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Abstract

N-Beats neural network based classifier of heart condition using ECG input.

The automated classification of any heart condition from ECG signal is undoubtedly a chal-

lenging task to perform, not to mention the task of distinguishing even more specific subcat-

egories when the only information available are a pure ECG record and basic characteristics

of a patient. Most of the commonly used and well known classification algorithms are based

either on a complex, diligently collected data which describes meticulously the domain of

a given problem, or on a comparison to a previously selected archetype with a segmenta-

tion of the characteristic heart signal. The main goal of this work was to use the power of

deep learning methods along with the computational benefits associated with neural basis

expansion analysis for interpretable time series forecasting. The classification algorithm is

based on a hypothesis that each of the signals can be described using a waveform generator

which will be distinctively trained on a specific heart condition records set as these signals

have unique temporal energy distribution. This idiosyncratic waveforms’ behaviour is sus-

pected to be of an essential significance. N-BEATS neural networks are being used to deliver

substantial waveform generators’ parameters as a results of the training process conducted

on the training dataset provided by PhysioNet/Computing in Cardiology (CinC) Challenge

2020. After trained generators are obtained they generate a continuation of a given test signal

trying to mimic the curve of the signals they were trained on. Aforementioned process allows

to measure the distances between the original testing curve and the predicted waveforms,

thus indicating the main classifying factor. The algorithm achieved the following scores using

scoring methods provided by PhysioNet/CinC Challenges 2020. Accuracy at the level of 78%,

AUROC: 67%, however the scores are to improve along with the training process.

Keywords: ECG, neural network, Prediction, classification, Physionet database, N-Beats
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Resumen

La clasificación automática de cualquier afección cardíaca a partir de la señal de ECG es, sin

duda, un desafío más si se pretende distinguir entre distintas subcategorías más específicas a

partir del registro de una única derivación del electrocardiograma. El objetivo principal de

este trabajo consiste en utilizar el potencial de los métodos de ‘aprendizaje profundo’ (Deep

learning) junto con los avances en computación asociados con el “neural basis expansion

analysis’ para pronósticos de series de tiempo interpretables. El algoritmo de clasificación a

desarrollar se basa en la hipótesis de que cada una de las señales puede describirse utilizando

un generador de forma de onda.

N-BEATS se utilizarán para obtener parámetros de onda que se validarán sobre la base de

datos abierta ofrecida por PhysioNet en el marco del congreso Computing in Cardiology

(CinC) Challenge 2020.

Palabras clave: ECG, redes neuronales, clasificación, Physionet base de datos, N-Beats
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1 Introduction and Goals
The Electrocardiogram is already claimed to be a valuable tool in any expertise associated

with detection of cardiac dysfunctions. In 1891, William Bayliss and Edward Starling, British

physiologists of University College London, demonstrated triphasic cardiac electrical activity

in each beat using an improved capillary electrometer (Burnett, 1985). The standard 12-lead

ECG has been widely used to diagnose a variety of cardiac abnormalities such as cardiac

arrhythmias, and predicts cardiovascular morbidity and mortality (Kligfield et al., 2007)

Yet being available for the medics for more than a hundred years now, it’s potential is

still surprising more and more researchers, especially when approached from the perspective

of the new technology available, and the computational power connected with it - used

widely in a field of Machine Learning and Deep Learning. It is now clear, that with a

early and correct diagnosis of cardiac abnormalities the chances of successful treatments

are increasing radically, and thus proving its usefulness (Adams et al., 2007). More than 1

million ECGs are recorded every day. However, most of the process nowadays is performed

manually, requiring well trained specialists and appropriately set hardware. This implicates

a wide range of errors, which might be an outcome of a human factor in the process. The

findings showed that electrode placement accuracy varies from 16–90%, and standards and

guidelines on electrodes placement are not being adhered to. Poor electrode placement can

mean under- or overdiagnosis, which can increase morbidity and mortality, or mean that

patients receive unnecessary treatment or hospitalisation. (Bickerton & Pooler, 2019). An

opportunity never accessible before, now, in 21st century, is shining bright in front of the

people desiring to investigate it and to reach for mathematically powered tools of Data

Analysis allowing them to have a powerful insight. Hardware possibilities reaching the peak

of their performance discover complex new patterns never seen before and inconceivably

arduous to detect by human senses or intuition. With that in mind, an approach to a

further investigation of use was made and with help of Mr. Jose Millet Roig and Mr. Juan

Besari an algorithm classifying heart conditions was developed, as a part of the participation

process in PhysionetChallenge / Computing in Cardiology 2020. Current work describes an

actual development process along with the theoretical base laying under the proposed solution

and provides a mathematical background explaining the potential and justifying the chosen

neural network architecture and describes the differences between this solution and the ones

proposed in the past. Many attempts have been made including neural networks using 12-

1
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lead ECG signal in order to classify cardiac dysfunctions in the past, but they mainly focused

on certain parameters and features which are specific to ECG signals like the P wave which is

a representative of atrial depolarisation (cardiac stimulation), the QRS complex representing

ventricular depolarisation and the T wave, which represents the return of the ventricles to

their resting state (re-polarisation) (Nugent et al., 1999). Another popular approach often

mentioned in scientific publication from cardiac domain is a use of more advanced statistical

analysis including Support Vector Machines or Gaussian Mixture Models. They base on

finding ECG segmentation and calculation of log-likelihood. Also, use of the support vectors

indicates, that the classifiers extract from the signal key features. (Chang et al., 2012).

Chosen architecture - N-BEATS neural network, was never before used in the domain of

cardiac dysfunctions classification, however it gained a lot of recognition after being published

as a potentially superior to the M4 Contest winner being repeatedly mentioned among data

science society. It focus on solving the univariate times series point forecasting problem

using deep learning. It is a deep neural architecture based on backward and forward residual

links and a very deep stack of fully-connected layers. N-Beats has a number of important

features like being interpretable, applicable to a wide array of target domain. It is applicable

in almost any field containing Time Series forecasting or seasonality / trend analysis. Time

series forecasting underlies most aspects of modern business, including such critical areas

as inventory control and customer management, as well as business planning going from

production and distribution to finance and marketing (Oreshkin et al., 2019). Although it

was designed with regression purposes in mind I believe that the results of this regression

combined with their interpretability may prove to be adequate to perform classification on

ECG signal, as it is strongly periodical and repetitive and trends for a certain dysfunctions

are significantly marked. These characteristics fit tightly into the domain of time-series

forecasting (Barnett et al., 2004) The difference between approach studied in this paper

and others that in N-Beats, in opposition to other methods (Nugent et al., 1999) (Chang

et al., 2012) (Chaitman et al., 1996) (Yu & Chou, 2008) , nothing is used to decompose

ECG signals into sets of weighted basic components. Therefore it facilitates classification

use and performance eliminating the need of wide analysis of the data set provided. N-

Beats as a quite big neural network with tendencies to snowball it’s size requires a powerful

computational machine. Due to the memory requirements and the amount of computations

performed, GPU use is strongly advisable. The proposed algorithm has been tested using a

very recent open database available to the entire community of scientists and developers with

the aim of obtaining more robust algorithms that can be part of medical devices that improve

diagnosis, and even also can be used in wearable. The training data-set was provided by the
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PhysionetChallenge organizers and it’s additional explanation can be found below.

To highlight and clarify the objectives of this work, a goals list is written below:

1. Implement N-Beats neural networks.

2. Use of GPU-based architecture to optimize the computation required for its implemen-

tation.

3. Training neural networks to predict and describe ECG signal of distinguished classes.

4. Propose classifier system based on the previously trained neural networks which will

label new ECG signal with one of the nine labels provided by the Physionet Challenge.

5. Experiment with different variations of the classifier in order to quantify the potential

signal predictor of the system.

3
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2 Material and Methods

2.1 Terminology clarification
As lots of acronyms is being used on the pages of this work along with terms specific to the

problem domain, it would be advisable to explain their meaning and purpose of their use.

• AUROC - Area Under the Receiver Operating Characteristic, a measure used to evalu-

ate multi class classification results. It tells how much model is capable of distinguishing

between classes. Higher the AUROC, better the model is at distinguishing between pa-

tients with disease and no disease.

• AUPRC - Area Under the Precision-Recall Curve is another measure used to evaluate

classification, this time focusing more on whether the model avoid False Positive/Neg-

ative classifications. Perfect AUPRC means that the model is able to properly classify

all cases of the class, without any extensional marking other cases from different classes

as this one.

• Accuracy - Due to its definition it is the ratio of number of correct predictions to the

total number of input samples.

• F-measure - It is a measure of a test’s accuracy. It considers both the precision p and

the recall r of the test to compute the score. Detailed explanation was made in section

2.5.5.

• Fbeta-measure - is the weighted harmonic mean of precision and recall, reaching its

optimal value at 1 and its worst value at 0. Meticulously explained along F-measure in

section 2.5.5.

• Gbeta-measure - Scoring function which is a generalization of the Jaccard measure,

where we have given missed diagnoses twice as much weight as correct diagnoses and

false alarms. It’s mathematical basis and a minute explanation were presented in section

2.5.6.

• MSE Loss - Mean Squared Error function loss, is a function measuring the distance

between received value and the one expected. It is calculated in the following way:

MSE = 1
n

∑n
i=1(Yi − Ŷi)2.

• L1 Loss - is used to minimize the error which is the sum of the all the absolute differences

between the true value and the predicted value. It is calculated using the following

equation:
∑n
i=1

∣∣∣Yi − Ŷi∣∣∣
5
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• WFDB - Waveform-Database. It is a file format provided by the Physionet organisation

in order to provide standardized way of storing waveform signals. It is also associated

with Waveform Database Library.

