average errors better than 5ºC (circle). Out 

of the 60 ablations used for validation, four (≈6.6%) showed average 

prediction errors larger than 15ºC, which can be considered abnormal. 
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Figure 7 Typical evolution of contribution factors (C(Te), C(Pe) and C(Ze)) during 

the same ablation process shown in Fig. 4. Note that the contribution of 

impedance measurement to the overall estimate is around 1ºC. Although 

this contribution helps to improve the overall accuracy, most of the 

estimated tissue temperature is calculated from information provided by 

electrode temperature and ablation power. 


