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HighlightsIn this paper, the necessity of congestion estimation in long range IoT applications is
described. Congestion Classifier using Logistic Regression and the modified adaptive data rate

control scheme is designed. 

- For the validation of the efficiency of the data transmission, analysis on the 
transmission delay is carried out. Results show that the proposed method 
outperforms state of the art methods.  

- In this way, the proposal improves transmission efficiency in aspect of the 
transmission delay in wireless environment where congestion occurs. 

Our proposed method predicts congestion status by learning and determines whether a node 
drops data rate or not. Thus, it leads to avoiding unnecessary change of data rate.  

Through analysis on transmission delay, the proposed scheme has shown that it is the proper 
data rate control method for IoT networking in congestion environment.  

Abstract 

Internet of Things (IoT) technologies can provide various intelligent services by collecting information 
from objects. To collect information, Wireless Sensor Networks (WSNs) are exploited. The Low Power 
Wide Area Network (LPWAN), one type of WSN, has been designed for long-range IoT services. It 
consumes low power and uses a low data rate for data transmission. The LPWAN includes several 
communication standards, and Long Range Wide Area Network (LoRaWAN) is the representative 
standard of the LPWAN. LoRaWAN provides several data rates for transmission and enables adaptive 
data rate control in order to maintain network connectivity. In the LoRaWAN, the wireless condition is 
considered by the reception status of the acknowledgement (ACK) message, and adaptive data rate 



control is performed according to the wireless condition. Because the judgment of the wireless condition 
by the reception status of ACK messages does not reflect congestion, adaptive data rate control can lead 
to inefficiency in data transmission. For efficient data transmission in long-range IoT services, this paper 
proposes a congestion classifier using logistic regression and modified adaptive data rate control. The 
proposed scheme controls the data rate according to the congestion estimation. Through extensive 
analysis, we show the proposed scheme’s efficiency in data transmission. 

Keywords: LPWAN; ; ; ; , IoT, adaptive data rate control, congestion identification, data transmission 

1. Introduction

Internet of Things (IoT) has become an important computing paradigm. It provides network connectivity 
among objects, small embedded systems that include sensing, computing, and networking capabilities. 
The objects collect sensing information and deliver it to a network cloud. A network server in the cloud 
receives and analyzes the objects’ information. Based on the analyzed information, an application server 
can provide new intelligent services as IoT services. Examples of IoT services include smart home, smart 
transportation, smart agriculture, smart factory, etc. The IoT services, are called as Cyber Physical 
Systems (CPS), connect the collected information from the objects in the physical world to perform 
decision making in the computing world. Because IoT services depend on collecting information from 
objects, effective information gathering is important. Thus, Wireless Sensor Network (WSN) 
technologies are exploited to collect information from objects in IoT [1-7]. Figure 1 shows the IoT 
network architecture.  

Conventional WSNs have dealt with the access network for IoT services. The WSNs, which are 
composed of sensors and actuators as objects, have been developed according to the point of view in 
personal area networks. They collect information from objects using short-range communication 
technology [8-10]. Thus, the necessity of long-range communication technology in WSNs has appeared 
for various IoT services in wide areas, and Low Power Wide Area Network (LPWAN) technologies have 
emerged. LPWAN IoT devices consume low transmission power and use a low data rate. In addition, 
they have a communication distance of several kilometers. The LPWAN is considered a wide area IoT 
sensor network [11-17]. Among the LPWAN technologies, the Long Range Wide Area Network 
(LoRaWAN) is the representative standard, and it is widely exploited in various areas.  

Although the LoRaWAN uses a low data rate, it provides adaptive data rate control in order to maintain 
network connectivity. The RF module of the LoRaWAN supports a data rate of several steps. Adaptive 
data rate control is related to the modulation coding scheme of the RF module. That is, the modulation 
scheme or coding rate of the RF module changes according to the data rate step. In general, a lower data 
rate has a longer transmission distance. Thus, when there is a connectivity problem, the LoRaWAN 
chooses the lower data rate and tries to reconnect. This is an important behavior in long-range IoT 
services, because data is transmitted across long distances with low transmission power, and frequent 
connectivity failures can occur during data delivery. The existing LoRaWAN scheme judges the status of 
the wireless connection through the reception status of the acknowledgement (ACK) message [18]. 
Because this does not reflect network congestion, it can lead to inefficiency in data transmission. If the 
cause of the reception failure of the ACK message is the poor condition of the wireless link, dropping the 
data rate can effectively extend network coverage and maintain the wireless link. However, if the cause is 
network congestion, dropping the data rate can reduce transmission efficiency and lead to long 
transmission delays.  

