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SUMMARY  

During virus infection, the interaction of specific viral components with host factors 

elicits the transcriptional reprogramming of diverse cellular pathways. Alfalfa mosaic 

virus (AMV) establishes a compatible interaction in both tobacco and Arabidopsis 

hosts. Here, we show that the coat protein (CP) of AMV directly interacted with the 

transcription factor (TF) ILR3 of both plant species. ILR3 belongs to the basic helix–

loop–helix (bHLH) family of TFs that have been proposed to participate in diverse 

metabolic pathways. ILR3 has previously shown to regulate NEET in Arabidopsis, a 

protein that plays a critical role in plant development, senescence, iron metabolism and 

reactive oxygen species (ROS) homeostasis. Our findings indicate that AMV CP-ILR3 

interaction caused the relocation of a fraction of this TF from the nucleus to the 

nucleolus. The characterization of an Arabidopsis loss-of function ILR3 mutant (ilr3.2 

plants) showed that this mutant has increased ROS, PR1 mRNAs, and SA and JA 

contents which suggest the implication of ILR3 in the regulation of the plant defence 

responses. In AMV- infected wild type (wt) plants, the expression of NEET   was 

significantly reduced whereas in ilr3.2 mutant plants was slightly induced.  In addition, 

SA and JA accumulation was induced in Arabidopsis wt-infected plants whereas in 

ilr3.2 plants AMV infection increased JA more than ten times and SA was significantly 

reduced indicating an antagonist crosstalk effect.  Remarkably, the accumulation levels 

of the viral RNAs were significantly reduced in the ilr3.2 mutants although the virus 

was still able to systemically invade the plant. Our results indicate that the interactions 

of the AMV CP with the TF ILR3 downregulates a host factor, NEET, which in turn, 

would lead to activation of plant hormone responses to get an hormonal equilibrium 

state at which infection is maintained at a level that does not affect plant viability.  
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INTRODUCTION 

Compatible plant-virus interactions result in systemic infections that trigger 

many changes in host gene expression and metabolism which can cause negative impact 

on normal plant development (Maule et al., 2000; Whitham et al., 2003, 2006; Pallas 

and Garcia, 2011; Rodrigo et al., 2012; Palukaitis et al., 2013). Gene expression 

changes that occur during virus infection can be elicited by the general accumulation of 

viral factors (Aparicio et al., 2005) but also by the interaction and/or interference of 

specific viral components with host factors (Culver and Padmanabhan, 2007; Mandadi 

and Scholthof, 2013; Garcia and Pallas, 2015). Among them, interactions between viral 

proteins and transcription factors (TF) can result in the transcriptional reprogramming 

of different cellular pathways, which makes their identification most interesting. In this 

way, interactions between diverse TFs of the NAC domain family and viral proteins 

have been described which, depending on the virus, can either enhance or inhibit virus 

accumulation (Olsen et al., 2005: Selth et al., 2005; Puranik et al., 2012; Donze et al., 

2014). Remarkably, it has been recently demonstrated that a viral protein acts as a plant 

TF by up-regulating the regulator of cell proliferation upp-L, in turn, a TF of the basic 

helix-loop-helix family, to cause severe leaf malformation (Lukhovitskaya et al., 2013). 

Diverse studies have pointed out the implication of TFs of the WRKY family in the 

regulation of defence responses signalling (Kim et al., 2008; Peng et al., 2012). 

Basic helix–loop–helix (bHLH) TFs comprise a family of transcriptional 

regulators that bind as homo- and heterodimers to specific DNA target sites, and are 

implicated in diverse pathways of plant metabolism and development (Heim et al., 

2003; Toledo-Ortiz et al., 2003). In Arabidopsis, 147 bHLH genes have been identified 

and grouped into 21 families (Toledo-Ortiz et al., 2003). Arabidopsis bHLH105/ILR3 

(referred to thereafter as AtILR3) belongs to the subgroup IVc (Toledo-Ortiz et al., 
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2003; Heim et al., 2003), whose members are characterised by presenting a leucine 

zipper domain following the bHLH domain. AtILR3 is expressed in all tissues through 

the entire plant developmental stages. Several findings suggest that AtILR3, in 

combination with other regulatory proteins, might direct or indirectly participate in 

diverse metabolic pathways as iron and ROS homeostasis, auxin responsiveness and 

stress responses (Rampey et al., 2006; Long et al., 2010; Nechushtai et al., 2012). Thus, 

AtILR3 has been found to directly interact with Arabidopsis PYE (another bHLH TF) 

and BRUTUS (a putative E3 ligase protein). These two proteins are implicated in Fe 

metabolism by regulating the expression of genes involved in iron homeostasis (Long et 

al., 2010). Interestingly, a study using gain and loss-of-function Arabidopsis ilr3 

mutants (Rampey et al., 2006)  indicated that this TF could regulate the expression of 

one gene that codes for a protein containing an iron-binding zinc finger CDGSH type 

domain recently identified as the plant version of NEET proteins (AtNEET) 

(Nechushtai et al., 2012) and three significantly homologous genes to Arabidospis 

vacuolar iron transporter 1 (Kim et al., 2006), denominated vacuolar iron transporter 

homologs (VITh) (Rampey et al., 2006). NEET proteins are involved in assisting the 

Fe-S cluster transfer between proteins (Paddock et al., 2007) and AtNEET has been 

found to play a critical role in plant development, senescence, iron metabolism and 

reactive oxygen species (ROS) homeostasis (Nechushtai et al., 2012).  