• MATLAB - MATLAB is a programming platform designed specifically for engineers and

scientists. The heart of MATLAB is the MATLAB language, a matrix-based language

allowing the most natural expression of computational mathematics.

2.2 Data
The data set for this work comes from the sources provided by PhysionetChallenge, which

consists of:

1. Southeast University in China,

2. Centre for Cardio-metabolic Risk Reduction in South-Asia (CARRS) in India,

3. Record of the diverse population in the USA

However as the authors of the challenge indicate, main training set is the public data available

and used during China Physiological Signal Challenge in 2018 (CPSC2018). Aforementioned

training set includes 6877 standard 12-lead electrocardiogram (ECG) records out of which

53.7% of the representatives are males, and the remaining 46.3% are females (the PhysioNet/-

Computing in Cardiology Challenge 2020, 2020), all sampled at the frequency of 500Hz.

Being provided in WFDB format the training sets is a combination of binary MATLAB v4

files and text files written in WFDB header format, containing electrocardiogram signal data

and signal/patient description respectively, including recognised heart condition.

To depict an available input data an exemplar header file would be presented below:

A3674 12 500 5000 16-Mar-2020 19:07:01

A3674.mat 16+24 1000/mV 16 0 -74 -9 0 I

A3674.mat 16+24 1000/mV 16 0 -89 -33 0 II

A3674.mat 16+24 1000/mV 16 0 -15 -26 0 III

A3674.mat 16+24 1000/mV 16 0 81 12 0 aVR

A3674.mat 16+24 1000/mV 16 0 -29 -6 0 aVL

A3674.mat 16+24 1000/mV 16 0 -52 28 0 aVF

A3674.mat 16+24 1000/mV 16 0 -33 9 0 V1

A3674.mat 16+24 1000/mV 16 0 -71 -52 0 V2

A3674.mat 16+24 1000/mV 16 0 -107 -70 0 V3
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A3674.mat 16+24 1000/mV 16 0 -205 -43 0 V4

A3674.mat 16+24 1000/mV 16 0 -165 -1 0 V5

A3674.mat 16+24 1000/mV 16 0 -83 -4 0 V6

#Age: 60

#Sex: Female

#Dx: STD

#Rx: Unknown

#Hx: Unknown

#Sx: Unknown

First row of the presented file provides information which interpretation may be found in

WFDB header file description under the name of Record Line - being the first non-empty,

non-comment line, it contains information applicable to all signals in the record. Its fields’

meanings are, in order from left to right:

Table 2.1: WFDB record line attributes meaning

Index Attribute Description

1 record name A string of characters identifying the record.

2 number of signals Number of signal layers in file, must not be negative.

3 sampling frequency Given in samples per second per signal

4 number of samples per signal Total number of samples per signal available in a given file

5 base date Date of recording

6 base time Time of recording

Following 12 lines however describe each individual signal. Their format is also specific, and

it’s meaning is explained in the table below Table 2.2.
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Table 2.2: Signal attributes description

Index Attribute Description

1 file name A string of characters identifying the binary file name.

2 format + byte offset A number of bits in memory occupied by each signal and its offset respectively

3 amplitude resolution Given in 1000 mV units

4 ADC resolution Resolution of analog-to-digital converter used to digitized signals.

5 ADC zero Baseline value corresponding to 0 physical units.

6 initial value First value of the signal

7 checksum The checksum

8 description Lead name

Next 6 lines provide a description of a patient and his condition Table 2.3:

Table 2.3: Patient description

Index Attribute Description

1 Age Patient’s age

2 Gender Patient’s gender (Male or Female)

3 Dx Diagnosis

4 Rx The medical prescription

5 Hx History.

6 Sx Symptom or surgery

Each record has one or more diagnosis’ labels already assigned, chosen from the set, described

below in Table 2.4:

8
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Table 2.4: Basic diagnosis labels

Index Abbreviation Description

1 AF Atrial fibrillation

2 I-AVB First-degree atrioventricular block

3 LBBB Left bundle branch block

4 Normal Normal sinus rhythm

5 PAC Premature atrial complex

6 PVC Premature ventricular complex

7 RBBB Right bundle branch block

8 STD ST-segment depression

9 STE ST-segment elevation

2.3 Software

2.3.1 Language and libraries

First of all the use of Python 3.6 as a main programming / analytical tool along with available

libraries like Numpy, Pandas, Matplotlib and the most important PyTorch was specified

as the key element of a newly born project idea, as aforementioned tools are one of the most

popular being used in a field of Data Analysis and Machine Learning. Numpy library is

a library which helps scientists all over the world to conduct mathematical calculation in

fast and ordered way, facilitating complex computations and processing them in a rapid

manner. Pandas is a library helping with data management and processing, especially with

it’s DataFrame object which allows it’s users to use table alike functionalities in intuitive

way. Matplotlib is a library which provides a lot of plotting utilities. It helps in both data

and results visualisation, is very intuitive and well documented. PyTorch was selected due

to its usefulness and documentation. It also works well on GPUs allowing to perform neural

net computations in a multi threaded environment.

2.3.2 Working environment

The Project was developed on two different work stations, as it required a use of Graphical

Processing Unit to prosecute computations associated with neural network training process,

unavailable on one of them. Having that mentioned, both of the aforementioned machines’

specifications are presented in the tables below, starting with the weaker one, which a main

coding station - a laptop with a virtual environment specified clearly for the PhysionetChal-

lenge purposes. Table 2.5

9
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Table 2.5: Laptop characteristics

Parameter Description

Type Laptop

Name Lenovo Yoga 720 13

CPU Intel Core i7-7500U CPU @ 2.70GHz x 4

VGA Intel HD Graphics 620 (Kaby Lake GT2)

RAM 8GB

Storage Samsung SSD 256 GB SM961/PM961

System Ubuntu 18.04.4 LTS 64 bit

Second, stronger machine which was used as a training unit has been lent to me as a courtesy

of Juan Besari, whose help with this project was unquestionable. Training code was being sent

to the computer and then run by the owner which allowed to inspect the code and proceed

with minor experiments along the training process not investing any resources additionally

from a weaker machine. The previous’ characteristic is visible below. Table 2.6

Table 2.6: PC characteristic

Parameter Description

Type Personal Computer

CPU AMD Ryzen 5 2600. Six-Core, 12 Threads. Overclocked to 4100 MHz

GPU ZOTAC GTX 1080 8GB VRAM GDDR5X

Motherboard X470 AORUS ULTRA GAMING

RAM 32 GB (8GB x4) 3200 MHz G.Skill Trident Z DDR4 PC4-25600 CL16

Main Storage Samsung SSD NVME 970 EVO 500 GB

Secondary Storage 1x Kingston SA400 SSD 240 GB, 2x Western Digital HDD 3 TB 5,400 r.p.m.

System Microsoft Windows 10 Pro (10.0.18363 compilation 18363)

2.4 Data analysis

2.4.1 General data analysis

Data analysis topic for this particular task was definitely a challenging goal to achieve, as all

the measurements were conducted with only the frequency of signal reads in common.

Therefore, only one lead was selected to serve as a guiding signal. The selected one is

10
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Lead III as it measures the potential between Left Arm (negative) and Left Leg (positive)

electrodes providing an inferior right heart view - it served as an input to the algorithm. Why

only one lead? From the beginning of this work, it was planned to use only one lead first,

then after obtaining decent results to expand its number. Yet, it was challenging to achieve

satisfying results with one lead, so it was decided to put all emphasis and resources to make

one lead based prediction as good as it could be.

As the classification task of the 9 aforementioned classes is undoubtedly arduous it might be

worth mentioning how does the data propagation looks like, when talking about the given

signals. Because of the classification performed it is crucial to know how does each of the

signals type look like, in order to eventually interpret the outcomes. Because of that, an

addition description has been provided in each section, giving more in-depth look into how

the classes are divided. The main goal of this section is to explain to the Reader what kind of

signals are provided to the algorithm and how should behave an outcome curve - our result

for each individual N-Beats module. Therefore the plots of each diagnosis type available in

the training data set (basic diagnosis) are depicted below as visible by the neural net:

11
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2.4.1.1 Atrial Fibrillation

Figure 2.1: The sheer AF diagnosis signal

Abnormal heart rhythm characterized by irregular and rapid beating of the atrial chambers

of the human heart. Often begins as short periods of abnormal beating, which became longer

or continuous over time. During atrial fibrillation, the heart’s two upper chambers (the

atria) beat chaotically and irregularly — out of coordination with the two lower chambers

(the ventricles) of the heart. Atrial fibrillation symptoms often include heart palpitations,

shortness of breath and weakness. High blood pressure and valvular heart disease are the

most common alterable risk factors for AF (Anumonwo & Kalifa, 2014) (Bun et al., 2015).

Diagnostic criteria include:

1. P waves are absent.

2. There are fibrillation (f) waves instead of P waves. The f waves result in an oscillating

irregular baseline.

3. he R-R intervals are not equal resulting in an irregular rhythm.

12
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2.4.1.2 First-degree atrioventricular block

Figure 2.2: The sheer I-AVB diagnosis signal

First-degree atrioventricular block (AV block) is a disease of the electrical conduction system

of the heart in which electrical impulses conduct from the cardiac atria to the ventricles

through the atrioventricular node (AV node) more slowly than normal. First degree AV

block not generally cause any symptoms, but may progress to more severe forms of heart

block such as second- and third-degree atrioventricular block. Diagnostic criteria include:

1. PR interval is prolonged: >200 ms.

2. Every P wave is followed by a QRS complex.

3. PR interval is fixed.

4. Block is at the level of AV node.

5. Sometimes, PR interval prolongation may coexist with 2:1 second degree AV block.

13



Chapter 2. Material and Methods Bartosz Puszkarski

2.4.1.3 Left Bundle Branch Block

Figure 2.3: The sheer LBBB diagnosis signal

Left bundle branch block (LBBB) is a condition, in which activation of the left ventricle of

the heart is delayed, which causes the left ventricle to contract later than the right ventricle.