In an LPWAN, a network constructs a star topology because of the long transmission range. Numerous 
IoT devices are deployed to provide services. Thus, congestion conditions can occur frequently. Because 



congestion is not a connectivity problem, lowering the data rate by changing the modulation scheme is 
not the appropriate choice. Therefore, in this paper, the proposed method tries to avoid inappropriate data 
rate control through learning by logistic regression. The proposed method exploits the data rate, received 
signal strength, and number of connections at a gateway as data attributes for learning. Using the 
estimation results of the reason for the reception failure of the ACK message, the proposed method 
performs adaptive data rate control. With the proposed method, long-range IoT services can provide 
transmission efficiency in IoT sensor networks. 

As mentioned earlier, data rate control is an important feature to adjust communication coverage. The 
current LoRaWAN depends on the reception of ACK messages to control the data rate. This causes an 
unexpected result: that is, data rate control can provide communication efficiency in wireless conditions 
with link errors (not congestion). Therefore, the proposed method recognizes the congestion status of the 
network by learning and applies the learning result to data rate control. This improves the accuracy of the 
data rate control and the network efficiency for LoRaWAN. 

The remainder of this paper is organized as follows. Section 2 describes the LoRaWAN and the 
existing adaptive data rate of the LoRaWAN as related work. In Section 3, learning on wireless status 
using logistic regression and the modified adaptive data rate control method are discussed. In Section 4, a 
performance analysis is carried out by comparing the proposed scheme to the existing LoRa scheme. 
Finally, Section 5 concludes the paper.  

2.  Related work 

WSNs are necessary to implement IoT services. They connect objects and collect information from the 
objects. Existing WSNs focus on a personal operating space that extends up to 10m in all directions 
[19,20]. That is, their service area is very small. Thus, for various IoT services, a long-range sensor 
network technology (i.e., the LPWAN) is required. Because the LPWAN enables the collection of data in 
wide areas, wide area applications (e.g., smart city, smart agriculture, smart environmental monitoring, 
etc.) can be served easily.  

In the LPWAN, there are several de facto standards: LoRaWAN, SigFox, and Weightless [12-17]. 
They have very similar characteristics and specifications, and they deal with low-data rate, low-cost, and 
low-power communication while focusing on long-range communication. Among them, the LoRaWAN 
is the representative standard. The LoRaWAN is composed of end-devices as objects, a gateway, and a 
network server. As shown in Figure 2, the end-devices include the slave function and the network server 
includes the master function. Thus, the network server collects the information of the end-devices and 
manages the end-devices. The gateway relays data from the end-devices to the network server. 

The LoRaWAN employs an AES 128-bit key mechanism for security. LoRaWAN devices have a 128-
bit application key, which is provided by an application provider. They derive a network session key and 
an application session key using the application key. When a device receives a join-accept message 
during the network join procedure, it receives a random code from the network server. Using the random 
code and the application key, the device derives the session keys. Then, MAC (i.e., Medium Access 
Control) data messages are encrypted by the network session key and application data messages are 
encrypted by the application session key. Each device has a unique session key and provides security by 
delivering the encrypted messages using the keys. 

The LoRaWAN supports adaptive data rate control to maximize network capacity. When an unreliable 
wireless link exists, adaptive data rate control is used to maintain the wireless link. For adaptive data rate 
control, an end-device periodically validates that it can receive an ACK message from a gateway. The 



end-device has a counter (ADR_ACK_CNT), and it adds one each time it transmits uplink data. The value 
of the counter reaches the threshold without any reception of ACK messages, and then it sets the ACK 
delay time (ADR_ACK_DELAY) to adjust the data rate and waits for the ACK messages. If no reply is 
received within the time, the end-device tries to regain connectivity by switching to the next lower data 
rate. That is, the end-device controls the data rate through the reception status of the ACK messages [18]. 
Figure 3 represents the adaptive data rate of the LoRaWAN. 