Among plant viral factors, CPs are multifunctional proteins that play major roles 

in most virus infection steps, including the establishment of interactions with host 

factors (Callaway et al., 2001; Ni and Chen-Kao, 2013; Weber and Bujarski, 2015). In 

this sense, the CP of alfalfa mosaic virus (AMV) is involved in regulating the 

replication and translation of viral RNAs, cell-to-cell and systemic movement of the 

virus and virion formation (Sanchez-Navarro et al., 2006; reviewed in Bol, 2005). AMV 
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is the only member of the genus Alfamovirus in the family Bromoviridae which, with 

the ilarvius genus, requires the presence of the CP in inoculum to be infectious (see 

Pallas et al., 2013 for a recent review). Its genome consists in three single-stranded 

RNAs of plus sense polarity. RNAs 1 and 2 encode the replicase subunits P1 and P2, 

respectively, whereas the RNA 3 encodes the movement protein (MP) and serves as a 

template for the synthesis of non-replicating subgenomic RNA4 (sgRNA4), which 

encodes the CP (Bol, 2005). In a previous work we identified a nucleolar localisation 

signal (NoLS) in the AMV CP and found that the cytoplasmic/nuclear-nucleolar balance 

of CP accumulation modulates viral expression (Herranz et al., 2012). Yet, it is still 

unknown whether accumulation of the CP in the nucleus/nucleolus affects general cell 

gene expression. Besides, a recent work identified several Arabidopsis proteins 

interacting with the AMV CP although the effect on the infection was only analyzed for 

a component of the chloroplast oxygen evolving complex of Photosystem II (PsbP) 

whose over-expression negatively affected to the virus accumulation (Balasubramaniam 

et al., 2014). 

In this work we report the interaction between the AMV CP and the TF ILR3 

from both Arabidopsis and N. tabacum. By comparing AMV infection in an 

Arabidopsis loss-of function ILR3 mutant (ilr3.2 plants) with wild type (wt) plants we 

were able to link the activity of this TF with the hormone-based plant defence system. A 

model is proposed by which, upon infection, AMV CP-ILR3 interaction would 

downregulate a host factor, NEET, which in turn would activate ROS and SA- and JA-

dependent signalling defence. 

 

RESULTS 

AMV CP interacts with ILR3 from Arabidopsis and N. tabacum. 
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To identify AMV CP host interacting proteins we performed yeast two hybrid 

(Y2H) screening using the CP as bait and an Arabidopsis leaf-specific cDNA library as 

a prey (Németh et al., 1998). Several clones containing almost the full-length sequence 

of the transcription factor ilr3 (at3g23210) were found to grow on interaction minimal 

synthetic selective medium (data not shown). As we were interested in using Nicotiana 

tabacum as plant host, the NCBI database was searched for Nicotiana ILR3 

homologues. We found two putative ilr3-like genes in N. tabacum that we denominated 

NtILR3-like1 and NtILR3-like2, respectively. NtILR3-like2 had a single-nucleotide 

deletion at its C-terminus causing a premature stop codon after amino acid 205, 

although either the bHLH as the following leucine zipper domains characteristic of 

subgroup IVc are conserved (Fig. S1). AtILR3 protein showed an identity of 70% with 

NtILR3-like1 and 57% with NtILR3-like2 (Fig. S1). To validate the original Y2H 

screening full length ORFs of AtILR3, a homolog from the subgroup IVc (AtbHLH115, 

at1g51070) and NtILR3-like1 were fused to the activation domain (pAD plasmid) and 

transformed into yeast cells expressing the AMV CP fused to the binding domain (pBD 

plasmid). After grown at 28ºC for 5 days on interaction selective medium we found that 

the CP specifically interacted with AtILR3 and NtILR3-like1, but not with AtbHLH115 

(Fig. 1A). Empty pBD vector or expressing the tumor protein p53 (pBD:p53) were used 

as negative interaction controls (Fig. 1A). Besides, pBD:CP-pAD interaction was 

performed to rule out CP self-activation (Fig. S2). Next, we determined the subcellular 

localization of the TFs by transiently agro-expressing the proteins fused in frame at the 

C-terminus of the red fluorescent protein (dsRed). Confocal laser-scanning microscopy 

(CLSM) demonstrated that all three TFs were exclusively localized trough the 

nucleoplasma except the nucleolus (Fig. 1B, only dsRed:NtILR3-like1 and 

dsRed:AtbHLH115 are shown). Finally, bimolecular complementation analysis (BiFC) 



 7 

was used to corroborate in planta CP-ILR3 interactions (Aparicio et al., 2006). 

Reconstituted YFP fluorescence was detected forming discrete granules exclusively in 

the nuclei of cells infiltrated with AMV CP and both ILR3 proteins (Fig. 2 CYFP:CP 

plus NYFP-AtILR3 or NYFP-NtILR3-like1) whereas no interaction was detected 

between AtbHLH115 and the CP (Fig. 2, CYFP:AtbHLH115 plus NYFP:CP).  

