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Abstract 

 

Atrial Fibrillation (AF) is a supraventricular arrythmia characterised by a chaotic and disorganised 

electrical activity which leads to an irregular contraction. AF is the most common cardiac arrythmia 

and its prevalence increases with the ageing population. It is estimated that there are currently 4.5 

million cases in Europe. Currently, cardiac ablation is the main treatment procedure for AF treatment. 

To guide and plan this procedure it is essential for clinicians to obtain 3D anatomical reconstruction 

models of the atria which are patient specific. In clinical practice the atria is manually delineated 

which is a labour-intensive method. The aim of this project is to develop automatic algorithms with 

employment of Deep Learning (DL) techniques for left and right atrium segmentation from MRI 

volumetric images.  

In this project neural networks have been used with encoder-decoder architecture to provide 

accurate pixel-wise segmentation of the atria from 3D MRI images. Whilst most studies in this area 

concentrate their efforts in left atrium (LA) segmentation the aim of this project was to obtain a 

segmentation model also capable of accurate right atrium (RA) segmentation from few annotated 

data. For this purpose, the network was trained with 2 databases. The first database consisted of 100 

volumetric MRI images with LA ground-truth segmentations and was used to obtain a high-

performance model for posterior deep fine-tuning techniques. The second database consisted of 19 

volumetric MRI images of high variability with ground-truth segmentation of both atria cavities and 

was used to verify the segmentation accuracy of the network for LA and RA from few annotated 

samples. Furthermore, the high generalisation capacity obtained by the model trained with the 

second database was verified with an external database of only LA ground-truth. To compare the 

predicted segmentation with the labelled data a similarity coefficient was computed from them and 

was compared with the existing literature. In addition, volumetric visualization and reconstruction 

libraries were employed to obtain the anatomy of the atria cavity.   

The results obtained are very promising. The second database model was capable of accurately 

segmenting the RA with a dice coefficient of 0.9160 when fine tuning techniques are implemented. 

Furthermore, the model created with database 2 demonstrated a very high generalisation capacity 

when tested with the third database obtaining a dice coefficient of 0.8515 for LA segmentation.  

 

Keywords: Atrial Geometry; Semantic Segmentation; Deep Learning; Convolutional Neural 

Networks; Magnetic Resonance Imaging. 
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Resumen 

La fibrilación auricular (FA) es una arritmia supraventricular caracterizada por una actividad eléctrica 

caótica y desorganizada que conduce a una contracción irregular. La FA es la arritmia cardíaca más 

común y su prevalencia aumenta con el envejecimiento de la población. Actualmente, la ablación 

cardíaca es el principal tratamiento de la FA. Para guiar y planificar este tratamiento es esencial que 

los médicos tengan acceso a modelos 3D de la anatomía auricular que sean específicos del paciente. 

Para ello, en la práctica clínica se segmentan manualmente las aurículas lo que requiere una intensiva 

labor. El objetivo de este proyecto es desarrollar algoritmos automáticos para la segmentación de la 

aurícula izquierda y derecha, a partir de imágenes volumétricas de Resonancia Magnética (RM), 

mediante el empleo de técnicas de Deep Learning. 

En este proyecto se han utilizado redes neuronales con la arquitectura encoder-decoder para obtener 

una segmentación precisa, píxel a píxel, de la aurícula a partir de imágenes 3D de RM. Mientras que 

la mayoría de los estudios en esta área concentran sus esfuerzos en la segmentación de la aurícula 

izquierda (AI), el objetivo de este proyecto ha sido obtener un modelo de segmentación capaz 

también de segmentar la aurícula derecha (AD) a partir de pocas muestras anotadas. Con este fin, se 

entrenó a la red con 2 bases de datos. La primera base de datos está compuesta de 100 imágenes 

volumétricas de RM con segmentaciones manuales o ground-truth de AI y se utilizó para obtener un 

modelo de alto rendimiento para posterior aplicación de técnicas deep fine-tuning. La segunda base 

de datos está compuesta de 19 imágenes volumétricas de RM de alta variabilidad con 

segmentaciones anotadas de ambas cavidades auriculares y se utilizó para verificar la precisión de 

segmentación de la red para AI y AD a partir de pocas muestras anotadas. Además, la alta capacidad 

de generalización obtenida por el modelo formado con la segunda base de datos se verificó con una 

base de datos externa de sólo ground-truth de AI (tercera base de datos). Para comparar la 

segmentación predicha con los datos etiquetados se calculó un coeficiente de similitud, también 

denominado Dice coefficent que se comparó con la literatura existente. Además, se emplearon 

librerías de visualización volumétrica y reconstrucción para obtener la anatomía de la cavidad 

auricular. 

Los resultados obtenidos son muy prometedores. El modelo desarrollado fue capaz de segmentar 

con precisión la AD con un Dice coefficient de 0,9160 cuando se implementan técnicas de deep fine-

tuning. Además, el modelo obtenido con la base de datos 2 demostró una capacidad de 

generalización muy alta cuando se evaluó con la tercera base de datos obteniendo un Dice coefficient 

de 0,8515 para la segmentación de AI. 

 

Palabras clave: Geometría Auricular; Segmentación Semántica, Deep Learning; Redes Neuronales 

Convolucionales; Imágenes de Resonancia Magnética. 
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Resum 

La fibril·lació auricular (FA) és una arrítmia supraventricular caracteritzada per una activitat elèctrica 

caòtica i desorganitzada que condueix a una contracció irregular. La FA és l'arrítmia cardíaca més 

comuna i la seua prevalença augmenta amb l'envelliment de la població. Actualment, l'ablació 

cardíaca és el principal tractament de la FA. Per a guiar i planificar aquest tractament és essencial 

que els metges tinguen accés a models 3D de l'anatomia auricular que siguen específics del pacient. 

Per a això, en la pràctica clínica se segmenten manualment les aurícules el que requereix una 

intensiva labor. L'objectiu d'aquest projecte és desenvolupar algorismes automàtics per a la 

segmentació de l'aurícula esquerra i dreta, a partir d'imatges volumètriques de Ressonància 

Magnètica (RM), mitjançant l'ús de tècniques de Deep Learning. 

En aquest projecte s'han utilitzat xarxes neuronals amb l'arquitectura encoder-decoder per a obtindre 

una segmentació precisa, píxel a píxel, de l'aurícula a partir d'imatges 3D de RM. Mentre que la 

majoria dels estudis en aquesta àrea concentren els seus esforços en la segmentació de l'aurícula 

esquerra (AE), l'objectiu d'aquest projecte ha sigut obtindre un model de segmentació capaç també 

de segmentar l'aurícula dreta (AD) a partir de poques mostres anotades. A aquest efecte, es va 

entrenar a la xarxa amb 2 bases de dades. La primera base de dades està composta de 100 imatges 

volumètriques de RM amb segmentacions manuals o ground-truth d'AE i es va utilitzar per a obtindre 

un model d'alt rendiment per a posterior aplicació de tècniques deep fine-tuning. La segona base de 

dades està composta de 19 imatges volumètriques de RM d'alta variabilitat amb segmentacions 

anotades de totes dues cavitats auriculars i es va utilitzar per a verificar la precisió de segmentació 

de la xarxa per a AE i AD a partir de poques mostres anotades. A més, l'alta capacitat de generalització 

obtinguda pel model format amb la segona base de dades es va verificar amb una base de dades 

externa de només ground-truth d'AE (tercera base de dades). Per a comparar la segmentació predita 

amb les dades etiquetades es va calcular un coeficient de similitud, també denominat Dice coefficent 

que es va comparar amb la literatura existent. A més, es van emprar llibreries de visualització 

volumètrica i reconstrucció per a obtindre l'anatomia de la cavitat auricular. 

Els resultats obtinguts són molt prometedors. El model desenvolupat va ser capaç de segmentar amb 

precisió l’AD amb un Dice coefficient de 0,9160 quan s'implementen tècniques de deep fine-tuning. 

A més, el model obtingut amb la base de dades 2 va demostrar una capacitat de generalització molt 

alta quan es va avaluar amb la tercera base de dades obtenint un Dice coefficient de 0,8515 per a la 

segmentació d'AE. 

 

Paraules clau: Geometria Auricular; Segmentació Semàntica, Deep Learning; Xarxes Neuronals 

Convolucionals; Imatges de Ressonància Magnètica. 
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Chapter 1. Motivation and Problem Statement 

Atrial Fibrillation (AF) is the most common sustained cardiac arrythmia and has become one of the 

most important public health problems in the last 20 years [1]. AF affects approximately 1-1.5% of the 

general population and its prevalence is projected to rapidly increase due to the ageing population[2]. 

As a result, the number of cases estimated in 2030 ascends to 14-17 million in Europe[1]. AF is a cardiac 

pathology highly associated with morbidity and mortality factors such as heart failure, ischaemic and 

haemorrhagic strokes. Moreover, it is heavily associated with an increase in public health expenses 

due to the increase in healthcare resource consumption by the public [2]. 

At this moment, the most common method for treating AF patients is radiofrequency catheter ablation 

to produce scars and electrically isolate the pulmonary veins [3]. Due to the large variation in the 

pulmonary veins connection pattern to the left atrium (LA) there is a need for LA models in order to 

transfer the generic ablation strategy to a specific patient’s anatomy. Furthermore, the viability 

assessment of the myocardium after these procedures is of utmost importance to quantify the patients 

scar burden and location and increase the success rate of these therapies [4]. 

Therefore, accurate segmentation of LA is highly desirable for patient specific scar characterization to 

select the appropriate ablation strategy. Furthermore, to plan the procedure 3D geometrical models 

of both the left and right atrium are required [5]. These 3D patient-specific models of the atria are 

obtained from the segmentation of MRI and CT images. In clinical routine this segmentation is normally 

performed manually by experts. However manual delimitation is a time-consuming, labour-intensive 

and error-prone method. The inter and intra variability in the observations is an important source of 

error [6]. In addition, the amount of slice annotations that have to be performed for each volumetric 

segmentation renders this method impractical.  

Furthermore, the automatic segmentation of these structures, specially the LA remains a challenging 

task due to the complex geometry of the LA and the morphological variations between patients [6]. In 

addition, although MRI acquisition techniques may prove useful due to their high contrast to noise 

ration and the possibility of scar quantification from contrast enhancement methods (LGE-MRI), they 

also provide additional challenges such as the low imaging resolution [6]. 

An emerging machine learning technique known as deep learning (DL) is gaining popularity in the field 

of medical image segmentation and has shown promising results for LA and RA segmentation. DL 

algorithms, referred to as neural networks, avoid limitations of traditional machine learning methods 

by means of supervised learning algorithms that are capable of self-learning features of the image for 

a more accurate segmentation.  

On the other hand, the use of these algorithms in routine clinical practice remains a challenge due to 

their high computational cost, their difficulties for generalisation and the fact that they require large 

amounts of segmented data, otherwise known as ground-truth, to be trained.  

Therefore, in this project the aim is to develop DL segmentation algorithms capable of segmenting 

both LA and RA cardiac structures with increased accuracy and generalisation capacity.   
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Chapter 2. State of the Art  

Deep learning (DL) methods consist in deep artificial neural networks that automatically extract 

discriminant features from input data for object detection and segmentation among other tasks. In the 

past decade, DL techniques, in particular Convolutional Neural Networks (CNN), have achieved great 

progress in computer vision tasks and have become the methodology of choice for medical image 

segmentation and classification [7]. 

CNNs consist of an input layer, an output layer and a stack of functional layers in between known as 

convolutional layers and pooling layers tasked with the feature extraction of the input data. These 

layers will be more thoroughly detailed in the following section. The output of the network is a fixed 

size vector where each element corresponds to a probabilistic score of each category (e.g. for image 

classification). CNNs were first introduced for medical image segmentation by Ciresan et al. for 

electron microscopy (EM) image segmentation [8]. However, this method required to divide the 

images into patches and train the CNN separately to predict the class for every centre pixel. This patch-

based approach has a lot of redundancy due to the overlapping patches in the image and its highly 

inefficient. As a result, CNNs are mainly used for object localization to estimate the bounding box of 

an object and extract the region of interest. The bounding box is then cropped from the image, forming 

a pre-processing step to reduce computational cost of segmentation [9]. For efficient, pixel wise 

segmentation a variant of CNN, known as fully convolutional neural network (FCN) is more commonly 

used.  

FCNs were first introduced by Long et al. for image segmentation [10]. FCNs are a type of CNN that do 

not have fully connected layers, in other words, the output of the network is an image (2D/3D) instead 

of a 1-dimensional vector. FCN have a structure known as encoder-decoder which takes input of an 

arbitrary size and produce an output of the same size. Given an input image the encoder or down-

sampling path extracts the high features of the image through a series of convolution and pooling 

operations and then the symmetrical up-sampling path or decoder interprets the feature maps and 

recovers the spatial information producing a pixel wise prediction as an output. The precise layers and 

operations found in the encoder-decoder structure will be explained in more detail in the next section.  

Contrary to CNN, FCN can be applied to entire images thus removing the need for patch selection [10]. 

On the other hand, FCN with simple encoder-decoder structure may be limited in capturing a precise 

image segmentation as some features may be eliminated during the pooling process in the encoder. 

Several FCN variants have been proposed that propagate features from encoder to decoder thus 

boosting segmentation accuracy, the most widely known variant for biomedical image segmentation 

is the U-net, first proposed by Ronneberger et al. [11]. 