As mentioned earlier, the existing method of data rate control does not reflect network congestion. The 
data generated from objects is not stream data, so the end-device tries to change the RF modulation 
scheme to adjust the data rate. Thus, expanding connectivity by changing the data rate (i.e., RF 
modulation scheme) leads to inefficiency in data transmission. The proposed method tries to avoid this 
problem by estimating the congestion status of the wireless link before changing the data rate.  

3.  The proposed adaptive data rate control method 

The proposed method is composed of the congestion classifier and the modified data rate controller. The 
congestion classifier uses the following statistical data of a network: throughput (x1), received signal 
strength (x2), and number of connections at a gateway (x3). It learns through logistic regression. Using the 
results, it determines the congestion status (Y). Then, adaptive data rate control (DR) is performed 
according to the congestion status. Figure 3 shows the system architecture for the proposed method. 

3.1. Congestion classifier 

The congestion classifier estimates network congestion through supervised learning. Supervised learning 
is widely used for status estimation in wireless networks. Status estimation is applied to make network 
algorithms for efficient data transmission [21-24]. The proposed method employs logistic regression to 
estimate the congestion status. The logistic regression classifies binomial states using a sigmoid function. 
The congestion status can be represented as a binomial distribution:  

{0,1}Y  .                                  (1)  

If Y has 1, the network experiences congestion. Otherwise, it does not. 

Hypothesis (h(X)) for the status estimation is described as a sigmoid function, which is a logistic 
function that ranges between 0 and 1. The hypothesis can easily divide the binomial states using 
mathematics.  
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In the sigmoid function, the input parameter (z) is represented to a linear function of the data attributes (x) 
and weights (θ) as follows:  
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As shown in Figure 4, because the proposed method exploits three attributes (i.e., data rate, received 
signal strength, and number of activated connections at a gateway) as statistical data X, n in equation (2) 
is 3.  



Given the logistic regression model with θ, the probability of network congestion is  

( 1 | ; ) ( )P Y X h X  .                              (4) 

The probability that network congestion does not occur is  

( 0 | ; ) 1 ( )P Y X h X   .                            (5) 

Therefore, the probability of the congestion status becomes  

1( | ; ) ( ( )) (1 ( )) ,Y YP Y X h X h X                            (6) 

where y represents the congestion status with 1 or 0.  

If m training examples for learning about the congestion are generated independently, the probability of 
equation (6) can change to a likelihood function on θ.  
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The likelihood function can also represent a log likelihood function as follows:  
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Then, the congestion classifier judges the congestion by θ to maximize the log likelihood function. 
Finding the appropriate θ is the learning performed by the congestion classifier. To find θ to maximize 
the log likelihood function, the gradient ascent optimization algorithm is exploited. The gradient ascent 
algorithm for the congestion classifier is represented as follows:  

: ( )l      .                                (8) 

θ is updated according to the gradient of the log likelihood function. α is the unit size for the gradient. A 
derivative of the sigmoid function is as follows:  

'( ) ( )(1 ( ))g z g z g z  .                             (9) 

Thus, the gradient of the log likelihood function at the ith training example is represented as follows: 
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Then, the updated weight θ becomes 

( ) ( ) ( ): ( ( ))i i i
j j jy h x x     .                            (11) 



By the stochastic gradient ascent algorithm, θ in the m training examples is represented as  

( ) ( ) ( )

 {
     =1   {
        : ( ( ))  ,   (for every )

    }
}

i i i
j j j

repeat
for i to m

y h x x j      .                (12) 

The weight (θj) of the jth data attribute (xj) is updated by the result (y(i)) and the prediction (h(x(i))) of the ith 
training example. Using the weights updated by learning, the hypothesis for congestion estimation 
becomes more accurate. In the next estimation, the computation result of the hypothesis is used and the 
data rate controller in Figure 4 performs different operations according to the prediction.  

In the proposed method, the congestion classifier has two types. The congestion classifier in the 
network server side collects training examples from end-devices and performs learning to obtain the best 
weights. Then, the weights are periodically updated from the network server to gateways. The gateways 
broadcast the updated weights to the end-devices, and the end-devices can judge congestion using the 
broadcasted θ. Because the network server manages end-devices, it can gather numerous training 
examples and has sufficient computing resources. Thus, the network server learns to find the best θ and 
shares the result of the learning. End-devices use the shared θ to classify the congestion status.  