It has been previously shown that the interaction between viral and host proteins 

can affect to their subcellular localization (e.g. Ren et al., 2005; Uhring et al., 2004; 

Inaba et al., 2011). To analyze whether ILR3-CP interaction during the infection could 

have an effect on ILR3 subcellular location, transgenic N. tabacum plants expressing 

the proteins of AMV P1 and P2 (P12 plants, Taschner et al., 1991) were inoculated with 

RNA transcripts from a modified AMV RNA 3 clone which expresses the GFP 

permitting the infected cells to be visualised (Fig. 3A, R3GFP-CPwt construct) 

(Sanchez-Navarro et al., 2001). At 48 hours post-inoculation (hpi) these leaves were 

infiltrated with  Agrobacterium expressing AtILR3, NtILR3-like1 or AtbHLH115 fused 

to the dsRed. At 96 hpi leaves were examined by fluorescence microscopy to localize 

infection foci identified by expressing the GFP (Fig. 3B) and CLSM images were taken 

of nuclei from non-infected and infected cells (Figs.  3B, upper arrow and two lower 

arrows, respectively, and Fig 3C). In infected cells, GFP accumulates into the nucleus 

except the nucleolus whereas that a fraction of dsRed:AtILR3 and dsRed:NtILR3-like1 

accumulated into the nucleolus, differing with their localization in non-infected cells 

where all three fusion protein remained in the nucleoplasm without entering into the 

nucleolus (Fig. 3C,only dsRed:AtILR3 is presented as representative of the three TFs.). 

In contrast, dsRed:AtbHLH115 located out of the nucleolus of infected cells (Fig. 3C, 

lower row panels ). Since AMV CP accumulates into the nucleolus of infected cells 

(Herranz et al., 2012) we wondered whether the ILR3 fraction found into the nucleolus 
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would be transported to this structure as a result of its interaction with the nucleolar-

traffic CP. To corroborate this hypothesis we inoculated P12 leaves with an RNA3 

mutant which fails to accumulate the CP into the nucleolus as the CP lacks the NLoS 

(Fig. 3D R3GFP-CPNLoS) (Herranz et al., 2012) and as before, inoculated leaves were 

infiltrated with Agrobacterium expressing the TFs. Again, fluorescence microscopy was 

used to identify infection foci (Fig 3E) and CLSM images were taken of nuclei from 

infected leaves (Fig 3F). In this case, neither of the three TFs accumulated into the 

nucleolus of infected cells (Fig. 3F, only dsRed:AtILR3 is shown as representative 

image of all TFs). Finally, we established by Y2H that the CPNLoS mutant was still 

able to interact with NtILR3-like1 (Figure 1C). In summary our results indicate that the 

TFs interacting by Y2H with the CP, e.g. AtILR3 and NtILR3 but not the non-

interacting AtbHLH115, were relocated towards the nucleolus of infected cells whereas 

this targeting failed when a mutated CP lacking the NLoS was used. 

 

Loss of ILR3 activity activates plant defence responses. 

Previous transcriptomic analysis of an Arabidopsis ILR3 loss-of-function mutant 

ilr3.2 identified by Rampsey and colleagues (2006) showed altered mRNA levels of 

AtNEET suggesting that ILR3 might be direct or indirectly implicated in the 

transcription regulation of this gene. Besides, another study reported that Arabidopsis 

RNAi interference lines with reduced AtNEET mRNA presented enhanced 

accumulation of ROS suggesting that this protein is involved in ROS homeostasis 

(Nechushtai et al., 2012).   

As previously reported, RT-PCR analysis did not detect intact ILR3 mRNA in 

the homozygous ilr3.2 (Fig. 4A) (Rampsey et al., 2006). Besides, northern blot analysis 

showed that in our plant growth conditions,  AtNEET mRNA was also slightly reduced 
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in ilr3.2 mutant (Fig. 4A, NEET panel). Next, we wondered whether the reduction of 

NEET mRNA accumulation would be accompanied by deregulation of ROS levels. 

Thus, we analyzed ROS by visualizing H2O2 accumulation using DAB staining. DAB 

polymerizes in contact with H2O2 rendering a visible reddish-brown precipitate (Fryer et 

al., 2003). We found a brown precipitate in ilr3.2 leaves correlating with the relative 

decrease of AtNEET mRNA (Fig. 4B). As ROS has been implicated in plant response 

against pathogen attack, we examined whether other defence pathways could be also 

being challenged in ilr3.2 plants and found that the pathogenesis related protein 1 (PR1) 

mRNA, a hallmark of salicylic acid (SA) signalling activation  was also clearly induced 

(Fig. 4A, panel PR1). Finally, quantification of the fresh weight demonstrated that in 

our growth conditions ilr3.2 presented about a 30% reduction in weight than wt plants 

(Fig. 4C). Altogether these data showed that interfering with ILR3 function lead to 

activation of defence responses. 

 

AMV infection interferes with putative activity of ILR3 and increases SA and JA 

biosynthesis.  

An open question was whether AMV infection would induce in wt plants the 

same metabolic effects found in ilr3.2 mutant. The fact that NEET mRNA expression 

might be regulated by ILR3, led us to identify putative NEET proteins in tobacco. NCBI 

databases search identified a putative protein sequence in tobacco (acc number 

EB680812) showing an identity of 70% with AtNEET (at5g51720) being the N-

terminal part the most dissimilar domain (Fig. S1). We examined its subcellular 

localization by fusing the protein to the N-terminal of the green fluorescent protein 

(GFP) (NtNEET:GFP). Since AtNEET was previously described to accumulate in both 

chloroplast and mitochondria (Nechushtai et al., 2012) we co-infiltrated in N. 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G51720
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benthamiana leaves NbNEET:GFP and a mitochondrial marker (mt-rk CD3-991) 

(Nelson et al., 2007). CLSM showed that unlike AtNEET, the tobacco protein 

exclusively accumulated in chloroplasts (Fig. 5 arrowheads and arrows indicate 

chloroplasts and mitochondria, respectively). 