The U-net recovers spatial context loss in the down-sampling path by employing skip connections 

between encoder and decoder, therefore yielding a more precise segmentation. Traditional 2D U-Nets 

have achieved good results in the field of medical image segmentation [11, 12]. However, as the 

convolution is performed in each 2D slice the spatial relationship between slices cannot be captured. 

On the other hand, the 3D extension of the U-Net, first proposed by Ciçek et al. [13], by expanding the 

filter operator into 3D space extracts image features in 3D and therefore considers the spatial 

continuity between the slices of the image.  
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Furthermore, Millietari et al. [14] proposed the 3D V-Net for volumetric segmentation wherein a novel 

loss function known as Dice coefficient was introduced and the learning of a residual function 

improved the training convergence.  

Several state-of-the-art cardiac image segmentation methods that include the U-net or its 3D variants, 

the 3D U-Net and 3D V-Net, have achieved promising segmentation accuracy in different cardiac 

segmentation tasks [15-17] .  

In the field of automated MRI atrial segmentation several traditional non-DL methods such as region 

growing [18], atlas-based label fusion [19] and non-rigid registration [20] have been applied in the past. 

However, these methods rely highly on good initialization and ad-hoc pre-processing methods which 

limits their potential adoption in the clinic.  

More recently, Bai et al. [21] applied 2D FCN to segment LA and RA from 2D long axis images. Likewise, 

other groups have also applied 2D FCNs to segment the left atrium from 3D LGE-MRI images in a slice 

by slice fashion with feature learning enhancement [22, 23]. Furthermore, Mortazi et al. proposed a 

variant of the FCN known as multi-view 2D FCN where the network is trained with different planar 

views of cardiac MRI images for a more robust segmentation [24]. 

3D neural networks enable the full use of spatial information in 3D images and their feature extraction 

may better reflect the shape features of the anatomy in cardiac segmentation [25]. Several variants of 

the 3D U-Net have been proposed for 3D LGE-MRI atrial segmentation achieving very promising 

results. Vesal et al. [26] proposed a 3D U-Net with dilated convolutions in the lowest level of the 

network to extract features spanning a wider spatial range. Li et al. [27] proposed a 3D U-Net with 

hierarchical aggregation to obtain better spatial fusion information.  

The network proposed by Jia et al. [25] for 3D LGE-MRI LA segmentation which will be employed in this 

project consist of a two-stage 3D U-Net. The ‘first’ U-Net is used to coarsely segment and locate the 

left atrium, based on this output the ‘second’ U-Net accurately segments the left atrium under higher 

resolution after the region of interest has been cropped. 
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Chapter 3. Objectives 

The main objective of this end of degree project is to develop automatic algorithms based on CNNs for 

the segmentation of LA and RA cardiac structures with increased accuracy and generalisation capacity 

for a future application in routine clinical practice. For this, a series of specific objectives have to be 

met first: 

1. To obtain LA and RA ground-truth databases of MRI images with high inter patient variability 

2. To review the state of the art of neural networks for cardiac segmentation and select the 

appropriate network architecture. 

3. To pre-process the images and ground-truth masks of these databases to select the ground-

truth segmentation of interest: LA or RA 

4. To train the network with a high variability database to increase its generalisation capacity and 

test it with an external database. 

5. To use deep fine-tuning techniques to increase the segmentation accuracy of the network 

6. To post process the output predictions of the network to integrate LA and RA. 

7. To design a 3D reconstruction algorithm for a visual assessment of atrial geometry and use 3D 

morphological filters to improve the reconstruction 

8. To review the existing segmentation methods in the literature and perform a comparison of 

the results obtained. 

9. To identify and describe limitations encountered during the course of this project and propose 

future lines of work.  
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Chapter 4. Theoretical Framework 

 

4.1  Heart Anatomy 

The cardiovascular system is fundamentally composed by the heart and the blood vessels such as veins, 

capillaries and arteries. The function of the cardiovascular system is to deliver oxygen and other 

nutrients transported by blood to body tissues and to remove waste products such as carbon dioxide. 

The heart is the main organ of the cardiovascular system, it is a muscular organ which by its contraction 

pumps blood through veins and arteries to the whole organism. 

Anatomically, the heart is located within the thoracic cavity, surrounded by both lungs medially and 

the diaphragm below. It is separated from other organs by a membrane known as the pericardium 

which surrounds the heart and conforms the pericardial cavity filled with serous liquid. As illustrated 

in Figure 1, the upper surface of the heart, known as the base, is where the vena cavae, the aorta, the 

pulmonary trunk and the great arteries and veins are attached. The inferior tip part of the heart is 

known as the apex [28]. 

The internal cavity of the heart is divided in 4 chambers: the Left Atrium (LA), the Right Atrium (RA) 

located in the upper section of the heart, and the Left Ventricle (LV) and the Right Ventricle (RA) 

located in the lower section. The chambers are divided from each other by the septa. 

Each atrium is connected to their corresponding ventricle through an atrioventricular valve that 

controls the blood flow and ensures a unidirectional flow. The LA is connected to the LV through the 

Mitral Valve (MV) which has a bicuspid structure and the RA is connected to the RV through the 

Tricuspid Valve (TV).  

Furthermore, the LV is connected to the aorta through the aortic valve and the RV is connected to the 

pulmonary trunk through the pulmonary valve. These are known as the semilunar valves and they are 

bicuspid by nature. 

Both the atrioventricular and semilunar valves are surrounded by a fibrotic ring known as the cardiac 

skeleton which provides mechanical stability to the heart during contraction and provides electrical 

isolation between the atria and ventricle [28]. 
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Figure 1 Heart structure and circulatory movement of blood through cardiac cavities [28]. 

Unlike the atrioventricular septum, the interatrial septum and the interventricular septum that divides 

both atria and both ventricles from each other have no openings, ensuring that there is no blood 

communication between both chambers [28]. 

All the structures mentioned above have a very specific function in the cardiovascular system. The LA 

and RA act as receiving chambers that contract and push the blood to the lower chambers (LV and RV). 

The LV and RV are the primary pump chambers that eject the blood from the heart towards the lungs 

or body, respectively [28].  

The composition of the heart wall consists of 3 layers: the epicardium, the myocardium, and the 

endocardium. The innermost layer is known as the endocardium and the external layer is known as 

the epicardium or visceral pericardium. The middle and thickest layer, known as the myocardium, is a 

layer composed of collagenous fibres and muscle cells which allows the heart to contract. It surrounds 

both ventricles and atria however its thickness varies from one cavity to another. For example, the 

myocardium thickness around the LV is much greater than around the RV. This occurs because the 

systemic circuit is englobing greater number of organs than the pulmonary circuit, so the LV needs to 

contract with a higher driving force to surpass this higher resistance. The myocardial wall of both atria 

is much thinner than those of the ventricles as their contraction is needed to pump blood into the 

ventricles, not the external tissues of the heart. The myocardial walls of both atria are thinner 

compared to those of the ventricles as the necessary force needed to pump blood into the ventricles 

is much less compared to the one needed for blood to reach external tissues of the heart [28]. 

 

4.2  Atrial Anatomy 

The geometry of the RA and LA varies in shape, however both atria are composed by the same basic 

structures: an appendage, an atrioventricular valve, a venous component, and the interatrial septum 

separating atria chambers from each other. As previously stated, the interatrial septum provides 
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electrical isolation between the atria. Surrounding the septum, the atrial walls are covered by 

conductive myocardium except for the region of the Fossa Ovalis (FO) located in the right atrial side of 

the interatrial septum where only peripherical ring is conductive. The Right and Left Atrial Appendages 

(RAA and LAA) are appendages that prolong to the anterior surface of the cardiac muscle. They are 

variable in shape and prominence between both atria. Whilst the RAA has a triangular shape, is less 

prominent and it is located in the posterior region of the atria, the LAA protrudes from the main body 

of the LA with a tubular shape (see Figure 2). 

 

 

Figure 2 Coronal view of the atria. Left Atrium (AI) and Right Atrium (AD). The Fossa Ovalis (FO), Left Atrial 
Appendage (AAI), coronary sinus (SC), superior and inferior vena cava (VC) and pulmonary veins (VP) can be seen. 
Modified from  [29]. 

The RA is a muscular structure composed of the RAA, the intercaval area, the vestibule surrounding 

the TV, the septum, and the atrioventricular orifice where the TV is located. The intercaval area forms 

the continuation between the superior and inferior orifice of the Superior Vena Cava (SVC) and the 

Inferior Vena Cava (IVC) located in the antero-superior region of the atrium. Between the 

atrioventricular orifice and the IVC orifice the Coronary Sinus (CS) is located. The CS deposits the 

venous blood from the coronary system in the RA, however it is also connected to the wall of the LA 

through muscular connections. The SVC, IVC and CS form the venous region of the RA [29]. 

The Crista Terminalis (CT) is the largest muscle bundle in the RA. As can be seen in Figure 3, it is located 

in the internal surface of the atria, along the intercaval area. The PM spreads from the CT through the 

wall of the RAA. Near the CT the SinoAtrial Node (SAN) is located which is the natural pacemaker of 

the heart. Between the IVC and the TV the cavo-tricuspid isthmus is found. It is a region of slower 

electrical conductivity and a target region for atrial ablation due its relation to macroreentries in atrial 

flutter [30]. 
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Figure 3 Right atrium views. TC, terminal crest; SCV, superior caval vein; ICV, inferior caval vein; OF, oval fossa; 
CSO, coronary sinus orifice; TV, tricuspid valve; SCV, superior caval vein [30]. 

As observed in Figure 4 the LA has a similar structure to the RA and it is composed by the LAA, the 

venous region that comprises the Pulmonary Veins (PV), the vestibule surrounding the orifice where 

the MV is found and the septum. The orifices corresponding to the 4 PV are found in the postero-

superior region, the two corresponding to the LPV (superior LSPV and inferior LIPV) located laterally in 

the external region of the LA and the other two corresponding to the RPV (superior RSPV and inferior 

RIPV) located near the interatrial septum. In the inferior region of the LA, similarly to the RA, we find 

a great orifice where the MV is located. Between the MV and the left inferior Pulmonar Vein (LIPV) the 

mitral isthmus is located which can also be a target region for ablation in patients with Atrial Fibrillation 

(AF) [31]. 

 

 

Figure 4 Left atrium views. SCV, superior cava vein; RSPV, right superior pulmonary vein; LSPV, left superior 
pulmonary vein; BB, Bachmann bundle; LAA, left atrial appendage; MV, mitral valve annulus, SPB, 
septopulmonary bundle  [31] . 

The thickness of the internal cavity wall of the atria depends on the presence of muscle fibres.  In the 

most distant region to the septum is where a greater number of muscle fibres is found therefore where 

wall is thicker. In the RA these fibres are disposed irregularly though parallel to the longitudinal 

direction of the heart forming the Pectinate Muscle (PM). On the other hand, in the LA the internal 

cavity wall is smooth, and the PM is exclusively located in the LAA. 

The thickness of the atria wall varies greatly between different parts of it. Thereby, the atrial septum 

and anterior LA are the thickest areas whilst the vena cava areas are the thinnest. The atria present a 

thickness in the range of 0.4 to 11.7mm [32]. 
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4.3 Heart Electrophysiology 

The contraction of the heart is a fundamental action required to pump the blood through the organism. 

The heart contracts at a regular rhythm known as the heartrate (HR) which in physiological and rest 

conditions is approximately 60 bpm (heartbeats per minute). The cardiac cycle occurs between one 

heartbeat and the other and it is comprised of 3 periods: atrial systole, ventricular systole and diastole. 

Systole is a period where the atria or ventricle contracts and ejects the blood inside their cavity, 

diastole corresponds to the atria or ventricle relaxation where they receive the influx of blood.  

For the myocardial cells to contract they must be excited by an electrical stimulus. This stimulus is 

autonomously generated by the heart, specifically by a group of cells that have electrical automaticity, 

known as pacemaker cells. These pacemaker cells can be found in different regions of the heart, both 

in the atria and ventricles, with varying degrees of automaticity. Specifically, they can be found in the 

structures known as the sinus node (SA) node, the atrioventricular (AV) node and the Purkinje fibres. 

These structures along with others that have faster electrical conductivity than the normal myocardial 

tissue comprise what is known as the cardiac conduction system (CCS). The CCS is a pathway that 

allows the propagation of the electrical impulse through the 4 chambers of the heart in a synchronised 

manner which in return allows for a synchronised contraction. The CCS is illustrated in Figure 5 [33]. 

 

 

Figure 5 Specialized excitatory and conduction system of the heart [33]. 

In a normal heartbeat the electrical impulse is first generated automatically in the (SA) node which is 

located in the junction of the RA with the SVC. From there it propagates through a series of muscle 

bundles with preferential conductivity at the atrial level. The electrical impulse propagates faster along 

these bundles than the rest of the atrial myocardium. These bundles are the Bachmann´s Bundle (BB), 

found in the LA that connects the LA and RA, the crista terminalis (CT) and the pectinae muscles (PM) 

both found in the RA [33]. 

At the ventricular level, the AV node acts as the second pacemaker of the heart, after the SA node, as 

it has a lower degree of automaticity. From the AV the electrical impulse propagates to the structure 

known as the bundle of His, found in the base of the ventricle. The bundle of His then divides into right 

and left pathways to provide electrical stimulation to the right and left ventricle, respectively. When 
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they reach the apex, they divide into a finer fibre network that surrounds the ventricles. It is known as 

the Purkinje Fibres [33]. 

Therefore, the electrical impulse first generated in the SA travels through the atria via the BB, CT and 

PM until it reaches the AV node from where it propagates to the ventricles through the His bundle and 

the Purkinje Fibres. Figure 6 illustrates this electrical propagation of electrical activity in the heart [34]. 