3.2. Data rate controller 

The data rate controller of the proposed method aims to avoid an unnecessary change of a modulation 
scheme to drop the data rate. Because most IoT traffic consists of short messages, switching a modulation 
scheme during congestion is inappropriate. Instead of switching the modulation scheme in order to drop 
the data rate and extend network coverage, adjusting the backoff time is needed to avoid congestion. 
Therefore, the proposed data rate controller exploits the result of the congestion classifier. According to 
the result, it determines whether to switch to a lower data rate or adjust the backoff time. Figure 6 
represents the modified adaptive data rate control method for the LoRaWAN.    

DATA-RATE-CONTROL(θ) 
1.  ADR_MSG_CNT ← 0 
2.  RCV_ACK_CNT ← 0 
3.  If (isSentUplinkMsg = TRUE) 
4.      ADR_MSG_CNT ← ADR_MSG_CNT + 1 
5.  End if 
6.  If (isReceivedDownlinkAck = TRUE) 
7.      RCV_ACK_CNT ← RCV_ACK_CNT + 1 
8.  End if 
9.  If (ACR_MSG_CNT ≥ ADR_MSG_LIMIT) 
10.     congestion ← Congestion-Classifier(θ)  
11.     If (RCV_ACK_CNT = ADR_MSG_CNT)  
12.         If (congestion = FALSE)  
13.             If (READY = FALSE) 
14.                 READY ← TRUE 
15.             Else 
16.                 switch to next higher data rate (change modulation scheme) 
17.                 READY ← FALSE 



18.             End if 
19.         Else  
20.             READY ← FALSE 
21.         End if 
22.     Else if (RCV_ACK_CNT = 0) 
23.         set ADR_ACK_DELAY 
24.         wait for ACK until ADR_ACK_DELAY 
25.         If (No ACK) 
26.             If (congestion = TRUE) 
27.                 decide backoff time  
28.             Else  
29.                 switch to next lower data rate (change modulation scheme) 
30.             End if  
31.         End if 
32.     End if  
33.     reset parameters (ADR_MSG_CNT ← 0; RCV_ACK_CNT ← 0) 
34. End if 

Figure 6. Modified data rate control. 
The proposed data rate control method employs two counters: ADR_MSG_CNT and RCV_ACK_CNT. 

ADR_MSG_CNT adds one when the end-device sends an uplink message, and RCV_ACK_CNT adds one 
when the end-device receives a downlink ACK message (line 3-8). When ADR_MSG_CNT reaches 
ADR_MSG_LIMIT, the end-device checks the congestion status using Congestion-Classifier and the 
shared θ from its gateway (line 9-10). The Congestion-Classifier in the end-device performs the 
calculation of the hypothesis with the recent weight θ, and it judges the congestion status by the result of 
the calculation. 

After obtaining the congestion status, the end-device compares ADR_MSG_CNT to RCV_ACK_CNT. If 
ADR_MSG_CNT has the same value, it means all uplink messages were successfully sent. When 
congestion does not occur, if all uplink messages are successfully sent within the given time (i.e., twice 
the ADR_MSG_LIMIT), the end-device tries to switch to the next higher data rate by changing the 
modulation scheme (line 11-21). If the end-device does not receive any downlink ACK messages for the 
ADR_MSG_LIMIT, the end-device sets ADR_ACK_DELAY and waits for the downlink ACK message. 
When there is no reception of the downlink message (i.e., ACK message), the end-device checks for 
network congestion. If congestion occurs, the end-device chooses a long backoff time for random 
backoff. Otherwise, it switches to the next lower data rate to extend the network coverage (line 22-31).   

In the LoRaWAN, adaptive data rate control is performed to adjust the network coverage. The end-
devices can control the data rate and the network coverage by changing the modulation scheme of the RF 
module. The modulation scheme for a low data rate leads to long-range communication. In general, the 
end-devices switch the data rate according to the reception of the downlink ACK messages. However, 
changing the modulation scheme without considering network congestion can cause inefficient data 
transmission. Thus, in the proposed method, the congestion status is estimated by learning and it is 
applied to determine data rate control in an adaptive manner. Using the proposed method, data 
transmission can be improved in the LoRaWAN.  