To analyze the effect of AMV infection, N. tabacum cv Xanthi and Arabidopsis 

wt and ilr3.2 plants were inoculated with AMV PV0196 isolate (DSMZ GmbH, Plant 

Virus Collection, Germany).  In tobacco this isolate induces a reduction of the plant size 

accompanied by a chlorotic pattern in inoculated and upper leaves whereas that it is 

asymptomatic in Arabidopsis. Total RNA was extracted from inoculated and upper 

systemic tobacco leaves (at 2 and 4 days post-inoculation, respectively) (dpi) and from 

inoculated Arabidopsis leaves (at 4 dpi). In tobacco, northern blot analyses showed that 

NtILR3 mRNA accumulation was similar in mock and infected plants whereas that 

NtNEET and NtPR1 mRNAs were clearly down-regulated and up-regulated, 

respectively, in both inoculated and systemically-infected leaves (Fig. 6A, compare 

lanes M and A). The same effect was found in infected Arabidopsis wt plants (Fig. 6B, 

compare in wt plants lanes M and A). However, in ilr3.2 plants AtNEET was slighty 

induced whereas that AtPR1 mRNA was reduced in infected respect to mock plants 

(Fig. 6B, compare in ilr3.2 plants lanes M and A). On the other hand, northern blot 

analysis using a digoxigenin-labelled probe to detect the AMV RNA 3 corroborated that 

the virus accumulated in the analyzed tissues (Fig. 6A and B bottom panels). After that, 

we wondered if the observed reduction of NEET in infected plants would be also 

accompanied by deregulation of ROS. DAB staining  revealed a strong brown 

precipitate indicative of H2O2 increase (Fryer et al., 2003) in both tobacco and 

Arabidopsis wt infected leaves that was absent in the non-infected material (Fig. 7, 

compare AMV and mock panels, respectively). 
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Considering that AMV infection lead to activation of defence responses we 

measured content of two hormones that modulate plant immunity; e.g. SA and Jasmonic 

Acid (JA). Phytohormone content was quantified in mock and inoculated leaves at 4 dpi 

from both Arabidopsis wt and ilr3.2 plants. In Arabidopsis wt, SA and JA contents were 

increased in infected respect to healthy plants (Fig 8, wt plants, AMV and mock, 

respectively). The same response was observed in mock ilr3.2 plants compared to wt 

plants (Fig 8, compare mock bars from wt and ilr3.2 plants) indicating that loss of ILR3 

activity correlates with induction of SA and JA biosynthesis. However, SA content was 

reduced whereas JA was increased more than 10 times in infected respect to mock ilr3.2 

plants (Fig 8, ilr3.2 plants) suggesting that AMV infection can also induce JA 

biosynthesis independently of ILR3 activity. As found in other virus-host interactions 

the high JA accumulation in ilr3.2 infected plants could antagonize the SA pathway 

explaining the reduction in SA and AtPR1 mRNA found in infected respect to mock 

ilr3.2 plants (reviewed in Alazem and Lin, 2015; Collum and Culver, 2016). 

 

ILR3 activity influences AMV accumulation. 

Finally we analyzed whether the absence of AtILR3 had effect on AMV 

infection. Arabidopsis wt and ilr3.2 plants were inoculated with AMV PV0196 isolate 

virion particles and northern blot analysis using a digoxigenin-labelled AMV CP (Fig. 

9A) ORF plus quantification of the blot signals using the Image J software were carried 

out to measure virus accumulation. Fig. 9A shows the northen blot of upper non-

inoculated leaves while the graph in Fig. 9B illustrates that AMV RNAs accumulation 

was reduced 40% in ilr3.2 respect to wt inoculated leaves at 4 dpi and around 30% in 

upper non-inoculated leaves at 10 dpi. This experiment was repeated three times with 

similar results. Overall, our results indicate that loss of AtILR3 function activates plant 
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defence signalling response in Arabidopsis although the virus escapes the defence 

response being still able to move systemically infecting the whole plant at a more 

reduced accumulation level.  

 

DISCUSSION 

Plant viruses usurp a large number of host factors/resources in their own benefit 

for their survival whereas the infected plant activates a whole series of responses to 

protect from the negative impact caused by the pathogen (Culver and Padmanabhan, 

2007; Mandadi and Scholthof, 2013; Garcia and Pallas, 2015). In this work we 

demonstrated that the interaction of a viral coat protein with a transcription factor might 

participate in activating the plant defence response in the infected plants although this 

host response does not prevent the virus invading the plant. 

The CP of AMV is a multifunctional protein that plays essential roles in the viral 

cycle: from regulating the replication and translation of viral RNAs to cell-to-cell and 

systemic movement and encapsidation (reviewed in Bol, 2005 and Pallas et al., 2013). 