Diagnostic criteria include:

1. The QRS width should be greater than or equal to 120 ms for adults.

2. Wide, notched R wave in leads I, aVL, V5 and V6. Occasionally, RS pattern may be

seen in leads V5 and V6.

3. Q waves are absent in leads I, V5 and V6. A small q wave may be present in lead aVL.

4. ST and T wave are generally opposite in direction to QRS.

5. R peak time is >60ms in leads V5 and V6. If there are small r waves in leads V1, V2

or V3, the R peak time may be normal in these leads.

14
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2.4.1.4 Normal sinus ECG signal

Figure 2.4: The Normal heart beat ECG signal

Normal ECG read, without any disorders. It is rhythmic, contains a strong sinusoidal trend,

intervals are fixed and repetitive.
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2.4.1.5 Premature Atrial Complex

Figure 2.5: The sheer PAC diagnosis signal

Premature Atrial Complex (PAC) is a common cardiac arrhythmia characterized by prema-

ture heartbeats originating in the atria. While the sinoatrial node typically regulates the

heartbeat during normal sinus rhythm, PACs occur when another region of the atria depo-

larizes before the sinoatrial node and thus triggers a premature heartbeat. (Cleland, 1991)

Diagnostic criteria include (Alper et al., 2013):

1. The impulse arises from an atrial focus, not from the sinus node.

2. The premature atrial beat is often conducted normally to the ventricles, creating a

narrow QRS complex.

3. The PR interval of the APC may be shorter or longer when compared with the PR

interval of the sinus beat. If ectopic atrial focus is closer to the AV node, then ectopic

impulse will reach the AV node in a shorter time.
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2.4.1.6 Premature Ventricular Contraction

Figure 2.6: The sheer PVC diagnosis signal

Premature Ventricular Contraction (PVC) is a relatively common event where the heartbeat

is initiated by Purkinje fibers in the ventricles rather than by the sinoatrial node. PVCs

may cause no symptoms or may be perceived as a "skipped beat" or felt as palpitations in

the chest. Single beat PVCs do not usually pose a danger. (Gerstenfeld & Marco, 2019)

Diagnostic criteria include:

1. Broad QRS width being higher than 120 ms with abnormal morphology.

2. Premature — i.e. occurs earlier than would be expected for the next sinus impulse.

3. Discordant ST segment and T wave changes.

4. Usually followed by a full compensatory pause.

5. Retrograde capture of the atria may or may not occur.
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2.4.1.7 Right Bundle Branch Block

Figure 2.7: The sheer RBBB diagnosis signal

Right Bundle Branch Block (RBBB) is a heart block in the right bundle branch of the

electrical conduction system. Diagnostic criteria include (Gerstenfeld & Marco, 2019):

1. The QRS width is more than 120 ms for adults

2. Premature — i.e. occurs earlier than would be expected for the next sinus impulse.

3. Discordant ST segment and T wave changes.

4. Usually followed by a full compensatory pause.

5. Retrograde capture of the atria may or may not occur.
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2.4.1.8 ST Segment Depression

Figure 2.8: The sheer STD diagnosis signal

ST Segment Depression (STD) is characterized by a horizontal or downsloping ST segment.

In many instances is associated with acute coronary syndromes — both acute ischaemia and

acute infarction. (Pollehn et al., 2002) The transition from ST segment to T-wave is more

abrupt in ischemia (the transition is normally smooth)
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2.4.1.9 ST Segment Elevation

Figure 2.9: The sheer STE diagnosis signal

ST Segment Elevation (STE) refers to a finding on an electrocardiogram wherein the trace

in the ST segment is abnormally high above the baseline. Often associated with myocardial

infraction

2.5 N-BEATS Neural Net

2.5.1 Knowledge source

As this work is of experimental nature it has to be proclaimed, that the N-BEATS architec-

ture, used in the project, was based on an article: N-BEATS: Neural basis expansion analysis

for interpretable time series forecasting (Oreshkin et al., 2019) being an experimental use case

for aforementioned theory. It was a base for experiences associated with the implementation,

exploring the problem space and a forming factor for the way of understanding the cardiac

signal classification problem.
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2.5.2 Why N-BEATS?

The N-BEATS network authors’ reference empirical comparison results of their implemen-

tation’s efficiency to the one achieved by the winners of The M4-Competition claiming,

that their pure Machine Learning based solution reached significantly better outcomes set

side by side with standard and well-known pure statistical methods (Makridakis et al., 2018).

Furthermore, relying on the achieved results being about 3% better than the ones obtained

by the winner of the competition in 2018 they prove their approach being undoubtedly worth

further investigation of potential uses in the area of interpretative time series forecasting.

What is more, aside of the benefits associated with the accuracy of the generic N-BEATS

outputs, the net might be also use to receive an interpretative results of seasonality and trend

(Oreshkin et al., 2019).

2.5.3 Scoring

As the PhysionetChallenge rules implied, a specific scoring measures are taken into con-

sideration to evaluate the quality of a given classifier. Implementation of these were however

provided by organisers of the challenge, thus letting the participants to focus more on the

classifiers implementation. Therefore it would be advisable to present a mathematical base

of the first as it would allow the reader to comprehensively understand under what criterion

were the final models selected.

2.5.4 Basic Measures

An arguably complete view of a systems performance is given by the precision-recall curve.

Having the precision and recall mentioned a illustrative description allowing for a better un-

derstanding might be useful and thus is presented below.

For presentation purposes a following simple setting is considered: having an object with a

binary label l corresponding to correct object association with respect to the task at hand,

the system produces an assignment label z indicating whether it believes the object to be

correct or not. Such an outcome might be summarised in a confusion table (C. & E., 2005)

Figure 2.10:
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Figure 2.10: Confusion table (C. & E., 2005)

Where + and − are the binary classification classes. TP stands for true positive, respectively

TN stands for true negative and FP means false positive, FN is false negative. Having those

in mind it is possible to compute precision (p) and recall (r).

p = TP

TP + FP
(2.1)

r = TP

TP + FN
(2.2)

2.5.5 F-score

F-score is a weighted harmonic average of precision and recall (C. & E., 2005), calculated as

follows:

F lβ = (1 + β2)
precision · recall

β2 · precision · recall
=

(1 + β2) · TP
(1 + β2) · TP + FP + β2 · FN

, β = 2 (2.3)

Being calculated over all recordings, this F1-score is weighted by the associated importance

of diagnosis, following the equation:

Fβ =
1
N

N∑
t=1

C l · F lβ (2.4)

where:

• C l is the importance of class l.

• N is the number of classes.

• C l = 1 initially, invoking that each class is equally important.
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2.5.6 Generalization of The Jaccard Measure

The Jaccard index is a classical similarity measure on sets with a lot of practical applications

in information retrieval, data mining, machine learning and many more. Measuring the

relative size of the overlap of two finite sets A and B, the Jaccard index J is formally defined

as (Kosub, 2019):

J(A,B) =def

|A ∩B|
|A ∪B|

(2.5)

and the associated Jaccard distance Jδ is known to fulfill all properties of a metric, notably,

the triangle inequality. It is formally described as (Kosub, 2019):

Jδ(A,B) =def 1− J(A,B) = 1−
|A ∩B|
|A ∪B|

=
|A4B|
|A ∪B|

(2.6)

Yet, in case of the PhysionetChallenge scoring method, a generalised approach was used,

basing on the previously presented measures of precision and recall, giving the missed diag-

nosis twice as much weight, as the correct one. Thus, for each class the following equation is

computed:

Glβ =
TP

TP + FP + β · FN
, β = 2 (2.7)

Analogically to the aforementioned F1-score, also this one is computed over all recordings:

Gβ =
1
N

N∑
t=1

C l ·Glβ (2.8)

It is also indicated, that as the recordings of certain cases have multiple labels, contributions

to these scoring functions are normalized, so the recordings, not class themselves provide

equal contribution.

2.5.7 N-Beats Architecture

N-Beats neural network architecture design methodology was based on a handful of key

principles. First, it’s base architecture should be simple, clean and generic, yet deep and

expressive at the same time. Second, the architecture should nor rely on time-series-specific

feature engineering or input data scaling. The architecture itself should be extendable towards

making its outputs interpretable.

The basic building block proposed by the article authors consists of a fork architecture and is
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presented in Figure 2.11. It is also built from a multi-layer FC network (fully connected) with

ReLU non-linearity. Predicting the basis expansion coefficient θf (forecast) and backward θb
backcast, basic block is the vital point for the properly functioning algorithm. These blocks

are organized into stacks using doubly residual stacking principle. Stack’s layers may share

gθ.Building a very deep neural networks with interpretable outputs is an outcome of the

forecast being aggregated in a hierarchical fashion (Oreshkin et al., 2019).

Figure 2.11: N-Beats proposed architecture.

2.5.8 Basic Block

Having a fork-alike structure, basic block is depicted on the Figure 2.11 as the left-most one,

it accepts an input x and outputs two vectors, x̂ and ŷ. Input x is a certain history lookback

window of a certain length ending with the last measured observation, ŷ is the block;s forward

forecast of length H, and x̂ is the block’s best estimate of x, also known as the ’backcast’.

Backcast estimation is performed given the constraints on the functional space, that the block

can be used to approximate signals. (Oreshkin et al., 2019). In the architecture chosen to

develop the classifier, the lookback window length is set to 5H which means, that it is of

length equal to forecast horizon multiplied by 5. It is a firm statement, as due to the authors

of the N-Beats neural net typical lookback window lengths are x ∈< 2H; 7H >.