 

 

Figure 6 Electrophysiology of the heart. The different action potential for each of the specialized cells of the heart 
are shown [34]. 

 

4.4 Atrial Arrhythmias 

Lesh et al. [35] grouped the atrial tachycardia, taking into account the electrophysiological mechanisms 

and anatomical substrate, in focal atrial tachycardia, macroreentrant tachycardia and atrial fibrillation.     

Focal Atrial Tachycardias 

Focal Atrial Tachycardias are defined as non-physiological, regular, fast-paced atrial contractions at a 

rate higher than 100 bpm with the onset and maintenance limited to the atria. Ectopic foci, usually in 

the CT or the PVs, or an anatomical or functional reentrant current are usually the onset mechanisms 

for AT. They can be classified depending on their onset as: 1) AT with onset near the CT, 2) with onset 

near to the atrioventricular valves, 3) Septal tachycardias, 4) Left Atrial Tachycardia with onset near 

the PVs and 5) AT with other onsets [35]. 

Macroreentrant Tachycardias 

These tachycardias depend on macroreentries to occur due to functional or intentional blocks in the 

atria. Atrial Flutter is by-far, the most common type of Macroreentrant Tachycardias, affecting both 

healthy and diseased hearts. Due to its high recurrence and refractoriness to pharmacological 

strategies, its clinical treatment is complex. Atrial flutter is defined as a regular AT characterized with 

having a mainly constant atrial cycle with frequencies between 250 and 300 bpm and with an 

atrioventricular conduction block of usually 2 to 1. 
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Animal and human studies have shown that flutter is an arrhythmia based on a reentry mechanism 

which depends on the conduction of the RA and has a zone of protected and forced conduction 

through the cavotricuspid isthmus (CTI). The CTI is delimited by the inferior vena cava posteriorly, by 

the tricuspid ring anteriorly, by the coronary sinus ostium and the border of the eustachian valve 

medially and by the CT laterally. The reentry mechanism in most of the flutter cases is anti-clockwise 

(Figure 7a). However, the electrical impulse can also follow the same path but in the inverse direction 

(clockwise): ascending through the lateral side of the RA and descending by the interatrial septum (see 

Figure 7b) [37]. 

Other reentrant arrythmias in the LA, with pathways that don’t include the isthmus such as those 

around the coronary sinus or with other foci, are classified as atypical flutter [36]. 

 

 

 

                                           (a)         (b)  

Figure 7 Characteristic macroreentry circuits in the RA observed in flutter. (a) typical flutter, (b) inverse typical 
flutter. The Cavotricuspid Isthmus (CTI) is labeled. Modified from [37]. 

Atrial Fibrillation 

The most common type of atrial tachycardia is atrial fibrillation (AF) which affects around 2% of the 

general population, 10-17% of those being older than 80 years[1]. AF is characterized by having a fast, 

desynchronized and chaotic electrical activity unable to contract the atria effectively. The 

desynchronized electrical activity propagates in waves that rotate through both atria causing them to 

quiver or fibrillate at frequencies of 300 to 600 bpm. 

Hypothesis on the mechanisms of atrial fibrillation. 

In 1962, Moe, G. K. proposed the “multiple wavelet hypothesis”[38], which states that AF is generated 

by many simultaneous wavefronts propagating in a chaotic manner through the atria (Figure 8a). AF 

will be maintained as long as the number of wavefronts is high enough that the probability of every 

wave to terminate at the same time is low. 

This hypothesis was challenged by Haissaguerre, M. et al., proposing the “focal hypothesis”[39], in 

which AF would be initiated and maintained by one or several high frequency foci originating in or 

around the PVs (Figure 8b). These activation fronts would fractionate and disorganize the neighboring 

tissues creating what is known as fibrillatory conduction. 

CTI CTI 
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In 2003, Jalife, J. proposed the “rotor hypothesis”[40] suggesting that the onset of AF is caused by a 

combination of ectopic beats originating mainly in the PVs whose wavefronts would fragment when 

reaching the curvature of the venoatrial junction generating 2 vortices rotating in opposite directions. 

Finally, one of these vortices would stabilize in the posterior wall creating a functional reentry or rotor, 

which would maintain the AF by activating the local tissue in a chaotic, high frequency manner thus 

generating wavefronts that would fragment and propagate through the atria (Figure 8c). According to 

Jalife, the PVs and the posterior wall play a fundamental role in the onset and maintenance of 

fibrillatory activity. 

 

   

                              (a)                                                     (b)                                                       (c) 

Figure 8 AF maintenance mechanisms: (a) multiple wavelet hypothesis, (b) focal hypothesis, (c) rotor 
hypothesis. Adapted from [41]. 

Experimental studies have found PV reentries as a possible onset of AF. Electrophysiological studies in 

the PVs have shown the presence of all the “ingredients” required to maintain the reentry circuits. The 

myocytes in the PVs have a transmembrane action potential with a lower velocity and duration in 

depolarization phase, which translates to a shortening of the early repolarization (ERP) and a slowing 

of the conduction velocity [42]. Furthermore, sudden changes in the disposition of the muscle fibers 

and their intertwinement in the venoatrial junction give rise to slower and discontinuous conduction 

[36]. Therefore, PVs constitute the ideal substrate  

Atrial fibrillation can be classified as: paroxysmal, persistent and permanent (long-standing persistent). 

Paroxysmal AF is defined as recurrent episodes with spontaneous interruption generally within 7 days 

but mostly between 24-48 hours. Persistent AF is an arrhythmia that does not interrupt spontaneously 

but does with cardioversion, process by which the AF is converted back into sinus rhythm, or with 

pharmacological treatment. Permanent AF does not respond to treatment. 

Around 25% of the diagnosed AF cases are paroxysmal and usually affects younger patients with fewer 

comorbidities than persistent AF patients. Approximately 20% of paroxysmal AF patients will progress 

into permanent AF in a period of 4 years as a result of atrial remodeling. 

Atria are anatomical structures malleable to the different physio-pathological mechanisms that can 

experience. Studies carried out by Wijffels et al. in goats [43] showed that the longer the AF episodes 

the easier they were to induce and the longer they would become in the future (Figure 9). This 

lengthening in the episodes was associated with a shortening of the atrial fibrillatory cycle. Based on 

these findings, several experimental and clinical studies have been done where the fact that the 

alterations in the atrial properties induced by tachycardias that help maintain the phenomena that 

occur during the episodes remain even after the conversion to sinus rhythm, is proven. In short, “AF 

begets AF”. These permanent physiological alterations are correlated with the duration of the previous 
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tachycardia episodes and were called “atrial remodeling” and have been described in several animal 

[43] and human models [44, 45]. 

The changes in atrial properties include electrical changes [43-45] , changes in the gap junctions [46], 

changes in cellular morphology and anatomical changes [47]. 

 

4.5 Atrial Arrhythmias Treatment 

As in-depth knowledge of the physiopathology of the disease remains lacking, the treatment of AF is a 

complex area. The main strategies include anti arrhythmic drugs and atrial ablation. Anti-arrhythmic 

drugs aim to modify the electrophysiological alterations of the atrial myocardium. Ablation treatments, 

on the other hand, consist in performing small lesions to the atrial tissue resulting in a scar that 

interrupts the propagation of the wavefronts responsible for AF. Pharmacological treatment is 

normally the first treatment option although their effectiveness can be limited and have related side-

effects. The ablation procedure is the alternative for patients with failed pharmacological treatment 

and it is normally more efficient in the long-term. However, although this technique has significatively 

improved in recent years it cannot be applied to every patient and its effectiveness depends on the 

characteristics of the patient. 

The mainstay of current ablation strategies is the isolation of PVs in the LA due to their discovery as 

focal ectopy. Success rate from PV isolation (PVI) in patients with paroxysmal AF is approximately 70-

75% however, it is significantly less effective in persistent AF where the success rate of single ablation 

procedure is approximately 50% [48]. Persistent AF patients develop structural remodeling with the 

appearance of fibrotic tissue areas which contribute to the maintenance of AF. For improving the 

success rate in these types of patients, the clinician tries to eliminate the AF drivers’ areas guided by 

complex navigating systems, such as Carto or Navex. These systems integrate the electro-anatomical 

information provided by the navigation systems with a 3D reconstruction of the atria using images 

obtained from MRI or CT scans. In Figure 9, the pressure done by the ablation catheter on the 3D 

reconstructed atria can be observed.  
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Figure 9. Three dimensional mapping (Carto system 3) with image fusion (3-T MRI) [48]. 

In the last years, the interest in using computational models of the atria to develop tools which would 

aid the clinicians in the ablation procedures has increased. Most sophisticated methods are based on 

patient specific 3D models obtained from the segmentation of MRI or CT images. Figure 10 shows the 

method developed by Dra. Trayanova [49]. It consists in collecting the MIR scan from the atria, image 

segmentation, atrial reconstruction and patient specific simulation which will suggest the clinician the 

optimum ablation area.  

 

 

Figure 10 Personalized atrial simulation based on 3D reconstructed patient specific atrium [49]. 

To improve the effectiveness of this procedure, a more in-depth understanding is needed of the 

underlying atrial structural and functional substrates that sustain AF in human heart. Thus, the need 

for quantitative tools to evaluate the contribution of human atria 3D structural features in clinical and 

experimental settings. 

Recent studies on the human atria imaged with LGE-MRI suggest that AF re-entrant drivers may be 

identified by distinct structural features, also referred to as “fingerprints”. These fingerprints consist 

of a combination of intermediate wall thickness, intermediate fibrosis and myofiber orientation. 
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Therefore, the quantification of the entire 3-dimensional atrial architecture may provide a novel 

method to predict AF driver location and improve patient-specific ablation procedures [32].  

 

4.6  Cardiac Imaging Modalities 

4.6.1 Magnetic Resonance Imaging  

Signal generation  

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that produces detailed 

anatomical 3D images of the internal body structures based on the magnetic properties of the body. 

As Figure 11 shows, for the image acquisition the patient is placed inside the MRI Scanner which 

consists of a large magnet that generates a strong and uniform magnetic field (1.5/3T). A set of 

radiofrequency coils apply radiofrequency (RF) pulses to the patient which excite the hydrogen protons 

found in the (water of) tissues. Upon relaxation the body will generate a signal that will be received by 

RF coils. Gradient coils cause local variations of the magnetic field and are used for the acquisition of 

spatially different “slices” of the body (image). This image modality is widely used for cardiac imaging 

as it provides high contrast of soft-tissue organs (they contain more water) such as the heart [50]. 

 

 

 

 

 

 

 

 

 

 

 

 

This technique is based on the physical principle that nuclei with unpaired protons (e.g. H1 nucleus) 

possess a property known as quantum spin. As these nuclei have net positive charge, they generate a 

magnetic field as they spin represented by a dipole magnetic moment parallel to the direction of spin 

vector. At rest, these protons are randomly arranged with magnetic moments in different directions. 

However, in the presence of a strong magnetic field (𝐵𝑜) the protons undergo a motion known as 

precession where they rotate around their axis at a specific frequency. This frequency is known as 

Larmor frequency and it is given by Equation (1). This frequency (𝑤0) is proportional to the magnetic 

Figure 11  MRI Scanner  [113] 
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field strength. Furthermore, the nuclei align in a direction either parallel or antiparallel to the 

directions of the main magnetic field. The resultant magnetic vector is referred to as net magnetic 

vector (𝑀0) [2]. 

The frequency  𝑤0  at which H nuclei precess is given by the Larmor equation: 

 𝑤0 = 𝛾 ∗ 𝐵0 (1) 

Where γ is the gyromagnetic constant. 

As we can see the frequency of hydrogen precession depends on the magnitude 𝐵𝑜. MRI Scanners 

generate magnetic fields of 1.5T or 3T which correspond to H frequency of precession of 64MHz and 

127.74MHz respectively. 

When a RF pulse is applied, the energy transmitted as an electromagnetic wave, interacts with the 

magnetic vector of the protons. This interaction is due to resonance and only occurs if the frequency 

of the RF pulse equals the processional frequency of H nuclei. As shown in Figure 12 when a RF pulse 

is applied perpendicular to the direction of 𝐵𝑜 (90º RF) the 𝑀0 flips to the transverse plane (𝑀𝑥𝑦). 

Upon relaxation the protons return to their equilibrium state and lose the energy acquired in the form 

of an RF pulse otherwise known as MR signal, this signal consists of a magnitude and a phase which 

prior to relaxation is equal to 0 (in phase). If a coil is placed perpendicular to the transverse plane the 

RF pulse emitted induces a current (Faraday Law) that can be measured and processed representing 

the MR signal [50]. 

 

 

Figure 12 Acquisition process of MRI signals [50] 
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Furthermore, to encode the spatial location of the protons in the body a low-level spatially changing 

magnetic field is applied, otherwise known as gradient. This frequency encoding gradient causes a 

small frequency variation of the protons in each location that can be later decoded to create the MR 

image. The phase encoding gradient is applied in the opposite direction and further encodes the 

protons in a row. The frequency and phase encoding gradients label the protons in a specific 2D slice 

however, in order to select the slice a third spatial encoding gradient must be applied. The slice select 

gradient enables to choose the thickness and location of the 2D slice. In 3D imaging acquisition an 

additional gradient is applied to label the protons in the third dimension [50]. 