In the present work we report the interaction between the CP and ILR3, a TF belonging 

to the bHLH family. This interaction leads to the relocation of part of the ILR3 protein 

pool into the nucleolus and interestingly, this interaction was observed with ILR3 from 

two plant species suggesting that this phenomenon can be a general feature of AMV 

infection. We have previously shown that the AMV CP accumulates at the cytoplasm 

and in the nucleus/nucleolus of infected cells (Herranz et al., 2012) and here we present 

evidence that the ILR3-nucleolar translocation is probably driven by viral protein 

transport towards the nucleolus. Subcellular localization changes of host factors induced 

by interactions with viral proteins have been previously reported. For instance, in 

Arabidopsis infected with cucumber mosaic virus the cytoplasmic catalase 3 is 
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relocalizated into the nucleus through its interaction with the 2b protein (Inaba et al., 

2011) whereas that the p19 protein of tomato bushy stunt virus interacts with three 

proteins of the AYL family causing their transport from the nucleus to the cytoplasm 

(Uhring et al., 2004). On the other hand, the CP of Turnip crinkle virus interacts with 

the TF TIP preventing its nuclear localization (Ren et al., 2004). 

One relevant question is raised, that of how the CP-ILR3 interaction affects the 

TF function. Although it has been established that bHLH TFs function as homo- and 

heterodimers (Heim et al., 2003; Toledo-Ortiz et al., 2003), and several findings have 

led to the hypothesis that ILR3 might function in combination with other bHLH TFs 

(Long et al., 2010), no direct targets of ILR3 have yet been identified. Experiments 

conducted to determine the AtILR3 function with gain- and loss-of-function 

Arabidopsis mutants have reported that the mRNA levels of AtNEET were altered in 

both mutant types suggesting that this TF might directly or indirectly influence NEET 

expression (Rampsey et al., 2006). Our northern analysis showed that the mRNA 

accumulation of NEET in both tobacco and Arabidopsis was slightly down-regulated 

during the course of infection resembling the Arabidopsis loss-of-function ilr3-2 

(Rampsey et al., 2006). However, taking in account the critical role of NEET in 

Arabidopsis metabolism we cannot rule out the possibility that others TFs might 

function redundantly to regulate NEET mRNA transcription.  

 

AtNEET has previously been localized in both mitochondria and chloroplast and 

has been found to be a key regulator in plant development, senescence, Fe metabolism 

and ROS homeostasis (Nechushtai et al., 2012). However, contradictory results have 

been reported about its subcellular localization since a recent study concluded that 

AtNEET is translocated into choloroplast but not into mitochondria (Su et al., 2013). In 
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the case of NtNEET, we found that the protein was localized only in chloroplasts. 

Transport of proteins to mitochondria and chloroplasts is achieved through N-terminal 

transit peptides and accordingly, AtNEET and NtNEET contain the proposed N-

terminal chloroplast transit peptide cleavage motif V-R/K-A-E (Su et al., 2013)- 

However, this N-terminal region presents most of the differences observed in their 

sequences. The absence of NtNEET in the mitochondria could be explained assuming 

that the N-terminal region of NtNEET lacks the mitochondrial transit peptide. 

Our results link chloroplast function with viral infection. The chloroplast is a key 

organelle to generate plant defence signalling molecules including ROS and SA (Torres, 

2010; Spoel and Dong, 2012). In fact, several viruses encode proteins interacting with 

components of the photosynthetic machinery and in some cases it has been found that 

defense host response activation is prevented trough these interactions (Abbink et al. 

2002; Jimenez et al. 2006; Bath et al., 2013). In this sense, it has been recently reported 

that AMV CP through its interaction with the chloroplast-targeted PsbP also might 

favor AMV replication by sequestering the host protein in the cytosol which would 

impede the activation of plant defense responses (Balasubramaniam et al., 2014).  

ROS, SA and JA concentration are increased in healthy ilr3.2 plants indicating 

that ILR3 activity would participate in plant defence response modulation (Fig. 10).  

Our results suggest that, through the CP-ILR3 interaction, AMV might interfere with 

the TF’s function causing downregulation of NEET expression. This in turn, would lead 

to activation of ROS and SA defence responses. Further, activation of JA biosynthesis 

would be partially independent of ILR3 function (Fig. 10). Increasing of ROS and 

activation of SA signalling pathway has been found in diverse compatible virus-host 

interactions (Whitham et al., 2006). In fact, in compatible host-virus interactions, the 

expression of the majority of defense-related genes is induced by a SA-dependent 
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signalling pathway (Huang et al., 2005). On the other hand, the high JA concentration 

reached in ilr3.2 infected plants might antagonize SA pathway leading to the strong 

downregulation of AtPR1 mRNA observed in these plants. Different studies have 

reported that depending upon the concentration of each hormone, SA and JA pathways 

can have antagonistic or synergic effects (reviewed in Pieterse et al., 2012; Collum and 

Culver, 2016). In this sense, it has been found that in some compatible virus-host 

interactions early components of the SA pathway may be regulated by JA (reviewed in 

Alazem and Lin, 2015).  

In summary, our results show that AMV infection activates plant defence 

pathways which would negatively affect virus accumulation without impeding the 

systemic infection of the host. A model is proposed (Fig. 10) by which, upon infection, 

AMV CP-ILR3 interaction would modify the subcellular  location of the TF 

downregulating a host factor, NEET, that in turn would activate ROS and SA- and JA-

dependent signalling defence, being the latter alternatively independent of ILR3. 