Inside, the basic block consists of two parts parts, first of which is a waveform generator

gθ : τN → γN being responsible for mapping N points from the domain of time

τN ⊂ RN to N points in a domain of forecast / backcast values γN ⊂ RN . The number of

forecast points and the number of backcast points are different in the general case. Waveform

generator thus is tuned with θ ∈ Θ ⊂ RM Function of gθ is to provide sufficiently prosperous

set of time-varying wave-forms, selected accordingly to the θ parameter variation. Aforemen-
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tioned gθ parameter might be either a component part of the learning process obtained as

a part of its’ results or might be limited in an advance due to the provided restrictions and

constraints of the structure of outputs.

Second part makes a forecast and backcast predictors of wave-forms generators’ parameters.

It’s fork-alike architecture might be described using the following equation:

ϕfφ : Rdim(x) → Θ

ϕbφ : Rdim(x) → Θ
(2.9)

The tasks of ϕfφ include the prediction process of future θF parameter expansion, which, in

a final result, will lead to further optimization of the partial prediction ŷ. Analogically, the

tasks of ϕbφ include providing estimations of xwith the final goal to aid in the input data

description optimisation by having it selected and partially reduced (especially the parts

which are not helpful anymore in the prediction process) before passing it to the blocks laid

below (Oreshkin et al., 2019).

2.5.9 Double Residual Method

The middle block of the N-Beats architecture depicted on the figure Figure 2.11 consists of

two residual branches, one of which conducts the backcast prediction on each of it’s layers, and

the second proceeds with the proper prediction for the previously mentioned future horizon

on each of it’s layers. The branch performing the backcast residual can be described as the

one running a sequential analysis on the given input data. Each of the blocks removes a part

of the input signal which it is able to describe well, thus resulting in a forecast prediction

process being easier along the downstream blocks. What is more, such a solutions allows for

a facilitation of more fluid gradient back-propagation. A partial forecast predictions are the

outputs of each layer providing a hierarchical decomposition, being first aggregated at the

stack level and then at the overall network level. Were the stacks allowed to have an arbitrary

gθ for each layer and the architecture model was not generic, it would have a different effect

on the network, other that simply making the network more transparent to gradient flows.

2.5.10 Generic Architecture

Two different approaches/ architectures can be distinguished in N-Beats neural network ar-

chitecture due to it’s creators - a generic or interpretable. The aforementioned architectures

names are associated with the returned values structures and their meaning. For the generic

network architecture this means that the network is returning pure values of it’s predictions.

For the interpretable neural network its’ outputs have a direct translation to the seasonality
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and the trend line as a functions.

For the sake of this work, generic architecture is being favoured, as the one giving more possi-

bilities with the numeric operations, which were a base of the proposed classifier. It does not

rely on any knowledge or assumptions specific for problems from the field of the time-series

forecasting.

Parameter gθ is being set to be a linear projection of the previously obtained value on the

previous output layer. In such a case, a partial prediction (forecast) exiting block j in i stack

is being defined as follows(Oreshkin et al., 2019):

ŷi,j = Wi,jθi,j + bi,j (2.10)

Generic model may be described and explained more visually to allow readers not being heav-

ily involved in machine learning studies understand the topic better: FC layers embedded in

the basic building block of the N-Beats network presented at 2.11 learn to predict decom-

position of the partial forecast ŷi,j of the Wi,j base already learned by the neural network.

Matrix Wi,j is of dim(θi,j) dimensions, implying, that the first dimension of Wi,j may be

interpreted as a discrete time index in the forecast domain. Additionally, the second dimen-

sion of the aforementioned matrix might be interpreted as the basic functions’ parameters,

whose expansion coefficient is θi,j (Oreshkin et al., 2019)

2.6 Preprocessing
A fair amount of preprocessing is being performed in order to prepare data for the further

process of classification. Firstly, only the Lead III recording signal and corresponding header

is taken from the data file, it is being flattened and converted into 1-D Numpy array to

facilitate further calculations. Then "min-max" normalisation is being performed, which

means that the resultative dataset fulfill the following equation:

z = x−min(x)
max(x)−min(x) (2.11)

Thanks to that, all values which are later studied by the neural network are falling in

range between 0 and 1. After performing normalisation, data is split into batches, train-

ing set of which is of ((provided_signal_length − forecast_length)xbackcast_length) di-

mension. Testing set for predictions is created in an analogical manner and has dimension

of ((provided_signal_length − forecast_length)xforecast_length) Later, the amount of

recordings in a single read file is being checked, and if it exceeds the range of 7500 reads
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(which is equal to 15s of recording) and if so, only first 15 seconds are taken into considera-

tion in order to avoid one file overtaking over the data-set due to its size. Batches associated

with the later recording in this file are simply abandoned.

2.7 Signal Features Extraction
No feature selection is being performed in this method. The idea was to use sheer time series

forecasting approach in order to get the neural network available to describe and predict

future behaviour of actually investigated signal only by providing the signal itself, without

any additional pre-processing performed to extract time-series forecasting specific features

, making it an universal ECG descriptive tool. Time series forecasting tools proved to be

applicable in the domain of ECG signals analysis (Barnett et al., 2004) and thus N-Beats

neural net seemed to a perfect candidate as it doesn’t require any specific time-series features

declaration (Oreshkin et al., 2019). The underlying goal of this classifier was to achieve

results without feature selection comparable with the already well-known ones obtained from

the classifiers which depend heavily on the future selection and analysis.

2.8 Network Inputs and Outputs
Algorithm input is a single ECG read binary file provided in WFDB format as explained

in the first subsection of this chapter, however to the network itself a single input vector is

being passed. The input vector x is an one dimensional array, with floating-point numerical

values from the third lead from 12-lead ECG signal. It has a set length of backcast_length

attribute which corresponds to the length of the lookback window as indicated in N-Beats

documentation (Oreshkin et al., 2019). The length of the lookback window was found during

the excessive process of the parameters’ grid search and equals backcastlength = 1500 for

calculations conducted on GPU, and backcastlength = 1200 for the ones performed on CPU.

Output obtained from the network is a one-dimensional vector ŷ of floating-point numbers

which is a prediction based on the input vector. It is of length forecastlength = 500 for

calculations performed on GPU and forecastlength = 200 - the values were found during

extensive parameters’ grid search process.

2.9 Implementation
Implementation of the theoretical background given by the document aforementioned above,

is an undoubtedly challenging task, which would take tremendous amounts of time, especially

given the lack of proficiency in PyTorch / Keras / TensorFlow library. Therefore it was
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decided to firstly for a solution available online. One of such was found, openly available on

GitHub under the MIT License (“N-BEATS: Neural basis expansion analysis for interpretable

time series forecasting Implementation in Pytorch by @philipperemy (Philippe Remy)”, n.d.).

Thus, the implementation used to implement the N-Beats neural network in this project was

inspired by the implementation done by Philippe Remy (“N-BEATS: Neural basis expansion

analysis for interpretable time series forecasting Implementation in Pytorch by @philipperemy

(Philippe Remy)”, n.d.).

One of the crucial part of the neural net is naturally the basic building block and so is it’s

implementation. After describing the theoretical part it would be advisable to visualise it’s

use and implementation, which is done below:

Listing 2.1: Basic Block class implementation

class Block(nn.Module):

def __init__(self, units, thetas_dim, device, backcast_length=10,

↪→ forecast_length=5, share_thetas=False):

super(Block, self).__init__()

self.units = units

self.thetas_dim = thetas_dim

self.backcast_length = backcast_length

self.forecast_length = forecast_length

self.share_thetas = share_thetas

self.fc1 = nn.Linear(backcast_length, units)

self.fc2 = nn.Linear(units, units)

self.fc3 = nn.Linear(units, units)

self.fc4 = nn.Linear(units, units)

self.device = device

self.backcast_linspace, self.forecast_linspace = linspace(

↪→ backcast_length, forecast_length)

if share_thetas:

self.theta_f_fc = self.theta_b_fc = nn.Linear(units, thetas_dim)

else:

self.theta_b_fc = nn.Linear(units, thetas_dim)

self.theta_f_fc = nn.Linear(units, thetas_dim)

def forward(self, x):
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x = F.relu(self.fc1(x.to(self.device)))

x = F.relu(self.fc2(x))

x = F.relu(self.fc3(x))

x = F.relu(self.fc4(x))

return x

def __str__(self):

block_type = type(self).__name__

return f’{block_type}(units={self.units},␣thetas_dim={self.thetas_dim

↪→ },␣’ \

f’backcast_length={self.backcast_length},␣forecast_length={self

↪→ .forecast_length},␣’ \

f’share_thetas={self.share_thetas})␣at␣@{id(self)}’

As presented at Listing 2.1, four Full Connected layers are the entering point’s of the block,

being followed by either on or two additional Full Connected layers which are the represen-

tations of the thetas parameters estimators both for backcast and forecast. A decisive factor,

saying whether a two separate Full Connected layers are created or just a single, shared one,

is the parameter share_thetas.

ReLU activation functions are called in an overridden function forward passing the x input

vector to the next layers consecutively.