Signal properties 

After the MRI signals are received by the coil, they are stored in a structure known as k-space. K-space 

is a complex space that represents the spatial frequency components of the signal. As shown in  

Figure 13, both the frequency and phase gradient encoding (FE and PE) of the signal determine the 

position at which it is stored. The centre region represents low frequency components whilst the outer 

region encodes for high frequency components and have the lowest signal amplitude. An inverse 

Fourier transform is applied over the k-space to change from a frequency to a spatial domain therefore 

obtaining the image [50]. 

The properties of the k-space are related to the field of view (FOV) and resolution of the resultant 

image. The FOV represents the region of a slice acquired and it is dependant of the phase encoding 

gradient. An inadequate FOV result in aliasing which causes the image to wrap over itself after the 

inverse FT. To prevent this the FOV is chosen to be equal to 1/𝛥𝑘 where 𝛥𝑘 represents the distance 

between subsequent points in k-space. Additionally, spatial extent of the k-space (𝐹𝑂𝑉𝑘) is directly 

related to the resolution of the resultant image (1/ 𝛥𝑥). As can be seen in Figure 13 a large  𝐹𝑂𝑉𝑘 

results in high-image resolution [51]. 

 

 

 

Figure 13 (a) k-space representation of the signal (b) spatial representation of the signal [52]. 

(a) (b) 
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In 3D imaging the spatial encoding is performed in the 3 dimensions by an additional space encoding 

gradient resulting in a 3D k-space. As a result, the image is also encoded in the slice direction. 3D 

imaging must not be confused with multi-slice 2D imaging which consist of stacking multiple k-spaces. 

3D encoding is slowly but surely entering the clinical practice as it provides the advantage of a higher 

SNR [51]. 

The contrast of the image is defined by the relaxation process. Relaxation is the process by which 𝑀𝑜 

returns to its initial state after the RF pulse excitation. It is governed by two processes: longitudinal 

and transverse relaxation, both are tissue specific [51]. 

Longitudinal relaxation refers to the recovery of the longitudinal direction of 𝑀𝑜 due to spin-lattice 

interactions. The rate of recovery is governed by a time constant T1 which is tissue specific. Tissues 

with short T1 such as fat will appear hyperintense in T1-weighted images whereas tissues with long T1 

such as water will appear as hypointense. In contrast, transverse relaxation occurs when spin-spin 

interactions between protons results in protons dephasing. This process is also defined by a time 

constant T2 where, contrary to T1, is larger in fat tissue (hypointense) and smaller in water 

(hyperintense) [50]. 

T1-weighted images especially useful for anatomical studies such as the evaluation of myocardial RV 

and LV wall thickness. Furthermore, T1 mapping has recently become of great interest in cardiac 

imaging as there is evidence to suggest that after contrast administration the T1 contrast can correlate 

with the amount of myocardial fibrosis. This technique is known as LGE-MRI and will be addressed 

further on. 

Cardiac MRI in clinical practice 

Cardiac MRI has proven useful for the evaluation of acquired and congenital cardiac related diseases 

such as cardiomyopathies, myocardial ischemia, coronary artery diseases, and congenital heart disease 

(CHD) among others. The availability of a large FOV, multiplanar acquisition and lack of ionizing 

radiation features of the MRI has led to its widespread use in routine cardiology clinical practice [53]. 

Furthermore, cardiac MRI encompasses various pulse sequences and protocols that can be applied to 

evaluate different aspects of the heart’s anatomy and function. 

The main coordinate systems used in 3D MRI cardiac acquisition include the body or scanner planes 

(Figure 14). These planes are oriented orthogonal to the main axis of the body and provide a qualitative 

overview of cardiac morphology. They consist of coronal, sagittal and axial plane. The sagittal plane 

can be used to track the aorta arising from the ventricles whilst the coronal and axial plane provide an 

overview of different cardiac structures such as the left and right atrium and the pulmonary veins [54]. 
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Figure 14 Schematic show of main body planes and their appearance in bright blood imaging technique [54]. 

With prior knowledge of T1 and T2, pulse timing parameters can be altered to provide specific tissue 

contrasts. This is done by software programs that determine the magnetic field gradient and the 

magnitude and timing of the RF pulses emitted by the MR scanner. By varying the sequence of RF 

pulses emitted and collected different contrast images can be produced. Repetition time (TR) is the 

time between two successive pulses and echo time (TE) is the time between the application of a RF 

pulse and the reception of the emitted signal [51]. 

In the following section the main pulse sequences along with the acquisition protocols currently used 

for cardiac imaging will be further detailed.  

 

4.6.2 Balanced steady state free precession (b-SSFP) 

Balanced steady state free precession (b-SSFP) sequences are bright blood imaging techniques that 

when applied generate images where fast-moving blood is represented with high intensity; this is 

normally done to evaluate cardiac function. bSSFP sequences are essentially gradient echo (GRE) 

sequences that for the signal production rely on steady state magnetization. The steady state 

magnetisation is achieved by keeping the TR short so that residual transverse magnetisation is present 

in subsequent excitations and is optimised by balancing the phase encoding gradients. bSSFP has 

recently replaced GRE sequences for cardiac imaging due to the improved myocardial-blood contrast 

and the high signal efficiency achieved [51]. 

Unlike GRE, bSSFP sequences are dependent on the square root of T2/T1 therefore blood provides a 

much higher signal than myocardium (blood: T1=1200ms, T2=200ms; myocardium: T1=867ms, 

T2=57ms). The signal from each tissue also depends on the flip angle, the optimum flip angle for blood 

is 45º whilst for myocardium is 30º. In clinical applications the flip angle is usually set between 50-80º 

this results in the blood signal intensity being approximately 2 times greater than the myocardium [51]. 

bSSFP sequences have a widespread use in both single and multi-phase cardiac image acquisition. In 

multi-phase or cine MRI where multiple k-spaces are acquired throughout the cardiac cycle, bSSFP is 

the main sequence used. This is due to the high myocardial-blood contrast but also the improved 
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temporal resolution they provide which enables an excellent evaluation of myocardial morphology and 

function. Many studies regarding cardiac function and morphology also use this technique.  For 

example, Masamichi et al. uses 2D multiphase b-SSFP sequences for LA wall tracking to identify time-

dependant changes in LA volume and strain rate and evaluate their function [55].  

Unfortunately for 2D multiphase acquisitions the patient is required to hold their breath multiple times 

which can be difficult with non-cooperative and sedated patients. Furthermore, the scan must be 

carefully planned requiring expert knowledge on cardiac anatomy. To deal with these drawbacks 

without losing temporal resolution Uribe et al. proposed a 3D multiphase acquisition that incorporates 

self-respiratory gating [56]. Self-respiratory or navigator gating is a technique for respiratory motion 

correction where the diaphragmatic position is measured to restrict data acquisition to certain points 

of the respiratory cycle [51]. 

bSSFP sequences are also frequently used in 3D whole-heart techniques (Figure 15) that consist in 

single-phase acquisitions where a single volume of the heart is acquired at a certain point of the cardiac 

cycle. By acquiring the heart at specific points of cardiac cycle, otherwise known as ECG gating, the 

cardiac motion is compensated which improves image quality. Due to the high contrast ratio between 

blood pool and myocardium one of the applications of this technique is non-contrast MR Angiography 

however, because it must be cardiac gated the acquisition time is long therefore it cannot be 

performed during a single breath hold. As a result, navigator gating is normally used with 3D MRA to 

compensate for respiratory motion. One of the major drawbacks of this technique is the long 

acquisition times, 10-15 min, however this technique is still used in several studies as it provides 

excellent delineation of intra-cardiac structures. Hilbert et al. [57] acquired images with 1.5T 3D bSSFP 

free-breathing technique for segmentation and posterior reconstruction of left and right atria volume 

for catheter guidance in ablation. 

 

 

Figure 15 3D- bSSFP MRI A) axial view showing the superior vena cavae (SVC), the right upper pulmonary vein 
(RUPV), left pulmonary vein (LPV), left atria (LA) and aorta (Ao). B) sagittal view that shows the right atria (RA) 
and LA, the right pulmonary [58]. 

The high blood pool to myocardial contrast present throughout the cardiac cycle with no dependency 

on contrast enhancement has allow bSSFP to become one of the predominant sequences in 

cardiovascular imaging. However, one of its drawbacks is the high sensitivity to field inhomogeneities 

which results in dark band artifacts. Dark band artifacts are caused as field inhomogeneities induce 

dephasing of the magnetic vector until the signal collapses (180º). To prevent this local shimming can 

be applied to reduce magnetic field inhomogeneities. However, there are other sources of magnetic 
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field inhomogeneities such as metal inside the thoracic cavities (e.g. stents, clips), in these 

circumstances the use of bSSFP is not recommended. The amount of dephasing can also be reduced 

by keeping the TR short. In clinical practice, for example, optimal TR is kept around 2-3ms.  Another 

drawback of bSSFP is the high energy deposition due to the large flip angle and short TR, this is not a 

significant problem with 1.5T field strength acquisitions [51]. 

 

4.6.3 Late Gadolinium Enhancement -MRI  

Late gadolinium enhancement MRI (LGE-MRI) is a widespread technique for fibrosis detection in 

myocardial tissue. It is based on the increased volumetric distribution of gadolinium in fibrotic tissue. 

Gadolinium (Gd) is an element which serves as an extracellular agent that reduces T1 due to its 

paramagnetic properties. Thus, in T1 weighted sequences (e.g. FLASH) it will appear with high intensity. 

Furthermore, the acquisition is often performed with inversion recovery (IR) sequence to null the 

myocardial signal and increase contrast to noise ratio [59]. 

IR sequences consist in applying a 180º (inverse) pulse that flips the longitudinal magnetization, as it 

recovers (T1) it will pass through the transverse plane, if the signal is acquired at that specific time it 

equals to 0. Inversion time (TI) represents the time between applying the inverse pulse and image 

acquisition, if it is chosen carefully specific tissues can be abolished in the signal [51]. 

The acquisition protocol for LGE-MRI varies from study to study, however, there are some features 

that in general are kept the same. The LGE acquisition protocol consists in the intravenous injection of 

0.1-0.2 mmol/kg bolus of Gd contrast and after 10-20 minutes the acquisition of T1-weighted image. 

The image is acquired with IR prepared pulse sequence.  The IR preparation pulse is applied to null the 

normal myocardial signal and obtain a higher intensity signal from the fibrous tissue. Also, the 

acquisition of the T1-weighted image is normally acquired with GRE pulse sequence for single phase 

acquisitions with a TE chosen to supress fat tissue and improve delineation of LA wall [59-61] . In 3D 

acquisitions especially were the scan times are long, the image is acquired with navigator gating and 

ECG gating to compensate for cardio-respiratory motion and allow free breathing [60,61]. 

Myocardial suppression results in images with higher diagnostic quality where the endo-, mid- and 

epicardium can be easily differentiated. However, for this the optimal TI must be chosen and this value 

differs from patient to patient. The TI can be determined by Look-Locker sequences where multiple 

images with variable TI are acquired during one breath-hold after which the examiner picks the one 

with a visually better contrast. Furthermore, the LGE-MRI image acquisition is normally performed 

with navigation gating and ECG gating to compensate for cardiac and respiratory motion [51,59].  

The physio pathological principle of Gd imaging is that Gd is a molecule that under normal conditions, 

after intravenous injection, distributes in the extracellular space without entering the myocardial cells. 

However, under certain pathological conditions, either by the disruption of the myocardial cell wall or 

the increase in extracellular space, the volume of Gd distribution is increased. Some of these 

pathological conditions include acute myocardial infarction where necrosis ruptures myocardial cell 

membranes leading to an increase in Gd distribution and chronic myocardial infarction where the 

fibrous scar produced leads to an increase in extracellular space.  In T1-weighted images the increase 

in Gd distribution can easily be detected as the intensity of the image is increased 

(hyperenhancement), therefore the fibrous region is identified [62]. 
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On the other hand, the threshold to identify hyperenhancement is not clearly defined. In clinical 

practice the enhanced fibrotic region is evaluated by visual estimation, measuring the percentage of 

thickness of infarcted myocardium related to global wall as a measure of transmural fibrosis [59]. The 

American Heart Association proposed a semi-quantitative approach to define extent of transmural 

fibrosis composed by a 17 segment model where each segment is given a score from 0-4 depending 

on the extent of the scar (0:no scar, 4:100%) [63]. 

Whilst LGE-MRI ventricular fibrosis assessment has achieved excellent results in numerous studies [64-

66] it remains a challenge in atrial fibrosis assessment due to the thinness (1-2mm) and unpredictable 

shape of the LA wall, thus requiring greater spatial resolution [67]. 

Nevertheless, LGE-MRI has emerged as the most important independent predictor for AF post-

ablation recurrence as well as a good technique for patient selection and procedural ablation 

strategy [60,68]. As ablation by RF induces myocardial fibrosis, LGE-MRI is a powerful method to 

define the extent of LA wall injury after this procedure. As a result, it can also detect gaps at ablation 

lines that may lead to AF post ablation recurrence [69] and guide ablation strategies. In another 

study Mc Gann et al. [61] validate the hypothesis that LGE-MRI can identify LA wall structural 

remodelling (SRM) and stratify patients who are likely to benefit from ablation. In this study LA wall 

enhancement was significantly greater in patients with AF versus patients with non-AF (control). In 

addition, Sanchis et al. [70] segment the LA from LGE-MRI images and quantify fibrosis for posterior 

3D reconstruction to guide ablation procedures ( 

Figure 16).  