4.  Performance analysis 

4.1. Network model 

For analysis, the network can be modeled by a Continuous Time Markov Chain (CTMC). It is assumed 
that the network has three states such: idle state (state 0), switching state (state 1), and switching state 
with congestion (state 2). In the idle state, the network has good conditions to transmit data over the 
LoRaWAN. However, in the switching state, the network experiences poor LoRAWAN conditions. Thus, 
LoRaWAN end-devices try to control their data rate to extend their coverage. As mentioned previously, 
the proposed scheme performs different actions in the switching state with congestion, as congestion is 
not a problem of network coverage.  

The network model is represented in Figure 7. The idle sate is changed to the switching state, the 
switching state is changed to the switching state with congestion, and the switching state with congestion 
is changed to the idle state. The state change is repeated. With an exponential arrival rate λ, the network 
enters the switching state. The switching state has μ1 as an exponential service rate. That is, the network 
stays in the switching state for 1/μ1 time and then enters the switching state with congestion. In the 
switching state with congestion, the network has μ2 as an exponential service rate and stays for 1/μ2 time. 
Because the wireless status of the network in each state is different, the end-devices of the LoRaWAN 
perform the given role according to the state. 

  The probability in CTMC can converge to a limiting value that is independent of the initial state. To 
obtain the stationary probabilities of each state in the network model, the limiting probability [25-27] is 
applied. That is, by the limiting probability, the probability of leaving state i is the same as the probability 
of entering state i. Thus, the network model in Figure 7 is represented as follows:  
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In addition, the summation of the probability of each state is as follows: 

1i
i
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Then, through equations (13) and (14), the probability of each state of the network model can be 
represented as follows:  
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The stationary probabilities of the states of the network model are obtained as follows: 
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. 

4.2. Transmission delay  

When the LoRaWAN is changed according to the network model in Figure 7, the wireless condition is 
also changed. The wireless link error is considered in the switching state (state 1) and the congestion error 
is considered in the switching state with congestion (state 2). In the switching state, the end-devices 
switch to a lower data rate. The wireless link error is assumed to be 0.03, and the congestion error is 
assumed to be 0.05. When the packet loss at link j is represented as pj, the packet delivery rate (pd) can be  

1d jp p  .                                  (17) 

Among N packets, the number of successfully transmitted packets can be calculated with the 
probability of successful transmission in the network. It is represented as follows:  
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The probability of successful transmission is obtained as as follows: 
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Through the number of successfully transmitted packets, the transmission delay can be computed. The 
proposed scheme modifies the operation of the end-device as shown in Figure 6 and the operation is 
different from the existing LoRa scheme in state 2. Thus, to compare the performance of the proposed 
scheme and the existing LoRa scheme, transmission delay in state 2 is considered. 

The proposed scheme deals with LoRaWAN class A and uses the US 902-928 MHz ISM frequency 
band. The LoRaWAN in the ISM frequency band has several RF configurations. The proposed scheme 
assumes that wireless communication exploits the 125 KHz bandwidth. Then, four data rate levels are 
used to adjust the data rate of an RF module in LoRaWAN devices: DR0, DR1, DR2, and DR3. Each 
level has data rates as shown in Table 1.  

The transmission delay in state 2 can be computed with the number of successfully transmitted packets 
and data rate during transmission. It is represented as follows:  

( ) 100 8
BO

NT T
r

  
  ,                            (20) 

where N is the number of sent packets in the end-device and Ф(N) is the number of successfully 
transmitted packets in equation (18). r is the data rate of the end-device during data transmission. TBO is 
the backoff time for Ф(N) and is adjusted in state 2 in the proposed scheme. For the calculation of the 
transmission delay, the packet size is set to 100 bytes and packet loss in congestion is assumed as 5%. In 
addition, when congestion occurs, the proposed scheme assumes that the backoff time is determined 



between 2 and 6 sec. In the congestion condition, the proposed scheme maintains the data rate, but the 
existing scheme switches to the next lower data rate. Thus, if the initial data rate level is DR3, the existing 
scheme switches to DR2. Figures 8 to 10 show the average transmission delay according to the number of 
sent packets. When the number of sent packets is 30, 40, and 50, the number of successfully transmitted 
packets at the network server becomes 28, 37, and 47, respectively. 