As the Generic architecture was chosen as the destined ones for the purposes of ECG signal

mimicking, more detailed class of the Generic Block should be considered as an obligatory to

present one, and so is done:

Listing 2.2: Generic Block implementation

class GenericBlock(Block):

def __init__(self, units, thetas_dim, device, backcast_length=10,

↪→ forecast_length=5):

super(GenericBlock, self).__init__(units, thetas_dim, device,

↪→ backcast_length, forecast_length)

self.backcast_fc = nn.Linear(thetas_dim, backcast_length)
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self.forecast_fc = nn.Linear(thetas_dim, forecast_length)

def forward(self, x):

# no constraint for generic arch.

x = super(GenericBlock, self).forward(x)

theta_b = F.relu(self.theta_b_fc(x))

theta_f = F.relu(self.theta_f_fc(x))

backcast = self.backcast_fc(theta_b) # generic. 3.3.

forecast = self.forecast_fc(theta_f) # generic. 3.3.

return backcast, forecast

The point of the class visible in Listing 2.2 is to create an object specifically designed to

be a part of a generic architecture, setting more general parameters, previously not set for

a general case scenario in a Block class, as an example backcast / forecast parameters fully

connected layers might be mentioned as they are specifically initialised with respect to values

of thetas_dim parameter along with the lengths of forecast and backcast.

Having discussed the blocks structure and goals, it is a good time to bring a doubly residual

stack implementation up to the light.

Listing 2.3: Doubly Residual Stack creation

def create_stack(self, stack_id):

stack_type = self.stack_types[stack_id]

print(f’|␣--␣␣Stack␣{stack_type.title()}␣(#{stack_id})␣(

↪→ share_weights_in_stack={self.share_weights_in_stack})’)

blocks = []

for block_id in range(self.nb_blocks_per_stack):

block_init = NBeatsNet.select_block(stack_type)

if self.share_weights_in_stack and block_id != 0:

block = blocks[-1] # pick up the last one when we share

↪→ weights.

else:

block = block_init(self.hidden_layer_units, self.thetas_dim[
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↪→ stack_id],

self.device, self.backcast_length, self.

↪→ forecast_length)

self.parameters.extend(block.parameters())

print(f’␣␣␣␣␣|␣--␣{block}’)

blocks.append(block)

return blocks

Method visible above in Listing 2.3 create an array of blocks of a given type, which in the

case of this project is a generic block type, with also paying attention to the parameter of

shared weights. The quantity of the blocks in a given stack is established by the parameter

nb_blocks_per_stack passed while initialising the class. With respect to that and the type

of the blocks set at the beginning, the resultant doubly residual stack is ready and functional

to optimise gradient flow during the learning stage.

Listing 2.4: Doubly Residual Stack forward method implementation

def forward(self, backcast):

forecast = torch.zeros(size=(backcast.size()[0], self.forecast_length

↪→ ,))

for stack_id in range(len(self.stacks)):

for block_id in range(len(self.stacks[stack_id])):

b, f = self.stacks[stack_id][block_id](backcast)

backcast = backcast.to(self.device) - b

forecast = forecast.to(self.device) + f

return backcast, forecast

in Listing 2.4 a flow between the blocks is implemented for both backcast and forecast pre-

dictors. Also, using .to(device) pushes objects to the CUDA device, on which the calculation

are being performed. Also, the first forecast results are being initialised at the beginning and

then modified along the gradient flow process.

Also, the training loop code is worth being inspected more meticulously, given the amount

of date accessible and the hardware limitation faced. For each diagnosis class the same

procedure is being repeated. Should one investigate a batching process for a specific data
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file, function one_file_training_data is the exact place to look. It reads one file from the

directory passed to the function, in this place an assumption is made, that all files in this

directory have the same diagnosis, being the training set for a N-Beats network associated

with a specific class, thus indicating the similarity of the signals.

After opening the file containing 12 standard lead ECG signal and the diagnosis description, a

decision was made to use only Lead 3 as a representative. Decision was supported by the claim

that Lead III is classified as one of the best at identifying STEMIs (ST Elevation Myocardial

Infarction). This allows the program to omit the rest of the data given in a file, making

the hardware limitations more bearable. Signals are then flattened and are being batched -

parted into smaller chunks of a set size (batches). These batches quantity is then checked,

aiming to prevent running out of the memory. If the amount is extending its limitation then

only a quarter of it is used in the calculation process. Finally, the received batches’ array is

divided into training and testing data sets using already implemented and widely recognized

function train_test_split available in SciKit library.

Listing 2.5: Loading the data from a single file

def one_file_training_data(data_dir, file, forecast_length, backcast_length,

↪→ batch_size):

normal_signal_data = []

normal_signal_x = []

x = wfdb.io.rdsamp(data_dir + file[:-4])

normal_signal_data.append(x[0][:, 3])

normal_signal_x.append(range(0, int(x[1][’sig_len’])))

normal_signal_data = [y for sublist in normal_signal_data for y in

↪→ sublist]

normal_signal_x = [y for sublist in normal_signal_x for y in sublist]

normal_signal_data = np.array(normal_signal_data)

normal_signal_x = np.array(normal_signal_x)

normal_signal_data.flatten()

normal_signal_x.flatten()

norm_constant = np.max(normal_signal_data)

normal_signal_data = normal_signal_data / norm_constant
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x_train_batch, y = [], []

for i in range(backcast_length, len(normal_signal_data) - forecast_length

↪→ ):

x_train_batch.append(normal_signal_data[i - backcast_length:i])

y.append(normal_signal_data[i:i + forecast_length])

x_train_batch = np.array(x_train_batch) # [..., 0]

y = np.array(y) # [..., 0]

if len(x_train_batch) > 30000:

x_train_batch = x_train_batch[0:int(len(x_train_batch) / 4)]

y = y[0:int(len(y) / 4)]

c = int(len(x_train_batch) * 0.8)

x_train, x_test, y_train, y_test = train_test_split(x_train_batch, y,

↪→ test_size=0.005, random_state=17)

data = data_generator(x_train, y_train, batch_size)

return data,x_train, y_train, x_test, y_test, norm_constant

data, x_train, y_train, x_test, y_test, norm_constant = naf.

↪→ one_file_training_data(actual_class_dir, file, forecast_length,

↪→ backcast_length, batch_size)

After obtaining a single file training data, running the training loop is being performed. A

while loop is being performed as long as the training process doesn’t stuck at certain level,

resulting in only minimal evaluation_score change at the level of 0.00001 or an epoch limit

is met (being set to 100 epochs).

Listing 2.6: Training loop

while difference > threshold and i < limit :

i += 1

global_step = naf.train_full_grad_steps(data, device, net, optimiser,

↪→ test_losses, training_checkpoint, x_train.shape[0])

new_eval = naf.evaluate_training(backcast_length, forecast_length, net,

↪→ norm_constant, test_losses, x_test, y_test, the_lowest_error,
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↪→ device)

print(f"GlobalStep:␣{global_step},␣New␣evaluation␣sccore:␣{new_eval}")

if new_eval < old_eval:

difference = old_eval - new_eval

old_eval = new_eval

with torch.no_grad():

print("New␣evaluation␣value:", new_eval, "␣␣iteration:", i)

print("Saving...")

new_checkpoint_name = str(checkpoint_name[:-3]+str(len(

↪→ test_losses))+".th")

naf.save(new_checkpoint_name, net, optimiser, global_step )

In Listing 2.6 Evaluation function is being called to perform evaluation of the most actual

neural network weights - it is done by performing MSE_Loss function from PyTorch library

on the whole testing data set. As the Evaluation function was mentioned, more in-depth look

might be advisable to understand the mechanism behind it’s name.

Listing 2.7: Function performing evaluation

def evaluate_training(backcast_length, forecast_length, net,

↪→ norm_constant, test_losses, x_test, y_test, the_lowest_error,

↪→ device, plot_eval=False):

net.eval()

_, forecast = net(torch.tensor(x_test, dtype=torch.float))

if device.type == ’cuda’:

singular_loss = F.mse_loss(forecast, torch.tensor(y_test, dtype=torch

↪→ .float)).item()

else :

singular_loss = F.mse_loss(forecast, torch.tensor(y_test, dtype=torch

↪→ .float).to(device)).item()

test_losses.append(singular_loss)

if singular_loss < the_lowest_error[-1]:

the_lowest_error.append(singular_loss)

p = forecast.detach().cpu().numpy()
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if plot_eval:

subplots = [221, 222, 223, 224]

plt.figure(1)

for plot_id, i in enumerate(np.random.choice(range(len(x_test)), size

↪→ =4, replace=False)):

ff, xx, yy = p[i] * norm_constant, x_test[i] * norm_constant,

↪→ y_test[i] * norm_constant

plt.subplot(subplots[plot_id])

plt.grid()

plot_scatter(range(0, backcast_length), xx, color=’b’)

plot_scatter(range(backcast_length, backcast_length +

↪→ forecast_length), yy, color=’g’)

plot_scatter(range(backcast_length, backcast_length +

↪→ forecast_length), ff, color=’r’)

plt.show()

return singular_loss

Here, an important point has to be made. As the Numpy array is being used along the code,

it has to be mentioned, that Numpy library’s operations are performed on CPU, which is a

vital point, as calculation of weights performed on GPU have to be detached and then its’

results have to be redefined (translated) into a Numpy array using the CPU. Thus indicating

a certain slowdown of the whole process. Score function used in this entity is a MSE_Loss

function provided by PyTorch. Additionally, as visible at the bottom of Listing 2.7, evaluation

function has a possibility to draw 4 plots of randomly selected periods, showing how well

generated curve is fitting the actual state of things. By default, this functionality is turned

off to optimize training process.

2.10 Classifier

2.10.1 How to Run

To perform classification execution of the following command execution is required, along

with directory containing input data files and another one prepared to receive output files.

Listing 2.8: Script execution using bash console
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$ python3 driver.py input_path output_path

Where driver.py is the name of main script, input_path is the path to the directory

containing input files and output_path is the path to the destination directory to which

result files will be saved.