 

 

 

Figure 16 (a) Axial view of 3D LGE-MRI left atrial acquisition (b) epicardial and endocardial traced borders for left 
atrium segmentation. The hyper enhanced region corresponding to fibrous tissue is indicated (c) 3D volume 
rendering of LA segmentation (purple) and the fibrous tissue projected over it (red) [70]. 

Despite these promising findings LGE-MRI has not been widely adopted in routine clinical practice for 

assessment in LA fibrosis. This is mainly due to the poor reproducibility of the results obtained by 

different scientific centres. The intensity of LGE-MRI image in LA is affected by parameters such as the 

coil proximity, contrast dosage and the time of acquisition after it is applied and patient characteristics 

such as body mass index or renal function. All these variables in the MRI acquisition make difficult the 

comparison of results between investigation groups and the lack of a consensus in the acquisition 

protocol further leads to different and sometimes contradicting results. For example, in LGE T1 

mapping the optimal TI varies between different subjects. The selection of the optimal TI is of crucial 

importance as a sub optimal TI value may lead to over or under estimation of the fibrous scar [71]. 

(a) (c) (b) 
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In addition, all the previously mentioned studies as well as the current clinical practice quantify atrial 

fibrosis by performing manual segmentations of the LA chamber from LGE-MRI images which are time-

consuming, labour intensive and error prone due to the complex anatomy of the atria. As a result, 

there is an interest in automatic segmentation algorithms of the left atrium for posterior scar 

quantification [67]. 

 

4.6.4 Computed Tomography 

Computed Tomography (CT) is non-invasive imaging technique that allows fast acquisition of images 

at a high spatial resolution. This allows the high detailed delineation of cardiac structures even with 

cardiac and respiratory motion [72]. 

During a CT acquisition a narrow beam of X-rays is aimed at the patient and rotated around the body 

to produce 2D cross-sectional images or “slices” of the body. These computer-generated images can 

be digitally “stacked” to produce a 3D image. As the X-ray beams travel through the patient’s body, 

they attenuate by a different degree depending on the tissue thus generating the contrast. Bone tissue 

produces the biggest attenuation and in the resulting image is visualized with the highest intensity 

whilst soft tissues produce a varying degree of attenuation and may be difficult to see in the resultant 

image. A detector receives the attenuated signals and sends them to a computer where the image is 

reconstructed and visualized [73]. 

One of the disadvantages of CT is the relatively low contrast resolution when compared with MRI which 

limits its cardiovascular applications. Contrast enhanced CT is a common technique to increase 

contrast resolution in cardiac imaging based in the injection of contrast agents into the blood stream 

to highlight specific structures of the circulatory system. The intravenous (IV) contrast agent is based 

on iodine which has a high degree of X-ray attenuation and is therefore shown with a high intensity in 

the resultant image, this technique is known as CT Angiography (CTA) [74]. The high spatial resolution 

and contrast achieved with CTA has led to its many applications in analysis of small and complex 

structures such as the LA and PVs [75]. Other applications in the field of AF include detection of LAA 

thrombi which is associated with AF [76] and exclusion of coronary artery disease in patients with AF 

[77].  

However, its main disadvantage is that ionizing radiation (X-rays) must be applied to the body for image 

acquisition which are in the long-term harmful for the patient. Also, it has a lower temporal resolution 

than MRI which is an important feature for many cardiac imaging applications. On the other hand, new 

scans are being developed to reduce the temporal resolution [72]. 

There is a lack of consensus in the best image acquisition technique for 3D computational atria model 

generation. 3D single phase b-SSFP methods along with LGE-MRI are the most used sequences for 

cardiac segmentation although contrast-enhanced CT are also used in several studies. For atria 

segmentation which is the aim of this project all these techniques have been used in different state-

of-the-art studies with good accuracy results [61,78,79]. CT has the advantage of higher spatial 

resolution than MRI, but it applies ionising radiation to the patient’s body. All techniques either by 

contrast enhancement or by sequence of pulses used provide high blood-myocardium contrast which 

is important for image segmentation. LGE-MRI has the added advantage of enabling the analysis of 

transmural fibrosis with the intravenous injection of Gd [60,61].  
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Chapter 5. Materials  

5.1  Databases 

For the development of this project three different databases were used to test the generalisation 

ability of the proposed semantic segmentation model. The three of them comprised of MRI images of 

the heart from human subjects.  

 

5.1.1 Database 1. Left Atria 

The images from this database were provided by the STACOM 2018 Atrial Segmentation Challenge. A 

total of 100 3D LGE-MRIs from patients with AF were submitted for the purpose of this challenge. A 

large proportion of the challenge data was originally provided by the University of Utah (NIH/NIGMS 

Center for Integrative Biomedical Computing (CIBC)) while the rest came from several other institutes. 

The original resolution of the data is 0.625x0.625x0.625mm3[80].  

Each 3D LGE-MRI patient data was acquired with a whole-body MRI scanner and contains the raw MRI 

scan and a binary mask corresponding to the left atrial (LA) cavity. The ground-truth was manually 

generated by experts in the field. The raw MRIs are in grayscale and the segmentation labels in binary 

data were 255 means positive and 0 means negative. The spatial dimensions of the MRIs vary 

depending on each patient, some of the volumes had 640x640 dimension whilst others 576x576. 

However, all MRIs contain 88 slices in the Z-axis [80]. 

Figure 17 shows an example of the raw MR image with the LA segmentation label for one patient. 

 

 

Figure 17 Axial slice view of raw MRI + LA label of dimension 640x640x88 and slice position equal to 60. 
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5.1.2 Database 2. Left Atria and right atria 

The images from this database were provided by the Multi-Modality Whole Heart Segmentation (MM-

WHS) challenge, in conjunction with MICCAI 2017. The database consists of cardiac MRI images that 

cover the whole heart from 20 patients. The data was acquired at a resolution of around 1.6-2x1.6-

2x2-3.2 mm3 and reconstructed to half its acquisition resolution, about 0.8-1x0.8-1x1-1.6mm3. 

The cardiac MRIs were acquired from two hospitals in London, UK. One set of data was acquired from 

St. Thomas Hospital on a 1.5T Philips Scanner and the other was acquired from Royal Brompton 

Hospital on a Siemens Magnetom Avanto 1.5T Scanner. Both acquisitions were made with a 3D 

balanced steady state free precession (b-SSFP) sequence for whole heart imaging which was navigator-

gated for free-breathing.  

The MRI data came from patients with an extensive range of cardiac diseases including myocardium 

infarction, atrial fibrillation (AF), tricuspid regurgitation, aortic valve stenosis, Alagille syndrome, 

Williams syndrome, dilated cardiomyopathy, aortic coarctation and Tetralogy of Fallot. 

In this database different anatomical structures were manually delineated including the left ventricle 

cavity , the myocardium of the left ventricle, the right ventricle blood cavity, the left atrium blood 

cavity, the right atrium blood cavity, the ascending aorta and the pulmonary artery (Figure 18). For this 

project the main interest relays on the manual segmentation of the left and right atrium with label 

value equals to 420 and 550, respectively [81]. 

 

 

Figure 18 Example of raw cardiac MRI with labels of the cardiac structures. LV: left ventricle; RV: right ventricle; 
LA: left atrium; RA: right atrium; Myo: myocardium of LV; AO: ascending aorta; PA: pulmonary artery [81]. 

In this database there are different sources of variability. First, the shape of the heart varies greatly 

from subject to subject due to pathological and physiological changes. Secondly, the appearance of 

the image and the quality can also be variable (Figure 19). This is common in MRI images from clinical 

data where motion artifacts, poor contrast-to-noise-ratio and signal-to-noise-ratio can significantly 

deteriorate the image quality. Furthermore, there was also variability in terms of the spatial and slice 

dimensions of the volumes ( 
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Table 1). 

 

Figure 19 Axial view of patient 1001 (high quality) and patient 1006 (low quality) 

 

ID Patient Size (pixel)  ID Patient Size (pixel) 

1001 512x160x512  1011 161x288x288 

1002 512x128x512  1012 512x128x512 

1003 161x288x288  1013 512x112x512 

1004 121x288x288  1014 512x160x512 

1005 131x288x288  1015 201x340x340 

1006 161x256x256  1016 131x288x288 

1007 181x288x288  1017 141x288x288 

1008 131x288x288  1018 151x288x288 

1009 512x120x512  1019 136x288x288 

1010 161x288x288  1020 136x288x288 

 

Table 1 Spatial dimensions of the MRI acquisition per patient from database 2. 

 

5.1.3  Database 3. Left Atria and other structures 

The images from this database were provided by STACOM 2013 Left Atrial Segmentation Challenge in 

conjunction with MICCAI13. The data includes 30 MRI volumes provided by Philips Techhnologie 

GmBH, Hamburg and King´s College London, London, UK [82]. 

The MRI acquisition was performed on a 1.5T Achieva Scanner (Philips Healthcare,Best,The 

Netherlands) . The whole heart image was acquired using a 3D b-SSFP with navigator gating for free 

breathing and ECG gating for end diastole acquisition. The sequence acquired a non-angulated volume 

of the whole-heart with a voxel resolution of 1.25x1.25x2.7mm3.  Each dataset represents a single 

cardiac phase 3D volume image. The volumes of the datasets were provided with variety of quality 

levels in the following proportions: 9 high quality, 10 moderate quality, 6 local artifacts and 5 high 

noise datasets [83]. 
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The ground-truth generation was performed by King´s college through an automatic segmentation of 

left atrial blood pool followed by manual corrections by experts. For 10 of these patients the ground-

truth consisted solely of LA mask, however for the other 20 there were also other structures 

segmented and labelled such as the pulmonary veins (PV) and the left atrial appendage (LAA) (Figure 

20). For these patients LA label equal to 36 [83]. 

 

 

Figure 20 Examples of datasets provided with low- and high-quality data. Colour contours show the manual 
ground-truth (LA body=white, LAA=green, PVs= other colours) [83]. 

 

5.2 Software 

For the neural network implementation and the evaluation of the resulting models the programming 

environment of PyCharm v2019.3.2 [84] has been employed. This Integrated Development 

Environment (IDE) supports the programming language of Python v.3.5.2 [85]. Python is an object-

oriented, high-level programming language with dynamic semantics. It is very attractive for scripting 

due to its simple and easy to learn syntax. This, in addition to its open source characteristic makes 

Python the leading choice for data analytics and machine learning tasks. Python also integrates a set 

of libraries and modules for Data Science. Some of the libraries used in this project include Numpy, 

matplotlib, scikit-learn, SimpleITK, VTK and Keras. Keras is a high-level framework designed for training 

neural networks algorithms [86]. Keras also make use of backend libraries such as Tensorflow.  

For external data processing and analysis of the results the programming environment MATLAB 

v.R2020a has been employed. MATLAB is platform designed for problem resolution in the field of 

mathematics and engineering that incorporates a high-level language based on matrix operations. It is 

used for signal and image processing and many other fields. Similar to Python it is available for different 

platforms such as Unix, Windows, Mac OS X and GNU/Linux [87]. 

Finally, the network training is performed in a remote server due to its high computational cost. To 

access this server the program MobaXterm [88] has been used. This tool allows an SSH (Secure Shell) 
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connection that provides an easy communication between the client (personal computer) and the 

server (where the algorithms are run). 

5.3 Hardware 

Most of this Project has been developed in a computer with a processor intel Core i5-7200U CPU @2.5 

GHz and an operating system Windows 10 of 64 bits. The RAM memory capacity is of 8GB.  

For deep CNN training, servers with very powerful processors and a larger storage capacity are 

required. As a result, in this project for the training processes a high-performance external server that 

belongs to the research group CVBLab has been employed. This server is composed of a processor Intel 

i7 @4.20GHz, 32GB de RAM and a graphic card NVIDIA Titan V. 
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Chapter 6. Methods 

A deep neural network architecture proposed by [25] has been employed to develop an atrial 

segmentation model (LA and RA) with a high-level generalisation capability. 

 

6.1 Deep Learning Fundamentals  

6.1.1  CNN architecture 

For an in-depth understanding of the 3D U-Net employed in this project we must first describe the 

network upon it is based on, the CNN. As can be observed in Figure 21, traditional CNNs consist of an 

input layer, in this case the image to segment, an output layer that shows the probability of an image 

to belong to a certain category and a series of functional hidden layers. The hidden layers are 

composed of convolution layers, batch normalization layers, pooling layers, flattening layers and fully 

connected layers.  

 

 

Figure 21 Generic example of CNN [89]. 

CNNs are composed of different levels. Each level consists, in general, of a convolutional layer followed 

by a normalization layer, after which the output is passed through a non-linear activation function to 

extract the feature maps of the image. These feature maps are down-sampled by a pooling layer at the 

end of each level. The last layer is connected to a fully convolutional layer to reduce the number of the 

features maps and generate the output vector of the network. This output vector in classification 

problems contains the probability of each pixel to belong to a certain class (e.g. Dog). The 

aforementioned layers along with their main functions will be described below. 

Convolutional layers  

Convolutional layers are the most important layers of the CNN. They are responsible for the automatic 

feature extraction and carry the main weight of the computational cost. Each convolutional layer 

consists of a series of filters, otherwise known as kernels, that are applied to the input data through a 

linear operation known as convolution. A convolutional operation involves the multiplication of an 

array or matrix of input data (image) with the 2D or 3D array of weights in the kernel. In other words, 
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each convolution uses a 𝑛 𝑥 𝑛 kernel (for 2D input) or 𝑛 𝑥 𝑛 𝑥 𝑛 (for 3D input). After each training 

process the weights of the kernels are updated.  