The average transmission delay depends on the number of sent packets. When the number of sent 
packets is increased, the transmission delay is also increased because the duration for total data traffic 
delivery is increased. The initial data rate of the RF module in the end-devices also affects the 
transmission delay. The existing scheme on adaptive data rate control drops the data rate to extend 
network coverage. Thus, the duration of the existing scheme grows with a low data rate, and it leads to a 
long transmission delay. In an IoT network, a lot of data traffic is generated and delivered to a network. 
For robust network connectivity, adaptive data rate control by adjusting the RF modulation configuration 
is necessary, but as mentioned earlier, congestion is not a problem for network connectivity. Thus, 
classifying the problem is required for efficient data transmission in LPWAN-based IoT networking.  

  Figure 11 shows the transmission delay according to the number of received packets at the network 
server. In Figure 11, the network server receives 150 packets and the end-device changes the data rate 
after every 50 packets. The initial data rate is set to DR3, and it is dropped sequentially every 50 packets. 
As shown in the figure, the proposed scheme shows better delay performance than the existing scheme. 
The existing LoRaWAN depends on the reception of ACK messages to control the data rate regardless of 
network congestion. It drops the data rate by changing the RF modulation in the congestion condition. 
Thus, the low data rate causes a long transmission delay when congestion occurs. However, the proposed 
scheme maintains the data rate and increases the backoff time when congestion occurs. It learns the 
network status, such as congestion using network parameters (e.g., data rate, received signal strength, 
number of connections at the gateway), and the learning results are applied to data rate control. Thus, 
although the proposed scheme has a longer backoff time than the existing scheme, it shows less 
transmission delay and can provide efficient data transmission in a congestion environment.   

5.  Conclusion 

Recently, LPWAN researchers have focused on intelligent services in wide areas such as smart city, 
smart factory, smart agriculture, etc. The LPWAN has become an important communication technology 
to implement the IoT networking and CPS of wide areas services. The LoRaWAN, the representative 
communication technology of the LPWAN, controls the data rate of an end-device to maintain robust 
network connectivity. It determines the network condition according to the reception status of ACK 
messages. If the ACK message reception fails, the LoRaWAN decreases the data rate. This may lead to 
inefficiency in data transmission, because network congestion is not a network connectivity problem. For 
efficient data transmission in the LoRaWAN, it is required to control the data rate accurately considering 
the network status. That is, when a connectivity problem occurs, the data rate should be adjusted.   

Therefore, the proposed method tries to determine the network status, such as congestion. It learns 
using network parameters, such as transmission rate, received signal strength, and number of data 
sessions. For learning, the proposed method employs a logistic regression algorithm. When congestion is 
predicted, the proposed scheme adjusts the backoff time instead of dropping the data rate. The learning 
mechanism used to classify the congestion requires extensive computing resources. In the proposed 
scheme, because every network data packet is transmitted to a network server, the network server 
performs learning. The result of the learning is delivered to the end-devices and is used to predict 
congestion. The proposed scheme shows better performance by reflecting congestion in adaptive data rate 
control, but a large portion of the computing for learning is operated in a centralized machine. Therefore, 
the distributed learning of end-devices needs to be studied in future work.  
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Figure 1. IoT network architecture. 
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Figure 2. LoRaWAN network architecture [18]. 
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Figure 3. Adaptive data rate control of LoRaWAN. 
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Figure 4. System architecture of the proposed method. 
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Figure 5. Learning system. 
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Figure 7. The network model. 
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Figure 8. Initial data rate level is DR3. 
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Figure 9. Initial data rate level is DR2. 
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Figure 10. Initial data rate level is DR1. 
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Figure 11. Transmission delay according to the number of received packets. 

Table 1. Data rate configurations in LoRaWAN. 

Data rate level Bandwidth Data rate (bps) 

DR0 125 KHz 980 

DR1 125 KHz 1760 

DR2 125 KHz 3125 

DR3 125 KHz 5470 