2.10.2 Classifier Input and Output

As the algorithm works as a set of scripts it is able to classify multiple signals in the same

run. Therefore, a path to the directory containing pairs of ECG read binary files (with .hea

and .mat extensions) provided in WFDB format as explained in section 2.2 is required as an

input argument to the program. When in process, a single files are being open and read by

the program and network adjusted chunks are being taken from them, as explained in section

2.8.

Outputs consist of the multiple .csv files which are saved in the directory indicated in the

output_path parameter. Each file contains output for a single recording in a specific format

presented below:

#<READ-ID>

AF I-AVB LBBB Normal PAC PVC RBBB STD STE

0 1 0 0 0 0 0 0 0

0.88 1.0 0.283 0.67 0.60 0.461 0.237 0.751 0.0

First row of the output contains the ID of the file to results correspond. Second, contains

class labels. Third contains an actual result of classification, meaning 0 or 1 corresponding

to negative and positive result respectively. Forth contains partial results of classification,

ranging from 0 to 1 as they went under normalisation min-max.

This output format was specified and required for the initial stages of PhysionetChallenge.

2.10.3 Classifier Description

Classifier used in this project was defined by it’s author for the needs of PhysionetChal-

lenge / CinC2020. The idea standing behind it’s architecture was already mentioned

above yet more thorough description might appear to be substantial, as it is the subject of

this paper. Therefore, an implementation of Model class is presented below. It contains

vital functions: load and predict being responsible for loading N-Beats trained networks and

performing classification process consecutively.
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Listing 2.9: Classifier implementation

class Model:

def __init__(self, device=torch.device(’cpu’)):

self.forecast_length = 500

self.backcast_length = 3 * self.forecast_length

self.batch_size = 256

self.classes = [’LBBB’, ’STD’, ’Normal’, ’RBBB’, ’AF’, ’I-AVB’, ’STE’

↪→ , ’PAC’, ’PVC’]

self.device = device

self.nets = {}

self.scores = {}

self.scores_norm = {}

self.scores_final = {}

def load(self):

for d in self.classes:

checkpoint = d + "_nbeats_checkpoint.th"

net = NBeatsNet(stack_types=[NBeatsNet.GENERIC_BLOCK, NBeatsNet.

↪→ GENERIC_BLOCK],

forecast_length=self.forecast_length,

thetas_dims=[7, 8],

nb_blocks_per_stack=3,

backcast_length=self.backcast_length,

hidden_layer_units=128,

share_weights_in_stack=False,

device=self.device)

optimiser = optim.Adam(net.parameters())

naf.load(checkpoint, net, optimiser)

self.nets[d] = net

def predict(self, data, data_header):

x, y = naf.organise_data(data, data_header, self.forecast_length,

↪→ self.backcast_length, self.batch_size)

for c in self.classes:
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self.scores[c] = naf.get_avg_score(self.nets[c], x , y)

scores = list(self.scores.values())

print(self.scores)

max_score = max(scores)

min_score = min(scores)

result = {}

for c in self.classes:

self.scores_norm[c] = (self.scores[c] - min_score) / (max_score -

↪→ min_score)

self.scores_final[c] = 1 - self.scores_norm[c]

result[c] = 0

if self.scores_final[c] > 0.99:

result[c] = 1

return result

As visible in Listing 2.9 some indispensable parameters are set with default fixed values in the

initializing function. Most of them is of N-Beats characteristic origin, and some are helping

parameters facilitating the overall process.

Predict functions perform the final prediction itself. Based on the normalised scores returned

by nine trained N-Beats networks it assigns labels to the highest scores, having a threshold

of 0.99, where 1 value is a maximal possible score, which means that the distance between

regressed curve made by a N-beats predictors from the original signal equals to 0. It return

a set combining class label and the score obtained from the predictors. Load function does

nothing else than loading 9 trained nets to an array and assign the array to the Model object

itself.
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3 Results

3.1 Training Results
The neural net descriptors were reaching different results in regards of evaluation loss due to

the nature of signal associated wit ha certain class (cardiac disorder). Yet, in general each net

definitely get better along the training process which will be best visible on graphs presented

in the upcoming subsections. All graphs present data after normalization in the domain of

time, where one unit of time equals 1/500 s.

3.1.1 Graphs Legend

Due to space limitations and scale in which the graphs are presented, I have decided to

remove the legend on them and display it once in this section. Colors, marking, and meaning

is consistent along all of the graphs presented below.

Figure 3.1: Graphs legend.
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3.1.2 Network describing LBBB ECG signal

Figure 3.2: N-Beats describing LBBB signal after first epoch of training on examples from
evaluation set.

Figure 3.3: N-Beats describing LBBB signal after last (23rd) epoch of training on examples
from evaluation set.
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At the beginning of the training process, network is trying to predict forecast values based

only on randomly set parameter values, and backcast history of length 1200 reads. As visible,

it covers wide range of values somewhere around the proper values. Random values picks are

visible, especially at the bottom right example, and predicted values look very noisy.

After proceeding with additional 22 epochs of training, neural net predictions are more clear

and consistent. Trend and seasonality of LBBB specific ECG curve is visible, no noise can

be detected on graphs and predictions fit tightly into expected range of values.

3.1.3 Network describing PVC ECG signal

Figure 3.4: N-Beats describing PVC signal after first epoch of training on examples from
evaluation set.
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Figure 3.5: N-Beats describing LBBB signal after last (41st) epoch of training on examples
from evaluation set.

PVC ECG signal was one of the most chaotic in the data set, which caused N-Beats having

a hard time detecting its features and consistencies. At the beginning random values are

being predicted somewhere around the average value of the lookback window. It is presented

almost as a noisy red box of predicted values covering the green lines of the ground true.

Due to it’s complexity, this signal required almost twice as much training time as the previous

one, reaching it’s peak of performance after 41st epoch. Still it has troubles with describing

chaotic S-T segment and very quick QRS phase. However better trend depiction is visible

and there is no noisy blocks covering average values range.
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3.1.4 Network describing STD ECG signal

Figure 3.6: N-Beats describing STD signal after first epoch of training on examples from
evaluation set.

Figure 3.7: N-Beats describing STD signal after last (36th) epoch of training on examples
from evaluation set.
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STD signal reads visible in the exemplar section were recorded from a patient with higher

heart beat rate, which affected the amount of picks fitting in the lookback window. Due to

that, first predictions coming from neural network almost completely skipped QRS phase in

their forecast. Even when the forecast window was starting from the Q-R hill, it was still

omitted, and no values from the R-peak area were predicted.

After 36 training epochs neural net reached it’s best performance, faithfully describing the

trend of STD associated signal. However, values of forecast are slightly shifted which causes

ground true line more visible. There is still some uncertainty left especially in the area of

P-wave.

3.1.5 Network describing AF ECG signal

Figure 3.8: N-Beats describing AF signal after first epoch of training on examples from
evaluation set.
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Figure 3.9: N-Beats describing AF signal after last (26th) epoch of training on examples
from evaluation set.

For AF ECG signal, first prediction values were much more dense around average value of

the T-wave / P-Wave area. Lack of ability to describe the trend is obvious and very visible,

however in spite of the other methods presented it was not even trying to mimic the behaviour.

After 26 training epochs neural net reached it’s best performance, however it was flattening

the curve, often not reaching distant values in R-peaks or, as visible on the right bottom

corner example, S-peak when it was at the beginning of the forecast window.
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3.1.6 Network describing PAC ECG signal

Figure 3.10: N-Beats describing PAC signal after first epoch of training on examples from
evaluation set.

Figure 3.11: N-Beats describing PAC signal after last (19th) epoch of training on examples
from evaluation set.
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N-Beats also in case of PAC ECG signal ignored peaks and extreme values of QRS phase

during his initial predictions. Yet, small curvatures are visible, thus indicating, that even

without extensive training neural net was able to identify first behavioural patterns.

PAC describing network training was relatively quick, as it took only 19 epochs. After that

period of time, neural net was available to depict and predict abnormal behaviours which is

visible on the exemplar graphs.

3.1.7 Network describing Normal ECG signal

Figure 3.12: N-Beats describing Normal signal after first epoch of training on examples
from evaluation set.
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Figure 3.13: N-Beats describing Normal signal after last (19th) epoch of training on
examples from evaluation set.

For Normal ECG signal initial N-Beats configuration was completely lost, not detecting any

peaks from the QRS phase. It also skipped or left unnoticed waves from P or T segment,

meaning it was just assigning close to average values for any new coming prediction.

Due to it’s regularity this signal was described almost completely by the N-Beats neural

network, appropriately forecasting all crucial points, however sometimes flattening values of

the QRS peaks as visible on the example from the bottom left corner.
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3.1.8 Network describing STE ECG signal

Figure 3.14: N-Beats describing STE signal after first epoch of training on examples from
evaluation set.

Figure 3.15: N-Beats describing STE signal after last (26th) epoch of training on examples
from evaluation set.
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As with most of the classes, initial configuration of the neural network returned results from

the area of average lookback window values. No STE specific curvature is visible.

Due to noisiness of STE signal, N-Beats had a lot of troubles with describing it’s character-

istics. Some of the rapid jumps are not marked, which means that the neural net tried to

somehow smoothen its predictions, making itself more generalized.

3.1.9 Network describing RBBB ECG signal

Figure 3.16: N-Beats describing RBBB signal after first epoch of training on examples from
evaluation set.
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Figure 3.17: N-Beats describing RBBB signal after last (27th) epoch of training on
examples from evaluation set.

For RBBB signal initial descriptor was not detecting any of the QRS points or important

peaks, however, slight curvatures on the wave forms is visible at the top right example.