Furthermore, the dimension n of the kernel is small to ensure that each neuron is only connected to a 

local region of the previous volume to improve computational efficiency. In deep learning approaches 

the popular choice is 𝑛=3; if 𝑛=5 or 7 the number of parameters and therefore the computational cost 

increases dramatically. The spatial extent of kernels is defined by an hyperparameter known as 

receptive field that represents the area of the kernel applied to the image (𝑛 𝑥 𝑛). Although the 

dimension of the kernel is small by increasing the number of convolutional layers the receptive field 

also increases. Technically, the mathematical operation described as convolution in the use of CNNs is 

actually a “cross-correlation” given by Equation (2), however in deep learning field it is referred to as 

“convolution”.   

 𝑦[𝑚, 𝑛] = 𝑥[𝑚, 𝑛] ∗ ℎ[𝑚, 𝑛] = ∑ ∑ 𝑥[𝑘, 𝑙] ∗ ℎ[𝑚 + 𝑘, 𝑛 + 𝑙]

𝑙𝑘

 
 

(2) 

 

where 𝑥 is the data input, ℎ is the filter and 𝑦 is the filter output. 

Using a filter with smaller dimensions than the image allows the filter or set of weights to be multiplied 

by the input data at different points on the input. This systematic application of the same filter across 

the input array enables the discovery of specific features anywhere in the image. This capability is 

known as translation invariance. The number of pixels that the kernel shifts over the input matrix is 

another hyperparameter known as stride. It should also be considered that although in each stride the 

connectivity of the filter is local in terms of width and height, it extends over the full depth of the 

channel dimension in the input image. For example, for RGB images the channel dimension equals to 

three. Figure 22 illustrate the process of convolution with a kernel of stride equal to 1.  

 

 

Figure 22 3x3 kernel (with stride equal to 1) sliding over input array.  

As can be observed, after the convolution the dimensions of the resultant image are smaller than the 

input which leads to loss of information. To preserve the dimensions of the output image or volume a 

technique known as zero padding is used where the input volume is surrounded with zeros. The 

Input image 

7x7 

Activation map 

5x5 
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dimensions of the padding is an hyperparameter that depends on the input image dimensions and 

kernel size. Figure 23 illustrates an example of applying zero-padding to an RGB image (3 channels). As 

we can observe, to maintain the image dimension of 𝑀 𝑥 𝑁 𝑥 3 a zero padding of dimensions 𝑁 +

 (𝐾1 − 1) 𝑥 𝑀 + (𝐾2 − 1) 𝑥 3 must be integrated to the image before convolution. 𝐾1 and 𝐾2 

represent the dimensions of the kernel (𝐾1𝑥𝐾2) and 𝑀 and 𝑁 represent the row and columns of the 

image, respectively. 

 

 

 

 

 

 

 

 

 

As each filter sweeps over the input image a bidimensional map that preserves the relationship 

between the pixels is formed. The map is known as feature map and each filter produces a different 

one. The feature maps are stacked in sequence and constitute the depth of the output volume, in other 

words, the output volume will have a channel dimension equal to the number of filters in the layer 

(Figure 24).  

 

 

2D kernel (𝑃𝑥𝑄) applied over an input RGB image (𝑀𝑥𝑁). Note that the depth or channel dimension 

of both the filter and the image coincide. The output volume is characterized by 𝐾 channels referring 

to the number of filters established in the convolutional layer.   

Figure 23 Zero padding applied over MxN array.  

Figure 24 2D kernel (𝑃𝑥𝑄) applied over an input RGB image (𝑀𝑥𝑁). Note that the depth or channel dimension of 
both the filter and the image coincide. The output volume is characterized by K channels referring to the number 
of filters established in the convolutional layer. 

Input image 
Volume obtained 

Filter 
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3D convolutions use a similar approach, the main difference is that the kernel moves in 3 directions. 

Following the previous idea 3D input images and kernels have 4 dimensions, 3 spatial dimensions and 

the channel dimension.  

In a neural network, the filters from the first convolutional layer are applied to the input image or 

volume and extract the low-level feature of the image such as curves and edges. The resultant 

activation map is fed to the next convolutional layer as the input volume and the process is repeated 

each time obtaining more complex features. The subsequent deeper convolutional layers will extract 

image features of a higher dimension.  

In addition, to down-sample the number of feature maps 1𝑥1 convolutions are normally used. If this 

convolutional kernel is systematically applied with a stride equal to 1 and no zero padding the resulting 

feature map has the same width and height of the input. As no neighbouring pixels are taken into 

account during convolution the output doesn´t contain any additional information and is considered a 

linear projection of the input. As each 1𝑥1 convolutional kernel will still generate a feature map, a 

convolutional layer with a specific number of 1𝑥1 convolutional kernels can therefore be used to 

control the number of feature maps [90]. 

Activation layer  

In this layer an activation function is applied to introduce non linearities to the otherwise linear 

convolutional output, this enables the network to learn complex patterns in the data. They are applied 

at the end of convolutional layers and their output corresponds to the input of the next layer. 

Furthermore, they also preserve the input dimensionality to improve robustness. There are several 

existing activation functions that can be applied (Figure 25) however, the most used at this moment is 

the RELU (Rectified Lineal Unit) that transforms the negative activations to 0 by applying the function 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). This accelerates the training process without compromising its accuracy. On the 

other hand, the RELU function is often described as fragile as it may become inactive no matter the 

input supplied. This is known as the dying neurons problem and it prevents the learning progress of 

the neural network [91]. In order to avoid this, a variant of the function, known as the leakyRELU is 

often used instead. This function was first introduced by Maas et al. [92] and it is characterised by 

allowing a small positive gradient for negative inputs thus extending the range of the function (Figure 

25). The negative activations (𝑥 < 0) will be transformed by the function 𝑓(𝑥) = 𝛼 ∗ 𝑥. Where α is a 

fixed parameter in range (1, +𝑖𝑛𝑓).  

The last layer of the network will have either a Softmax (more than 1 output) or a Sigmoid (1 output) 

activation function. As we can observe in Figure 25 the sigmoid function limits the output range 

between 0 and 1 thus these functions are normally used in the prediction of probabilities.  
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Figure 25 Common activation functions.  

Pooling layer 

Pooling layers are applied after the activation layer to reduce the spatial resolution of the feature maps 

in order to remove redundant features and improve statistical efficiency and model generalization. 

Furthermore, down-sampling the data reduces the number of parameters to adjust during the network 

training and helps to control overfitting. Pooling method consists of applying a filter of 𝑛𝑥𝑛 dimensions 

to select pixels in a given neighbourhood with stride equal to 2 for 50% down-sample. There are two 

different pooling methods depending on the operation applied by the kernel to the selected pixels: 

average and max pooling. In average pooling the kernel applies an average function over the selected 

pixels whilst in max pooling a max function is applied to select the maximum pixels (Figure 26). In 

convolutional neural networks max pooling is the most employed method. Another common 

technique to reduce spatial dimensions is by applying a convolution function over the selected pixels. 

Strided convolutions have been increasingly used to down-sample in recent network architectures 

because they add extra parameters, the convolutional weights, and therefore improve the 

representational capability.  

 

Sigmoid 

Hyperbolic tangent Leaky Relu 

Relu (Rectified Linear Unit) 
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Figure 26 Down-sampling example with max pool with a 2x2 kernel with stride equal to 2.  

Both methods are valid and used in state-of-the-art networks. The advantage of strided convolutions 

is that the acquisition of feature maps and the down-sample can be performed in one operation which 

reduces computational costs [93]. 

Once we reviewed the different layers that compose a CNN we must detail the process by which the 

network learns from labelled data in order to generate the output segmentation, this is known as 

training of the network. The main objective of the training process is to minimise the error between 

the output generated by the network (prediction) and the labelled data (ground-truth) by optimising 

the weights of the kernels. The training is performed by an algorithm known as backpropagation that 

adjusts the weights in order to find relevant features of the image. This process can be divided into 4 

different sections: Forward pass, loss function computation, backward pass and weight update. 

 

6.1.2 Training process 

Forward pass 

Forward pass refers to the process of the input image traversing through all the neurons (kernels) from 

first to last layer. In the first iteration the weights are randomly initialized therefore the output of the 

network (prediction) will not provide any information. In order to optimise the weights to provide 

useful information the prediction and the ground-truth must be compared via a loss function.  

Loss function  

The loss function refers to the error between the predicted output segmentation and the ground-truth. 

As our objective is that the prediction is as similar as possible to the ground-truth the loss function 

must be computed after each iteration in order to minimise it.  

The network predictions, consisting of 2 volumes with the same resolution as the input data, are 

flattened and processed through a sigmoid function which as an output provides the probability of 

each voxel to belong to the foreground and to background. In medical volumes what is often the case 

is that the anatomy of interest occupies only a very small region of the scan and therefore there are 

much more background voxels than foreground. This may cause the learning process to get caught in 

Input volume 

Output volume 
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local minima resulting in predictions strongly biased toward the background and with partially 

detected foreground, this is known as class imbalance. 

As a result, previous approaches inclined towards the use of loss functions with sample reweighting 

(e.g. cross-entropy loss function) where the regions with foreground pixels are given more importance 

than background during training. However, in this project the network implementation takes a 

different approach by applying a loss function based on dice coefficient, this idea was first introduced 

by Milletari et al.[14]. The dice coefficient is an evaluation metric that by the intersection of the 

prediction (𝑝) and ground-truth (𝑔) gives a metric of their similarity. This metric ranges between 0 

and 1 the higher it is the most similar the 2 samples are. The dice loss function is of equal magnitude 

and opposite sign to the dice coefficient therefore, during training the aim is to minimize the dice loss 

function which is equivalent to maximizing the dice coefficient.  

The binary class dice coefficient loss function is defined in Equation (3):                               

 
𝐿𝐷𝐶 = −

2 ∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖

∑ 𝑝𝑖
𝑁
𝑖 + ∑ 𝑔𝑖 + 𝜎𝑁

𝑖

 

 

(3) 

 

where the sum runs over the N voxels of the predicted binary segmentation (𝑝𝑖) and the ground-truth 

binary volume (𝑔𝑖) of each sample 𝑖. With a smoothness factor of 𝜎 = 0.00001 to avoid the division by 

0.  

The differentiation of the dice loss function is defined Equation (4): 
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(4) 

 

Which is computed with respect to the 𝑗-th voxel of the prediction. By using this formula there is no 

need to correctly balance the foreground and background voxels with weight assignation to samples 

of different classes. Furthermore, Millietari et al. states that the experimental results obtained by 

optimising with the dice loss function were much better than with the loss with sample re-weighting.  

During the first training iterations the loss is extremely high therefore the objective during the training 

process is to minimize the loss function to generate a predicted segmentation as similar as possible to 

the ground-truth. In order to achieve this, the network must learn the weights that contribute in a 

higher proportion to the loss of the network or, in other words, the weights that minimize the loss 

function.  

On the other hand, as we can observe in Equation (4), the gradient function is non-linear therefore it 

is not an easy task to find its minimum in order to minimize the loss function. As a result, an algorithm 

must be used for a spatial search of the local minima and the parameters that minimize the function, 

this is performed in the backward propagation. 

Backward propagation  

After computing the loss, the next step is to traverse the network backwards to adjust the weights in 

order to minimize the loss function, this is known as gradient descent.  

Gradient descent is a method that minimizes an objective function 𝐿(𝜃), where θ are the model’s 

parameters, by updating the parameters in the opposite direction of the gradient of the objective 
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function ∇𝐿 (θ). An hyperparameter known as the learning rate η determines the size of the steps 

taken to reach the local minimum. Simply put, it follows the slope of the surface generated by the loss 

function downhill until a valley (local minimum) is reached [94]. 

Gradient descent can be performed in different ways depending on the quantity of the data used to 

compute the gradient of the loss function. The most used gradient descent method at this moment is 

mini-batch Stochastic Gradient Descent (SGD). This optimisation algorithm divides the training set into 

batches (small sets of data) and performs the weight update one for every mini batch.  

However, due to the relatively small training dataset used in this project the mini-batch size is set to 

1. This means that the parameter update will be performed for every training sample as in traditional 

SGD techniques. The computational cost of this algorithm is low however the frequent updates causes 

the loss function to fluctuate heavily. This fluctuation enables the gradient descent to jump to 

potentially new and better local minima however it complicates the convergence to an exact minimum 

as SGD will keep overshooting.  

Equation (5) illustrates the mathematical operation of the traditional SGD update. 

 W(𝑡 + 1) = W(𝑡) − 𝜂∇𝐿  (5) 

 

where W represent the weights. 

Furthermore, there are other challenges that must be faced when dealing with SGD. The first one is 

that all parameter updates have the same learning rate however, if the data is sparse with features of 

varying frequency it may be better to perform a larger update for low frequency features. Another 

challenge for minimizing loss functions, common for neural networks, is getting trapped in suboptimal 

local minima [94]. 

As previously stated, one of the limitations of SGD is that it has trouble navigating through areas where 

the surface curve is steeper in one dimension than in another, which are common around local minima. 

As a result, SGD oscillates across the slope making slow progress towards the local optimum. 

Momentum is an extension of SGD algorithm that accelerates the convergence of SGD in the right 

direction. This is done by adding a fraction (lambda) of the previous parameter update to the current 

update vector [94]. 

 The SGD update with momentum is represented in Equation (6).  

 V(𝑡 + 1) = γV(𝑡) − 𝜂∇𝐿, W(𝑡 + 1) = W(𝑡) + V(𝑡 + 1)  (6) 

 

where γ represents a momentum term usually set around 0.9 and V a new variable initialized to 0. 