 

 

EXPERIMENTAL PROCEDURES 

 Yeast two hybrid screening 

Arabidopsis cDNA library fused to the GAL4 activation domain (AD) into 

pGADT7 has been previously described (Németh et al., 1998). Plasmids pBD:CP and 

pBD:CPNLoS containing the full-length AMV CP variants fused to the GAL4 binding 

domain (BD) into pGBKT7 plasmid have been described (Herranz et al., 2012). Yeast 

two-hybrid (Y2H) screening was performed with the Matchmaker Gal4 Two-hybrid 

System 3 (Clontech) following manufacturer´s recommendations. Briefly, yeast reporter 

strain AH109 (Clontech) was sequentially transformed with pBD:CP and pGAD:cDNA 
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and co-transformants were selected by culturing on minimal synthetic medium lacking 

leucine and tryptophan (-LW). Positive interactions were selected by culturing on 

medium lacking leucine, tryptophan, adenine and histidine (-LWHA). Cultures were 

kept at 28ºC for 5 days. pAD:cDNA clones from positive interactions were rescued and 

subjected to DNA sequencing. Full length ORF of AtILR3, AtbHLH115 and NtILR3-

like1 were PCR amplified with specific primers (Table S1), cloned into pGADT7 

plasmid and transformed in AH109 carrying the empty pGBKT7 (pBD), pBD:CP or 

pBD:p53 plasmids. Reconfirmation of the interactions was carried out by growing cells 

in (-LWHA) medium for 5 days at 28ºC. 

 

BiFC and subcellular localization analysis 

AtILR3, AtbHLH115, NtILR-like1, and NtNEET ORFs were amplified with 

specific primers (Table S1) designed for cloning using the Gateway System 

(Invitrogen). Amplified products were recombined into a donor vector using the BP 

reaction and then transferred into binary destination vectors expressing the full-length 

Red fluorescent protein (dsRed) or the green fluorescent proteins (GFP) for subcellular 

localization studies and the N-terminal and C-terminal part of the yellow fluorescent 

protein (YFP) for BiFC analysis, following manufacturer´s recommendations.  The 

fusion proteins generates were as follows: dsRed:AtILR3, dsRed:AtbHLH115, 

dsRed:NtILR3-like1, NtNEET:GFP, NYFP:AtILR3 NYFP:NtILR3 and 

CYFP:AtbHLH115. Plasmids expressing the AMV CP fused to the N-terminal and C-

terminal parts of the YFP (NYFP:CP and CYFP:CP) and  the mitochondrial marker mt-

rk CD3-991 have been previously described (Aparicio et al., 2006; Nelson et al., 2007). 

All binary vectors were transformed into Agrobacterium tumefaciens C58 cells. 

Cultures were diluted at 0.2 OD600 in infiltration solution (10 mM MES pH 5.5, 10 mM 
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MgCl2) and infiltrated into 3 week old N. benthamiana plants. For nuclei staining 10 

mg/mL 4′,6-diamidino-2-phenylindole (DAPI) (Sigma) was infiltrated into N. 

benthamiana leaves 1 h before observation.  

Confocal images were taken at 48 hours after agro-infiltration with a microscope 

Zeiss LSM 780 AxiObserver. All images correspond to single slices of 1.8 μm thickness 

of epidermal cells. Excitation and emission wavelengths were 359 and 457 nm for 

DAPI, 488 and 508 nm for GFP, 514 and 527 nm for YFP, 545 and 572 nm for dsRed 

and  488 and 750 nm for chloroplast visualization, respectively. 

 

Plant growth conditions and virus inoculation  

Arabidopsis ecotype Col-0 wt and il3.2, N. tabacum cv Xanthi, N. benthamiana 

and N. tabacum cv Samsun P12 plants (Taschner et al., 1991) plants were grown in 12 

cm pots diameter in a growth chamber at 24ºC with a photoperiod of 24ºC-16 h 

light/20ºC-8 h dark.  

To analyze AMV infection effects on Arabidopsis or N. tabacum cv Xanthi, two 

leaves of 3 weeks old plants were mechanically inoculated with purified virions (1 

mg/ml) of AMV PV0196 isolate (DSMZ GmbH, Plant Virus Collection, Germany) in 

30 mM sodium phosphate buffer pH 7 or with buffer alone (mock plants). 

Plasmids px032/GFP-MP-CP and px032/GFP-MP-CP(K5-13:A) (Sánchez-

Navarro et al., 2001; Herranz et al., 2012) (here labelled R3CPwt-GFP and R3CPNLoS-

GFP, respectively) were used  to perform ILR3 re-localization studies in P12 plants. For 

inoculation purposes, PstI-linearized plasmids were transcribed with T7 RNA 

polymerase (Takara) following manufacturer’s recommendations. Leaves were 

mechanically inoculated with 1 ug/leaf of the corresponding transcripts and 

A.tumefaciens C58 cultures expressing the corresponding fusion proteins were prepared 
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in infiltration buffer at 0.1 OD600 and infiltrated at 48 hours post-inoculation (dpi). 

Images of infection foci were taken at 4 dpi with a microscope Zeiss LSM 780 

AxiObserver. 