Although some edge values like R peaks are a little bit flattened, after reaching it’s top

performance after 27th training epoch N-Beats net was able to identify and properly mimic

abnormal behaviour of RBBB signal as visible on the exemplar graphs.
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3.1.10 Network describing I-AVB ECG signal

Figure 3.18: N-Beats describing I-AVB signal after first epoch of training on examples from
evaluation set.

Figure 3.19: N-Beats describing I-AVB signal after last (21th) epoch of training on
examples from evaluation set.
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Although dominated by the average values forecast, initial neural network was able to identify

main abnormality of the signal visible at exemplar graphs, keeping appropriate curvature on

the drops in points Q and S.

After 21 epochs, descriptor of the I-AVB ECG signal was able to almost entirely match the

forecast predictions with ground true signal, which means that it properly learned abnormal-

ities of the given signal.

3.2 Classification Results
To obtain classification results and proper scores - equivalent to the ones used by the jury

of the Challenge, a provided script was used. Script called driver.py consists of basic func-

tions including save_challenge_prediction and load_challenge_data and the main function

containing the loop which proceeds with the classification process. Aforementioned loop is a

vital point of this script, therefore it is worth being presented:

Listing 3.1: Main loop of driver.py script

for i, f in enumerate(input_files):

print(’␣␣␣␣{}/{}...’.format(i+1, num_files))

tmp_input_file = os.path.join(input_directory,f)

data,header_data = load_challenge_data(tmp_input_file)

current_label, current_score = run_12ECG_classifier(data,header_data,

↪→ classes, model)

# Save results.

save_challenge_predictions(output_directory,f,current_score,

↪→ current_label,classes)

As visible above, in each iteration a different input file is investigated and results of the

investigation process are being saved into a separate output *.csv file containing the final

result of classification, labels and scores for each label.

3.3 Received Scores

3.3.1 Classifier trained on GPU with MSE loss function as decisive

Network parameters:
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Table 3.1: Networks Parameters

Index Parameter Value

1 Forecast Length 500

2 Backcast Length 1500

3 Batch Size 256

4 Hidden Units 128

5 Blocks 3

6 Theta dimensions [7,8]

7 Classifier decisive function MSE loss

The very first results obtained were results of a training process, which took around 48 hours,

and was performed on very few parts of training data-set ( less 10% of one epoch). With

that results visible in Table 3.2 were achieved.

Table 3.2: Scores after 48h training process

Index Measure Value

1 AUROC 0.671

2 AUPRC 0.088

3 Accuracy 0.779

4 F-measure 0.028

5 Fbeta-measure 0.033

6 Gbeta-measure 0.010

Yet, knowing that the training process was short and discovering leaks in the main loop

everything was run again, trying to reach one-epoch-long training. This time the process was

interrupted after approximately 96 hours of training - the reason for stopping the process

was it being performed on a private machine, which was not a property of the main author

and thus by him the stoppage was called (to avoid exploitation of the host’s kindness). No

measures were obtained.

More restriction were put on the training process, and with the same network architecture

it was run for the third time. This try took approximately 72 hours to finish and covered

around 20% of the training data-set - which is still a very low number. Yet, what could have

been predicted, the results achieved were better - they are described in Table 3.3.
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Table 3.3: Scores after 72h training process

Index Measure Value

1 AUROC 0.594

2 AUPRC 0.101

3 Accuracy 0.782

4 F-measure 0.044

5 Fbeta-measure 0.053

6 Gbeta-measure 0.017

Confusion matrix for this classifiers looks as follows.

Figure 3.20: Confusion matrix for classifier based on big network trained on GPU with
MSE loss measure.

On the confusion matrix we can see that this classifier almost always assigned only one label

to any new signal presented. Higher number in the I-AVB row mean, that this class was

assigned, especially when AF signal was provided or the RBBB one. For the AF originally

labeled signals, out of 199 signals 140 was claimed to be of I-AVB label, and none of the

signals was properly classified as AF. Out of 309 RBBB signals 180 were classified as I-AVB

and only 74 was correctly labeled as RBBB It is also worth noting, that after performing

well on training set, big neural network was absolutely unable to keep its ability to predict

shapes and seasonality on testing set, resulting in following plots:
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Figure 3.21: Huge neural network prediction on exemplar record from testing dataset

This happened because of the forecast length / backcast length ratio is to low - model has

not had enough "memory" to properly adjust its prediction for so many points. Due to that it

returned almost equally distributed points, paining box alike shape. To fix it, longer training

process would be necessary along with extending lookback window size.

3.3.2 Classifier trained on CPU with L1 loss function as decisive

Network parameters:

Table 3.4: Networks Parameters

Index Parameter Value

1 Forecast Length 200

2 Backcast Length 1200

3 Batch Size 64

4 Hidden Units 16

5 Blocks 3

6 Theta dimensions [7,8]

7 Classifier decisive function L1 loss

After seeing that the results of the big neural network were miserable, decision was made to

perform more experiments on simpler networks in order to be able to conduct required calcu-

lation on CPU. Surprisingly, the results of small networks were better than the one received

after 48h of GPU huge neural network training, and just slightly worse than these received

after 72h period. What is more, measures most important for the Physionet Challenge like
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F, F-beta and G-beta measures improved. Measures scores are visible in the table below:

Table 3.5: Small network scores, CPU training

Index Measure Value

1 AUROC 0.622

2 AUPRC 0.0785

3 Accuracy 0.802

4 F-measure 0.068

5 Fbeta-measure 0.08

6 Gbeta-measure 0.028

On this confusion matrix we can see that this time LBBB label was almost always assigned

when exposed to a new signal. Again, as the AF and RBBB signals are most numerous we can

see that the vast majority of them was labeled as LBBB, however there is also a small shift in

proportions visible, as now the distribution of the Normal and signals labels is narrower and

the LBBB assignment is even more dominant. Out of 1276 predictions, to 762 a label LBBB

was assigned. Out of 199 signals with original AF label, 170 was labeled by the classifier as

LBBB.

Figure 3.22: Confusion matrix for classifier based on small networks and L1 loss measure.

Surprisingly, smaller networks were also capable of remembering learned trends even when

57



Chapter 3. Results Bartosz Puszkarski

exposed to testing dataset. Although in most cases patterns were chaotic, sometimes, when

test signal was not noisy, proper network was able to generate almost perfect matches. It

happened really seldom, however more often than in the bigger networks and it has a reflection

in F-measure, F-beta measure and Gbeta measure scores.

Figure 3.23: Small network trained to detect LBBB signal patter after being exposed to test
set example

3.3.3 Classifier trained on CPU with MSE loss function as decisive

Network parameters:

Table 3.6: Networks Parameters

Index Parameter Value

1 Forecast Length 200

2 Backcast Length 1200

3 Batch Size 64

4 Hidden Units 16

5 Blocks 3

6 Theta dimensions [7,8]

7 Classifier decisive function MSE loss

Mean Squared Error function has an advantage of penalising more the distant predictions.

This means, that in hypothetical situation, if one of the predictions has predicted a similar

amount of points close to original curve and points which lay a certain distance from it, it

will have rather more "negative" score, meaning that the algorithm put more emphasis on

those distant ones. It is a contrary to L1 function, where the outcome score would be close to
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being neutral. It resulted in a bit worse AUROC score at the level of almost 60% , however

F measure, Fbeta measure and Gbeta measure were worse than in L1 case.

Table 3.7: Small network scores, CPU training, MSE loss function

Index Measure Value

1 AUROC 0.596

2 AUPRC 0.101

3 Accuracy 0.792

4 F-measure 0.07

5 Fbeta-measure 0.068

6 Gbeta-measure 0.0249

On a confusion matrix visible below it is certainly noticeable that network is almost always

claiming to see LBBB pattern in a given signal. Out of 1276 predictions made, 903 were

classified as a LBBB signal. It means that in 70.7 % of cases network returned LBBB class

as a proper label. Again in the most numerous classes, only a few examples (if any) were

labeled properly. No AF signals were classified as AF. only 6 out of 184 Normal signals were

classified properly, and 31 out of 309 RBBB signal received their true value from proposed

classifier.

Figure 3.24: Confusion matrix for classifier based on small networks and MSE loss measure.
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It was also visible on graphs, that LBBB descriptor were trying to create "noisy" predictions

in order to cover the area of average values for most of the signal, which caused the median of

MSE to be lower for this N-Beats network, than for ones which were trying to predict "clean"

values and missed peaks and slopes.

Figure 3.25: Small neural network describing LBBB signal trying to produce noisy forecast
to cover average range of values

Figure 3.26: Small neural network describing STE signal trying to produce clean forecast
with peaks in order to detect strong peaks

3.3.4 Classifier trained on CPU with MSE loss function as decisive with

weight bias on LBBB descriptor

Network parameters:
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Table 3.8: Networks Parameters

Index Parameter Value

1 Forecast Length 200

2 Backcast Length 1200

3 Batch Size 64

4 Hidden Units 16

5 Blocks 3

6 Theta dimensions [7,8]

7 Classifier decisive function weighted MSE loss

After seeing that the classifier is biased towards predicting LBBB labels, decision was made

to penalise mistakes on LBBB signal forecaster 1.4 times more than on the others. The reason

to do so was to check, if other descriptors would be able to put their label on signal if the

decisive threshold was lowered due to lack of LBBB confidence.

Table 3.9: Small network scores, CPU training, weighted MSE loss function

Index Measure Value

1 AUROC 0.604

2 AUPRC 0.097

3 Accuracy 0.803

4 F-measure 0.097

5 Fbeta-measure 0.109

6 Gbeta-measure 0.0381

Although last three parameters improved due to bigger diversity in decision making, these

improvements were minor, and surely not sufficient to call them satisfying. AUROC measure

oscillates around 60% Visible trend from the previous experiment shifted to I-AVB class,

making the classifier assign 650 label to I-AVB class, making it 50.9% of total assignments.
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Figure 3.27: Confusion matrix for classifier based on small networks and weighted MSE loss
measure.