Optimizer 

Similar to the way the momentum of a ball increases as it rolls downhill, the parameter update 

increases for dimensions that have gradients pointing in the same directions and decreases for 

gradients of diverging directions. This results in a faster convergence. Figure 27 illustrates this 

phenomenon. 
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Figure 27 SGD oscillation towards local minima[94]]. 

The optimisation algorithm used to train the neural network of this project is known as Adam 

optimizer. This is a variant of SGD that computes adaptative parameter updates for every time step 𝑡 

by performing larger updates for infrequent parameters and smaller updates for frequent ones which 

is useful when dealing with sparse data. The update of the parameter will depend on the computed 

gradients of the previous parameter. Specifically, Adam stores the exponentially decaying average of 

past gradients 𝑣(𝑡) for parameter update and uses an extension of momentum by storing the decaying 

average of past gradients 𝑚(𝑡). 

 The Adam optimizer function is defined in Equations (7)  

 𝑚(𝑡 + 1) = 𝛽1 ∗ m(𝑡) + (1 − 𝛽1) ∗ ∇𝐿 ; 

𝑣(𝑡 + 1) = 𝛽2 ∗ 𝑣(𝑡) + (1 − 𝛽2) ∗ ∇𝐿2 

 

 (7) 

 

Where 𝑚(𝑡) and 𝑣(𝑡) correspond to the first moment (mean) and second moment (variance) of the 

gradients, respectively. As 𝑚(𝑡) and 𝑣(𝑡)are initialized as vectors of 0 they are biased toward 0 so the 

authors counteract this by computing bias corrected 𝑚(𝑡) and 𝑣(𝑡) estimates. 

Finally, these averages are used to update the parameters following the Adam update rule defined in 

Equation (8): 

 𝑊(𝑡 + 1) = 𝑊(𝑡) −
η

√c(𝑡 + 1) + 𝜀
∗ 𝑚(𝑡 + 1) 

 

(8) 

 

where 𝑐(𝑡 + 1) is equivalent to the bias corrected 𝑣(𝑡) 

The CNN of this project uses the Keras implementation of Adam optimizer which by default has the 

parameter values of: 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜀 = 1𝑒 − 07 which are the recommended values by 

the author.  

Learning rate 

Furthermore, one of the challenges in training neural networks is choosing an optimal learning rate 

value (n). If the learning rate is too small, it leads to very slow convergence but if it’s too high it could 

cause the loss function to diverge and not reach the local minimum. Each iteration of the 

backpropagation over the complete set of training samples is known as an epoch. The best approach 

is to vary the learning rate each epoch. Normally it is set to be higher in the first epochs and smaller or 

more precise towards the final epochs of the training process. There are several techniques for learning 

rate optimisation. In this project we use the technique known as step decay where the learning rate is 

reduced by a specific factor every number of epochs [95].  
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Transfer learning & fine-tuning  

Typically, the U-Net is trained from scratch with randomly initialized weights, however training a deep 

CNN from scratch has several complications. In the first place, for a successful training CNNs require a 

large amount of labelled data, a requirement often difficult to meet in the medical field where manual 

segmentation by experts is highly time consuming and expensive. Furthermore, training a deep CNN 

requires large computational and memory resources in order to reduce the computational time of the 

training. Finally, training a deep CNN can be challenging due to overfitting and convergence issues that 

to be resolved normally require frequent adjustments in the network architecture or learning 

parameters of the network. Therefore, deep learning from scratch for each new dataset is tedious and 

time-consuming [96]. 

Before the training process the weights are initialised randomly and during backpropagation they are 

updated after each epoch from the weights of the previous iteration.  More specifically, they are 

normalized with a mean of approximately 0 and with a small standard deviation. However, large 

number of weights together with limited labelled data may lead to undesirable local minimums during 

the backpropagation of the loss function which results in convergence issues. In order to resolve this, 

the weights of the convolutional layers can be alternatively initialized to the weights of a pre-trained 

CNN with the same architecture, this is known as transfer learning [96]. 

With this technique, instead of training a CNN from scratch, the pre-trained weights of a CNN trained 

with an extremely large dataset are taken advantage of, typically the ImageNet dataset. Specifically, 

this method consists of freezing all the layers from the pretrained network preventing them to update 

their pretrained weights and training the top model of the network with images for a specific 

application. Iglovikov et al.[97] uses this approach by pre-training the encoder layers of a U-Net. 

On the other hand, the transfer learning technique albeit being relatively simple does not always 

provide good results for complex problems as it is not very specific for the image dataset. Another 

alternative is to only freeze some of the initial convolutional blocks and retrain or fine tune the final 

ones instead of freezing all of them. In general, the early layers of a CNN extract low level features 

whilst the late layers learn high level features more specific for the target application. Therefore, an 

effective fine-tuning technique is to start by unfreezing the last layers and incrementally include more 

layers until the desired performance is reached. With this the weights of the final layers start the 

update based on the pretrained weights of the previous layers. Fine tuning only the last layers of the 

feature extractor is referred to as “shallow tuning” whilst fine tuning blocks of convolutional layers is 

referred to “deep tuning” (Figure 28). Tajbakhsh et al.[96] in their fine-tuning review stated that deep 

fine tuning outperforms shallow fine tuning for medical image applications.  
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Figure 28 Shallow and Deep tuning example. The red circle represents the unfrozen layers 

 

6.1.3 Normalization and regularization in deep learning 

Dropout  

Deep convolutional neural networks with large number of parameters and high complexity face the 

challenge of learning too well from the training dataset and are therefore, not able to generalize well 

when presented with other data, this is known as overfitting. This problem can be addressed with 

regularization methods. One of the regularization methods used in this project is dropout. Dropout 

regularization is a method where in each training iteration a random sample of outputs in the layers 

are deactivated with a probability p (probability of disconnecting outputs). This random disconnection 

discourages complex co-adaptations of learnt representations between layers which do not generalize 

for unseen data. For example, a spatial dropout of 0.5 means that in every iteration half of the layers 

output will be randomly disconnected [98]. 

Instance normalization 

One of the challenges of training deep neural networks is the change in distribution of the deep layer´s 

input when the parameters of the previous layers are modified during training. This phenomenon, 

known as internal covariate shift, slows down the training process and makes it difficult to train models 

with saturating non linearities. The change in the input distribution of the deep layers will affect their 

output producing fluctuations in saturable regions of some activation functions such as the sigmoid. 

When this happens the neurons (kernels) are not able to update their weights as the gradient can´t 

travel backwards through the layers. This is known as vanishing gradients [99]. 

To mitigate the internal covariate shift and avoid the vanishing gradient phenomenon after each 

convolution the feature maps must be normalized. There are several normalization techniques. At this 

moment, the most popular technique is Batch Normalization where the activations are normalised 

across each mini-batch (set of input samples in each iteration), in other words, each feature maps is 

normalised by subtracting the mean and dividing by the standard deviation of the mini-batch [99]. 

On the other hand, the network used in this project replaces the traditional batch normalization layer 

with instance normalization. This is done because when working with small batch sizes, as occurs in 

this project, the stochasticity induced may destabilize batch normalization. The key difference 

between batch normalization and instance normalization is that in the latter the mean and standard 
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deviation are computed from a single sample instead of from a whole batch of images. Furthermore, 

due to its non-dependency to mini-batch, instance normalization can also be applied at inference time  

[99, 100]. 

Instance normalization is defined in Equation (9) [100]: 

 

𝑦𝑡𝑖𝑗𝑘 =
𝑥𝑡𝑖𝑗𝑘−𝜇𝑡𝑖
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2 +𝜖
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𝐻
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𝑊
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2 =
1

𝐻𝑊
∑ ∑ (𝑥𝑡𝑖𝑙𝑚 − 𝑚𝑢𝑡𝑖)2𝐻

𝑚=1
𝑊
𝑙=1         (9) 

 

Here 𝑥 (𝑇𝑥𝐶𝑥𝑊𝑥𝐻) consists of an input tensor which contains a batch of 𝑇 images. For the 𝑥𝑡𝑖𝑗𝑘  𝑡ℎ 

element, 𝑖 is the feature channel, 𝑗 and 𝑘 are the spatial dimensions corresponding to the height (𝐻) 

and width (𝑊) of the image and t is the index of the image in the batch. Therefore, 𝜇𝑡𝑖 and 𝜎2
𝑡𝑖  

correspond to the mean and variance of each image sample, respectively. The 𝜖 is non-zero small 

constant to avoid division by 0. 

 

6.2 3D Dual U-Net Architecture  

6.2.1 Encoder-decoder CNN 

In the following section the architecture of the network employed in this project will be described. This 

network was proposed by Jia et al. for the 2018 STACOM LA challenge. The challenge consists in the 

automatic segmentation of LA blood pool in LGE-MRI images and the output of the network is a binary 

mask with voxels corresponding to the blood pool volume of LA activated. 

For the segmentation task Jia et al. proposed a dual 3D U-Net. The U-Net is a typical encoder-decoder 

network based on the work by Ronneberger et al. [11]. In addition, the network used in this project 

follows the 3D extension of the U-Net first proposed by Cicek et al. [13] where 3D volumes are taken 

as input and processed by 3D convolutional kernels. Training with volumetric images enable for a 

better generalisation of the model therefore the network can be effectively trained with sparsely 

annotated data which is the case in most biomedical applications.   

The composition of the encoder and decoder pathway is detailed below, the implementation of the U-

Net described follows the work of Isensee et al. [101]. 

Encoder 

The encoder is a context aggregation pathway that extracts increasingly abstract representations as it 

goes deeper in the network. The feature maps in the encoder are computed by context modules. Each 

context module is in fact a pre-activation residual block [102] with additive residual connections that 

consists of 2 convolutional blocks with a dropout layer (𝑝 = 0.3) in between. Each convolutional block 

consists of a convolutional layer with 16 filters of kernel size 3𝑥3𝑥3 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 with zero padding, 

followed by instance normalization layer and a reLU activation function. The zero padding is applied to 

maintain the spatial resolution of the image after applying the stride=1 convolution. Furthermore, 

context modules are connected with each other by 3𝑥3𝑥3 convolutions with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 that act as 

the down sampling layer, halving the resolution of feature maps whilst doubling their number.  
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As it can be observed in Figure 29 the network has a 5-level depth. Higher depth levels refer to higher 

dimensional feature representations but with lower spatial resolution, as seen, as the level of depth 

increases the size of the input is decreased whilst the number of feature maps increases. Furthermore, 

each level except the first one consists of a down-sampling convolution followed by a context module. 

In the first level a simple 3𝑥3𝑥3 convolution is applied over the input volume to extract the 16 initial 

feature maps.  

 

 

Figure 29 Network architecture from Isensee et al. [101]. 

 

Decoder 

The decoder or localization pathway combines the high level representations extracted by the encoder 

with shallower features to reconstruct the output image at full resolution. The resolution is increased 

with the up-sampling module that consists of a 3D upscale where the feature voxels are repeated twice 

in each spatial dimension followed by a 3𝑥3𝑥3 convolution that halves the number of feature maps. 

This is done instead of the more common approach of deconvolution to prevent checkerboard 

artefacts [103] in the network output. The up-sampling module is followed by a concatenation layer 

that recombines the up-sampled features with the corresponding level features of the encoder via 

concatenation, to generate what are known as ‘skip connections’. Skip connections are an important 

building block of U-Nets that consist in shortcut connections between layers of equal resolution from 

encoder to decoder, this enables feature propagation between layers to provide high resolution 

features. Then the localization module which consists of a 3𝑥3𝑥3 convolution followed by a 

1𝑥1𝑥1 convolution recombines these features together and posteriously halves the number of feature 

maps. Throughout the network the activation function used is leakyRELU with a negative slop of 10-2  

for all convolutions computing feature maps. 

Following the work of [104], segmentation layers are integrated at different levels of the decoder and 

combined to form the final output of the network in a method known as deep supervision. Kayalibay 

et al. [104] used this idea in the original FCN by Long et al.[10] to reduce the coarseness of the final 

segmentation. Since then, several works on 3D medical image segmentation have also reported 

creating multiple segmentation maps at different resolutions [105, 106]. As observed in Figure 29 , 

three segmentation maps are created in this network: one in the final layer therefore having the same 
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size as the input, one in the second last layer with half the size of the input in each spatial dimension 

and one in the third last layer with one fourth of the size of the input. These are then combined as 

follows: first the segmentation map with the lowest spatial resolution is up-sampled by repeating the 

voxels twice in each dimension to have the same size as the second lowest resolution segmentation 

map. Then both are added via element-wise summation and the output is up-sampled in the same way 

and added to the highest resolution map to form the final network output. Since the decoder already 

receives high resolution features with the encoder-decoder skip connections combining the three 

segmentation maps does not have the purpose of feature refinement but rather to speed up 

convergence by “encouraging” early layers of the network to produce good segmentation results [104]. 

The successive dual 3D U-Net framework proposed by Jia et al. and followed in this project is illustrated 

in Figure 30. It actually consists of one 3D U-Net that is trained twice with different inputs. Based on 

the order at which they are trained we will refer to them hereafter as first and second 3D U-Net.  

 

 

Figure 30 3D Dual U-Net structure proposed by [25]. Green blocks represent 3D features; Dark blue refers to the 
cropping interface to crop the region of interest of the first U-Net prediction. 