Cloning of host genes for northern blot analysis 

NCBI and http://sydney.edu.au/science/molecular_bioscience/sites/ 

benthamiana/ database were searched for tobacco NEET and PR1, genes. Multiple 

Sequence Alignment by CLUSTALW program (Thompson et al., 1994) was used to 

analyze homologies between Arabidopsis and tobacco genes. RT-PCR reactions were 

carried out from RNA extractions with specific primers (Table S1). Amplified products 

were cloned into pTZ57R/T plasmid (ThermoFisher Scientific). After digestion with 

Xba I restriction enzyme (ThermoFisher Scientific), linearized plasmids were used as 

templates to transcribe digoxigenin-labelled probes. Transcriptions were carried out 

with T7 RNA polymerase (Takara) following manufacturer´s recommendations. 

 Detection of host mRNAs and viral RNAs was carried out by northern blot 

analysis. In the case of N. tabacum inoculated leaves were harvested at 2 dpi whereas 

that upper systemic leaves were collected at 4 dpi. In the case of Arabidopsis inoculated 

leaves were harvested at 4 dpi and upper systemic leaves were at 10 dpi. Leaves were 

grounded in liquid nitrogen with mortar and pestle and total RNA was extracted from 

0.1 g leaf material using Trizol Reagent (Sigma). 10 ug and 1 ug of total RNA, for 

mRNA and viral RNA detection respectively, were denatured by formaldehyde 

treatment and analyzed by northern blot hybridization as described previously 

(Sambrook et al., 1989). Viral RNAs were visualized on blots using a digoxigenin-

labelled riboprobe corresponding to the AMV CP gene. Synthesis of the digoxigenin-

labelled riboprobe, hybridization and digoxigenin detection procedures were carried out 

as previously described (Pallas et al., 1998). 

http://sydney.edu.au/science/molecular_bioscience/sites/%20benthamiana/
http://sydney.edu.au/science/molecular_bioscience/sites/%20benthamiana/
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DAB staining 

DAB staining was carried out as previously described (Liu et al., 2012) with 

some modifications. Samples were analyzed at the same time than northern blot studies. 

To prepare DAB solution, 3,3-diaminobenzidine (Sigma) was diluted at 1 mg/ml in H2O 

at pH 3.6 by vigorous shaking at 37ºC for at least 30 min. Leaves were infiltrated with 

DAB solution with a syringe and placed in Petri dish containing  paper towels saturated 

with a fixative solution (ethanol/acetic acid/glycerol 3:1:1 V/V/V) for 3-4 days at room 

temperature until green colour disappeared. Bright field images were recorded with a 

Nikon Eclipse E600. 

Hormone analysis 

For SA and JA quantification, mock and AMV inoculated leaves from 

Arabidopsis wt and ilr3.2 plants were collected at 4 dpi. Each sample containing a 

mixture of leaves from three plants was ground in liquid nitrogen with mortar and 

pestle. Material (100 mg fresh weight) was suspended in 80% methanol-1% acetic acid 

containing internal standards and mixed by shaking during one hour at 4ºC. The extract 

was kept a -20ºC overnight and then centrifuged and the supernatant dried in a vacuum 

evaporator.  The dry residue was dissolved in 1% acetic acid and passed through an 

Oasis HLB (reverse phase) column as described in Seo et al (2011).  

The dried eluate was dissolved in 5% acetonitrile-1% acetic acid, and the 

hormones were separated using an autosampler and reverse phase UHPLC  

chromatography (2.6 µm Accucore RP-MS column, 50 mm length x 2.1 mm i.d.; 

ThermoFisher Scientific) with a 5 to 50% acetonitrile gradient containing 0.05% acetic 

acid, at 400 µL/min over 14 min. - For SA and JA quantification, the dried eluate was 

dissolved in 5% acetonitrile-1% acetic acid, and the hormones were separated using an 

autosampler and reverse phase UHPLC  chromatography (2.6 µm Accucore RP-MS 
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column, 50 mm length x 2.1 mm i.d.; ThermoFisher Scientific) with a 5 to 50% 

acetonitrile gradient containing 0.05% acetic acid, at 400 µL/min over 14 min 

The internal standard for SA quantification was the deuterium-labeled hormone, 

whereas for JA, the compound dhJA was used. The hormones were analyzed with a Q-

Exactive mass spectrometer (Orbitrap detector; ThermoFisher Scientific) by targeted 

Selected Ion Monitoring (SIM). The concentrations of hormones in the extracts were 

determined using embedded calibration curves and the Xcalibur 2.2 SP1 build 48 and 

TraceFinder programs. Measurements were done by triplicate. 
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Fig. S1. Amino acid sequence alignments of ILR3 and NEET proteins of Arabidopsis 

and N. tabacum. 



 21 

Fig. S2.  Analisis of putative Y2H self-activation by AMV CP. AH109 yeast cells co-

transformed with the indicated plasmids were spotted on minimal medium lacking 

leucine and tryptophan (-LW) or leucine, tryptophan, histidine and adenine (-LWHA). 