It would be advisable also to test, whether if additional bias was put on I-AVB class would

it have a direct impact on the measures, thus analogical experiment was performed with

additional penalty of 1.2 on I-AVB class (meaning, that distance of bad predictions for I-

AVB descriptor was multiplied 1.2 times). Following scores were achieved.

Table 3.10: Small network scores, CPU training, weighted MSE loss function with bias both
on LBBB and I-AVB class descriptors

Index Measure Value

1 AUROC 0.618

2 AUPRC 0.091

3 Accuracy 0.804

4 F-measure 0.106

5 Fbeta-measure 0.116

6 Gbeta-measure 0.0415

These were the best results achieved, regarding Fbeta and Gbeta measures, which are taken

into consideration as the most important ones in regard of the Challenge.

Confusion matrix distribution shifted, this time labels were divided into three dominant

classes LBBB, PAC and RBBB, which means there was an actual improvement in decision
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making, allowing for a better diversity in voting. With that said, the majority of the AF

signals was labeled as PAC, 75 RBBB signals were classified properly, and 52 PAC signals

were also classified as their true label indicates.

Figure 3.28: Confusion matrix for classifier based on small networks and weighted MSE loss
measure with biased LBBB and I-AVB descriptors.

It is worth presenting the ROC curves of few selected classes. They represent the performance

of the classifier for a certain class. They can be found below.
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Figure 3.29: ROC curve for LBBB class.

Figure 3.30: ROC curve for PAC class.
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Figure 3.31: ROC curve for RBBB class.
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4 Discussion
Results obtained with the use of N-Beats neural network may be claimed to be disappointing,

especially the ones obtained from GPU training due to its time/effect ratio, as the measures

provided by the Challenge (Fbeta measure and Gbeta measure) have reached numbers below

10% after the very first training. It might be slightly deceiving, as these measures penalise

wrong, or not fully appropriate classification, much more heavily than rewarding the correct

one. Area under the ROC curve is at the level of 0.329, which giving the fact of having

9 classification classes is not the worst one, but still is being far from good. Area under

Precision-Recall curve is also small, which indicates, that our network has very poor preci-

sion. Yet, having an accuracy at the level of 77% the classifier might be claimed to have a

potential, especially given that it was trained using only 10% of a singular epoch training

data-set, which for neural network is almost unnoticeable.

The best experiment turned out to be the one performed on smaller network, with biased

MSE loss function as decisive, with N-Beats neural networks trained on CPU with smaller

batch size and little hidden units number. Among the experiments, the most noticeable

phenomena was lack of support in assigning labels to some classes like: AF, STE, STD. Both

during the first experiments without additionally penalised LBBB and in the later ones with

extra penalisation these classes were almost completely omitted, which was visible in the

presented confusion arrays. Also, a tendency to assign a single label in a vast majority of

prediction was observed before implementing additional penalisation, which may indicate a

strong influence of a lead characteristic towards the results of test signal exposure, by which

the fact, that certain cardiac conditions are better exposed on certain leads is meant.

However, if one were to compare results obtained during the unofficial phase of PhysioNet

/ CinC Challenge 2020, and the best results reached during experiments performed during

work over this project one may say, that objectively they are not the worst. Based on

the results of the last experiment presented in the table 3.10 , receiving the best scores in

measures considered in leaderboard of the PhysioNet challenge (Fbeta measure and Gbeta

measure) (the PhysioNet/Computing in Cardiology Challenge 2020, 2020) a comparison was

made in order to speculate possible place of this project in the unofficial ranking. Based

on the unofficial leaderboard and taking best scores received into the consideration, final
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place was calculated. It turned out that even though the classifier itself reached not the most

astonishing results, it would be placed at 332 position out of 396 works (Challenge2020,

2020).

There are methods, which score even 98% of ECG classification accuracy. They are most

often build over pattern recognition methods with strong preprocessing and independent com-

ponent analysis (Yu & Chou, 2008). Some of them require patron figure to do a comparative

classification. The features regularly used in ECG beat classification can be virtually divided

into categories. The features can be acquired with time domain methods, with transforma-

tion methods, represented as statistical measures, etc. As to the pattern classification, efforts

have also been devoted to the development of suitable classifiers for different kinds of feature

sets, including linear discrimination or neural networks (Yu & Chou, 2008). This pattern

proved to be much more efficient and useful than the one proposed by me in this work. Al-

though the accuracy was the measure of the highest scores achieved, definitely comparative

classification which used features or patron figure were more robust in the process. Regres-

sion proposed in this work has one strong flaw, it is very prone to the noises in signal and

the differences in intervals. It was believed, that after learning on the training dataset neural

networks will adjust to newly exposed signal, allowing proper regression performance only

for the one network, which was dedicated to the original signal class. Yet, neural networks

were successfully applied to classify ECG signal (Osowski & Tran Hoai Linh, 2001) - in the

quoted example, fuzzy neural network classify given signal as ECG; and thus prove to be

constantly worth investigation in the domain of more detailed classification. There were also

different approaches to using neural networks as classifiers. Problem was divided into several

bi-group classifier for each individual diagnostic class (Nugent et al., 1999). This allows for

model ensemblance which is strongly advisable in regards of N-Beats neural networks (Ore-

shkin et al., 2019). Lack of this feature strongly affected abilities of the classifier proposed

in this work, as only one layer of voting was performed based on MSE loss measure. Were

there more bi-group classifier and more N-Beats nets to predict smaller chunks of information

probably better results would be received.

Another factor having a direct impact on poor results of proposed morel is the input con-

taining only one out of twelve available leads. More successful methods utilise the initial

pre-processing module of beat detection which aims to locate each cardiac cycle in each of

the recording leads and insert reference markers (Nugent et al., 1999). Other works also in-

clude multiple leads, at least focusing on lead-V1, V2, V3 and V4 (Chang et al., 2012). This
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is mainly due to the fact, that each lead corresponded to different aspects of a heart activity

and thus would facilitate detection of the trends which are not visible on a single lead due to

its characteristics. This fact confirms the observations made during the experiments, as few

of the classes are almost never classified: STE, STD and AF are seldom labeled, almost as if

by a mistake. Including other leads will help to fix that behaviour.

However it has to be mentioned again, as this was a exploratory work and it’s goal was to test

whether the N-Beats architecture is suitable for classifying ECG signal and it’s variations,

that although the actual results are disappointing, a certain potential is already visible.

Sadly, the grid search performed was as wide as the hardware allowed to in order to find

most suitable hyper-parameters and define most fitting network blocks size. If the process

were to be performed in the state of art way, an expensive computationally process would take

surely more than 200 hours of training and evaluation and thus would require more advanced

hardware and logging metrics to collect all the data. Yet, with adjustments to default settings

N-Beats network proved that it is capable of performing it’s regression on the ECG signal,

having it’s generators describe trend and seasonality, and of returning generic results which

are useful in classification process itself.
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5 Conclusion
Classification of cardiac disorders is a topic of the utmost importance, as by exploring it

opportunities to save peoples live are being created. Not only do we, the community of

data scientists, computer scientists and many many others, try to investigate the possibilities

coming along with the technical development but also their usefulness in potentially high-risk

scenarios. Having the most recent achievements in fields of medicine and computer science

combined brings us, as a humanity another step closer to Utopian lifestyle, closer to becoming

a species which freed itself from the dangers of the natural imperfections.

Goals set at the beginning of this paper were met, as all signals categories were visualised

and described making them understandable and easier to interpret. N-Beats neural net-

works were implemented and the training processes, both more extensive using GPU and a

quicker one using CPU, were performed. After that, new classifier model were proposed and

certain experiments were perform to adjust and explore its behaviour. As the results were

the outcomes of the experiments they were discussed along the process with the main dis-

cussion in the separate section. It might be surely claimed, that all the initial goals were met.

N-Beats neural network is one of the most recent achievements in the field of Artificial In-

telligence and Machine Learning. Therefore the thesis formed under a question if N-Beats

neural network is useful to regress an ECG signal and the results of this regression are useful

for classification purposes was proved to be worth asking, and the investigation performed

confirmed initial suspicions. Although mentioned network reached disappointing results in

means of the PhysionetChallenge / CinC 2020 participation, only an initial investigation has

been performed, and more tedious approach would be recommendable.

What was lacking in the whole experiment was the factor of independently run, long experi-

ments which would allow for a better tuning of network parameters like the number of units

in a single hidden layer, batch size, length of the look-back window, thetas dimensions or

even the forecast length. All of the aforementioned parameters would directly influence the

complexity of the network, thus resulting in either creating a neural network which would

generalise regressed signal better, and remember certain trend and seasonality, or creating

network which due to its size (number of units in hidden layer mainly influence this charac-

teristic) would over-fit and although it would probably minimize error at the training data,
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it would be lacking the ability to generalize properly, having evaluation error rate higher.

Also it would be advisable to have a better model ensemblance for example by creating a

multiple bi-grouping classifiers and to include multiple leads to have a more thorough insight

into the domain signals. However it has to be emphasized that a new prediction model is

being proposed in this work compared to classic classification methods (specially those based

on feature extraction and pattern recognition). It is normal that lower results are obtained.

But, this is a promising new concept that will require better refinement as it can provide so-

lutions to vital problems, such as predicting whether a certain arrhythmia will end on its own

(spontaneously) or, conversely, will require therapies such as electrical shock, anti-tachycardia

pacing, among others. This would help to avoid unnecessary shocks or even certain therapies

that result in a higher quality of life for the patient.
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