Colony growth was only detected with the pair pBD:CP and pAD:CP confirming that 

AMV CP does not self-activate yeast growth. 
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FIGURE LEGENDS 

Fig. 1. Arabidopsis and tobacco ILR3 interacts with AMV CP. (A) AMV CP and 

(C) lacking the NLoS interaction with AtILR3, AtbHLH115 and NtILR3-like1 

transcription factors by yeast two hybrid system. AH109 yeast cells co-transformed 

with the indicated plasmids were spotted on minimal medium lacking leucine and 

tryptophan (-LW) or leucine, tryptophan, histidine and adenine (-LWHA) to confirm 

proper co-transformation and positive interactions, respectively. (B) Nuclei from cells 

expressing NtILR3-like1 and AtbHLH115 fused to dsRed and stained with DAPI are 

shown by CLSM in the red (RED) and blue (DAPI) channels. Overlay images 

confirmed that the TFs localized exclusively in the nucleoplasm.  

Fig. 2. BiFC analysis of CP-ILR3 interaction. CLSM images of nuclei from 

epidermal cells co-infiltrated with the constructions indicated on the left and stained 
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with DAPI are shown in the yellow (YFP) and blue (DAPI) channels. Overlay panels 

are the superposition of YFP and DAPI over the bright field images. YFP reconstitution 

was exclusively found in nuclei (arrows). BiFC nnomenclature of the plasmids is as 

follows: NYFP and CYFP refer to the N-terminal and C-terminal fragments of the YFP 

and in all constructs the YFP tag is attached to the N-terminus of the protein. Bars = 10 

µm. 

Fig. 3. AMV infection promotes nucleolar relocalization of AtILR3. (A and D) 

Schematic representation showing the modified AMV RNA 3 with the wt CP (R3GFP-

CPwt) or the mutated CP lacking the NLoS (R3GFP-CPNLoS and expressing the GFP. 

(B and E) Images of one infection focus denoted by the accumulation of GFP. (C) 

CLSM images in the green (GREEN), red (RED) and blue (DAPI) channels of nuclei 

from non-infected and infected cells with R3GFP-CPwt and transiently expressing the 

TFs indicated in the right of each rows of panels. White arrows indicate the nucleolus. 

(F) CLSM images of a nucleus of a cell infected with R3GFP-CPNLoS and transiently 

expressing dsRed:AtILR3. In this case, the TF does not accumulate in the nucleolus 

(white arrow). In all images bar: 5 um. 

Fig. 4. Characterization of Arabidopsis ilr3.2 mutant plants. (A) Northern blots to 

detect mRNA accumulation of several genes (indicated on the left) in wt and ilr3.2 

plants. Ethidium bromide (EtBr) staining of ribosomal RNAs was used as RNA loading 

control. (B) DBA staining of leaves from wt and ilr3.2 plants to reveal H202 

accumulation (dark brown precipitate).  (C) Plant weight of wt and ilr3.2 plants. 

Rossetes from 21 days old plants were cut from roots and weighed. Asterisk indicate 

significant difference from the wt  (*P < 0.05) using the Paired t-test (n=25). Error bars 

represent standard error of the mean. 
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Fig. 5. Subcellular localization of NtNEET protein. Magnified image of a cell co-

expressing NtNEET:GFP (GREEN CHANNEL) and the mitochondrial marker mt-rk 

CD3-991 (RED CHANNEL). Auto fluorescence of chlorophyll in chloroplast is shown 

in magenta (CHLOROPHYLL). Overlay image reveal that NtNEET accumulates in 

chloroplast (white arrowhead) but not in mitochondria (arrows). 

Fig. 6. AMV infection activates plant defence responses. Northern blots to detect 

mRNA accumulation of several genes (indicated on the middle of panels) from mock 

and AMV inoculated plants (M and A, respectively) in N. tabacum (A) and Arabidopsis 

(B). Inoculated and upper systemic leaves in tobacco and inoculated leaves in 

Arabidopsis wt and ilr3.2 plants were analyzed (indicated on the top). Ethidium 

bromide (EtBr) staining of ribosomal RNAs was used as RNA loading control. Northern 

blot to detect the AMV RNA 3 (lower panel) was used to corroborate viral 

accumulation.  

Fig. 7.  DBA staining of N. tabacum and Arabidopsis wt plants. Inoculated or upper 

systemic leaves (indicated on the left) from healthy (mock) and infected (AMV) plants 

were infiltrated with DAB solution to visualize H2O2 accumulation. 

Fig. 8. SA and JA content in Arabidopsis wt and ilr3.2 plants. Hormone content was 

measured in mock and AMV inoculated leaves at 4 dpi. Bars represent mean and 

standard deviation of values obtained from three biological replicates. 

Fig. 9. ILR3 activity affects to AMV accumulation in Arabidopsis. (A) Northern blot 

corresponding to five Arabidopsis wt and ilr3.2 plants to detect viral RNA 3 and 4 (R3 

and R4). Ethidium bromide (EtBr) staining of ribosomal RNAs was used as RNA 

loading control. (B) Graphic showing the average of viral RNAs accumulation 

measured of inoculated and upper systemic leaves (inoc and upper, respectively) in wt 

and ilr3.2 plants. (*P<0.05 using the Paired t-test, n=5).  
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Fig. 10. Hypothetical model to illustrate the effect of CP-ILR3 interaction on plant 

defence response. In healthy plants ILR3 activity may regulate NEET levels 

contributing to the repression of ROS and SA signalling pathways. Additionally, ILR3 

would participate regulating JA biosynthesis. In AMV infection, interaction between the 

CP and ILR3 might reduce ILR3 activity leading to repression of NEET mRNA 

accumulation and activation ROS and SA signalling.  At the same time AMV infection 

would induce JA biosynthesis independently of ILR3 activity.  

 

 