The first 3D U-Net is tasked with locating and extracting the region of interest. The input of the first 

net are MR images resized to size (224,144,96) and its output is preliminary prediction masks of the 

left atrium. The crop interface keeps the largest connected components of the prediction masks and 

computes the spatial location of the region of interest (ROI) of the left atrium. The MR images and 

ground-truth masks are then cropped with a cuboid centred around the left atrium.  

The second 3D U-Net performs a secondary training with the cropped images at full resolution. 

Cropping the images removes background noise and enables for a more precise segmentation. 

Specifically, the input of the second U-Net are MR images cropped around the predicted LA without 

resampling of size (224,114,96). The output is a prediction of the LA segmentation of cropped 

dimensions.    

 

6.2.2  Residual blocks 

Similarly to the work of Milletari et al. [14], the design of the U-Net is modified by residual blocks. First 

introduced by He et al. [107], residual blocks employ special additive skip connections to combat 

vanishing gradients during backpropagation. More specifically, the data flow is separated into 2 

streams at the beginning of the residual block: the first carries the unchanged input of the block and 

the second goes through the residual block where weights and non-linearities are applied. These two 

streams are merged at the output of the block by element-wise addition [104]. Technically, the net by 

Jia et al. employs the modification introduced by He et al. [102] where after the element wise addition 
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no activation function is used, these are known as pre-residual activation blocks. The proposed 

variation of the residual block can be observed in Figure 30. 

 

 

Figure 31 Left: (a) original Residual Unit in [107] ; (b) proposed Residual Unit [102] 

 

6.3 Left and Right Atria Segmentation via 3D Dual U-Net  

The main objective of this project is to generate a high generalisation network model capable of 

obtaining segmentation masks of both RA and LA from MRI images.  The segmentation of both atria 

cavities is of great importance in AF treatment where to plan for ablation procedures a full 3D 

anatomical model of the atria is required, however most research groups concentrate their efforts in 

network models specific for LA segmentation only. 

As previously seen, to obtain these segmentations a specialized CNN or 3D U-Net is used. These DL 

algorithms are based on supervised learning techniques, in other words, in order to generate the 

segmentation they need a set of training data that consists of the raw MRI image to be segmented and 

an image with the corresponding labels, otherwise known as ground-truth.  

In this project the network was trained with different databases of varying image quality and ground-

truth segmentations.  Firstly, the network was trained with Database 1 to obtain accurate LA 

segmentation and with Database 2 to obtain both LA and RA prediction segmentations. The learning 

of LA segmentation from the first network was transferred as positive inference to increase 

segmentation accuracy. Database 3 was then used to test the generalisation ability of the network 

trained with Database 2 for the segmentation of LA and RA from images of high variability.  

 

6.3.1 Image pre-processing 

Before training the network, the raw MRI images must be pre-processed and we must ensure that the 

ground-truth labels do in fact label the region of interest.  

The internal pre-processing of the algorithm proposed by [25] involves a resize to (224,144,96) and a 

normalization of the raw MRI image by setting the feature map mean to 0. We must highlight that 
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although all images are resized to have the same input dimension, during validation, the predictions 

generated by the network have the same size as the original dimensions of the image to maintain the 

resolution. 

As seen in Chapter 5, Database 1 was provided by the 2018 segmentation challenge and the network 

form Jia et al. which  used in this project was specifically created to enter this challenge therefore there 

was no need to externally pre-process the images more than the network internally already does. 

Database 2 consists of 20 patients each containing a raw MRI volume with a label map that contains 

the manual segmentations of different cardiac cavities such as the left and right ventricle, the left and 

right atrium, the myocardium, the ascending aorta and the pulmonary artery. Due to the fact that in 

this project there is only interest in segmenting the atria we extract the left atria mask (label value = 

420) and the right atria mask (label value=550) and save them with the raw MRIs in two distinct 

datasets (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 ground-truth label extraction, axial slice. a) LA label extraction b) RA label extraction 

In addition, further external pre-processing involved permuting between the second and third 

dimension of the volume (from [x y z] to [x z y]) so that the 3rd dimension contained the axial slices, 

and rotating some patient volumes that had a different spatial orientation when the image was 

compressed in NIFTI format (Figure 33).   

 

a) 

b) 
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Figure 33 90º rotation. Axial slice 

Furthermore, there is a high variability in terms of spatial dimension and slice number between 

patients (see  

Table 1). Also, in terms of contrast and size of atria cavities as the 20 patients comprised a wide range 

of cardiac pathologies. Therefore, with this database the objective was to test the generalisation ability 

of the network in order to provide an accurate segmentation of LA and RA from MRI images of high 

variability. 

Database 3 consists of 30 patients of varying image qualities. The images were pre-processed to have 

the same spatial orientation as the other databases. This was done with a MATLAB function in a series 

of volumetric rotations. Figure 34 shows the transformation which all images underwent.   

 

 

 

 

 

 

 

 

Figure 34. (a) original orientation; axial view: y-dimension, coronal view: x-dimension, sagittal view: z-dimension. 

(b) transformed orientation; axial view: z-dimension, coronal view: y-dimension, sagittal view: x-dimension. In 

both images the same slice is viewed.  

The dimensions of the volumes are similar except for 2 patients with dimension 182x400x400. The rest 

of the patients have dimensions that range 92-142x320x320. 

In terms of the ground-truth, 10 patients (a1-a10) contained a ground-truth mask with the LA volume 

segmentation as a binary mask. 20 patients (b1-20) contained a ground-truth with other structures 

also labelled such as the pulmonary veins and the left appendage.   

The pre-processing consisted in extracting other ground-truths segmentations to remain only with the 

body of the LA (Figure 35). 

 

(a) (b) 
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Figure 35 Patient b006. (a) Original ground-truth, label red: LA, other colours: PV and LAA; (b) ground-truth of 
body volume LA. 

 

6.3.2  Data partitioning and data augmentation 

After pre-processing and ground-truth generation it is fundamental to determine the set of data that 

will be used for training. In the first place, to guarantee the robustness of the model, the dataset must 

be partitioned into a training set with which the network will be trained, and a test set to test the 

resulting predictive model. This partition is fundamental because if the same data is used for training 

and for testing the results obtained will be mistakenly good as the model has learnt the training dataset 

however what needs to be tested is the performance on a different sample. 

The first partition divides the dataset intro training and test. This is done in a proportion of 80% training 

and 20% testing. Therefore, for the Database 1 the training dataset consists of 80 patients and 20 for 

the test set. For the Database 2 the training dataset consists of 16 patients and the test subset of 3 

patients. Database 3 was not divided as it was only used for testing.  

The training set then outgoes a validation split performed by the algorithm that randomly splits the 

training set in 80% training and 20% validation. The validation split is important to monitor the 

network´s performance throughout the training process. The random data split changes every time 

the algorithm is run therefore avoiding biased segmentation results. 

Due to the small size of samples of the dataset used the model tends to ‘memorise’ the training data 

which limits the ability of the model to generalise when new data samples are passed through the 

network, this is known as overfitting. To prevent this, a technique known as data augmentation is used 

to increase the number of new image samples during training. Augmentation in medical imaging 

normally involves applying small geometrical transformations during training to create variety. In the 

Jia et al. algorithm these transformations involve rotations, height, and width translation shifts, 

horizontal and vertical flips and zoom. In this project we experiment with varying data augmentation 

options to generate various models [108]. 

 

6.3.3 Training and evaluation 

The network was trained several times, for each training experiment the training parameters from [25] 

were kept the same. These hyperparameters consist of an initial learning rate equal to 5e-4 that reduces 

by half after 10 epochs when validation loss does not improve. After 50 epochs, convergence is defined 

as not improving and the maximum number of epochs is 500 with 200 steps per epoch.  The input of 

(a) (b) 
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the network are normalized MR volumes resized to (224,144,96). The loss function employed is the 

previously described dice loss function to avoid the class imbalance issues. This function is computed 

with the Softmax output of the last layer of the network.  

Each training process in the dual framework consists of an initial training and evaluation which provides 

a first prediction output that serves to identify the region of interest (ROI). This ROI is then extracted 

from the original image and ground-truth with an external cropping algorithm. The algorithm designed 

reads the prediction mask from each patient and by keeping the largest connected component returns 

the spatial coordinates of a 3D bounding box that represents the smallest cube containing the LA 

volume. Then the coordinates are stored in a vector and are used to crop the raw image and ground-

truth volume of their corresponding patient. This is a sort of pre-processing done in this framework. 

The final model is obtained by training with the ROI cropped images and ground-truth. Once the 

network is trained the evaluation process generates the final prediction outputs from the testing 

images passed through the network. The evaluation metric used is the Dice coefficient. The dual 

framework proposed by [25] is represented in Figure 36.  

 

 

Figure 36 Successive U-Net training framework. a) the first U-Net for cropping b) the second U-Net for 
segmenting. Modified from [25]. 

The training and evaluation processes made throughout this project can be divided into 3 experiments. 

In Experiment 1 the network was trained with images from Database 1 (80 volumes) and evaluated 

with testing images also from Database 1 (20 volumes). As previously stated, Database 1 was provided 

by the same challenge that the network of [25] was originally designed for therefore there was no 

need to further pre-process the images. Once the final prediction output was obtained it was evaluated 

with the Dice coefficient and the cropped predictions were post processed. Database 1 contains 

ground-truths of LA segmentation therefore the output prediction generated were LA binary masks. 

Due to the large number of training samples this was considered a high-performance model.  

Figure 37 illustrates the steps taken in this experiment where N1 refers to the trained model obtained.   

 

(b) 
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Figure 37 Flow chart Experiment 1. 

In Experiment 2 the network was retrained (16 volumes) and tested (3 volumes) with data from 

Database 2 and the model N2 was obtained. As previously stated, Database 2 contains ground-truth 

of both LA and RA masks which had to be separated during pre-processing therefore the training was 

performed separately for each cardiac structure. After the RA and LA segmentation outputs were 

obtained in the evaluation, they were post processed and 3D reconstructed. As previously stated, 

Database 2 is a database with high inter patient variability therefore by training the network with this 

database the aim was to obtain a model of higher generalisation capacity.  

Figure 38 illustrates the sequential processes followed in the first part of Experiment 2. 

 

 

Figure 38 Flow chart Experiment 2. 

Then the network was retrained again for LA and RA with the implementation of deep fine-tuning 

technique obtaining model N3. The weights of all convolutional layers were initialised with pretrained 

weights obtained from the high-performance model N1 as a positive inference in the learning of the 

network for LA and RA segmentation. The testing was also performed with images from Database 2 

and the prediction outputs were postprocessed and 3D reconstructed.  

Figure 39 details the sequential processes followed in the second part of Experiment 2. 

 

 

Figure 39 Flow chart Experiment 2. 

In Experiment 3 the trained models obtained in the previous experiments: N1, N2 and N3 were 

evaluated with images from Database 3. Database 3 contains ground-truth of only the LA segmentation 

therefore the N2 and N3 models for RA were excluded from this experiment.  30 volumes were passed 

as testing images and the prediction output was post processed and 3D reconstructed. The aim was to 

test the generalisation capacity of the previously trained networks when they were evaluated, without 

retraining, with an external database.  



53 
 

Figure 40 illustrates the sequential processes followed in Experiment 3. 

 

 

Figure 40 Flow chart Experiment 3. 

 

6.3.4 Post processing 

After the training and testing of the algorithm the segmentation predictions of the cropped LA and RA 

are obtained.  Prior to the spatial reintegration of the cropped images a morphological filter was 

applied to the predictions to smoothen the edges and fill the holes of the anatomical inconsistencies 

registered in of the resulting predicted masks. These errors are propitiated due to the non-optimal 

thresholding of the sigmoid function in some pixels.  

The morphological filter designed in MATLAB consisted of hole filler command which applies the 

following operation, defined in Equation 10: 

 𝑓(𝑥) = 255 − 𝑅𝑒𝑐(𝑚, 255 − (𝑥)) (3) 

where 𝑅𝑒𝑐 (𝑚, 255 − (𝑥)) refers to the binary reconstruction of the negative of the original mask 

(255 − 𝑥) with a marker 𝑚 that corresponds to a black image with white edges. 

Following this operation, an opening command was applied to smooth the edges based on the 

following operation: 

 𝛾𝐵(𝑋) = 𝛿𝐵( 𝜀𝐵(𝑋)) (4) 

where 𝛾𝐵(𝑋) represents the opening of an image X with a structural element 𝐵. This is performed with 

an erosion 𝜀 followed by a dilation 𝛿 with the same structural element 𝐵. The erosion eliminates thin 

gulfs and objects smaller than the structural element B and the following dilation recovers the original 

dimensions of the object therefore smoothing the edges. The structuring element chosen 𝐵 consist in 

a sphere with a radius equals to 2. 

After the filter was applied, to reintegrate the cropped prediction to the original spatial location with 

respect to the original dimensions of the image an algorithm was designed in MATLAB. This method 

stores the coordinates and dimensions of the cuboid extracted in the crop interface in a vector. This 

vector is then used to position the cropped mask into an empty matrix with the original image 

dimensions. 

This process is illustrated in Figure 41 where the blue cube represents the cuboid computed by the 

crop interface and the red cube the cropped prediction mask.  
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Figure 41 Spatial positioning of LA and RA cropped prediction masks to original dimension mask. The blue cube 
represents the cuboid in the original prediction and the red cube represents the cropped prediction acquired. 

This process is performed twice, both for LA and RA prediction masks. It is of interest to spatially 

combine both segmentation in one 2D image. For this purpose, another algorithm was designed in 

MATLAB for assigning label equals 1 to LA and label equals 2 to RA and unify both prediction masks. As 

a result, we spatially combine both masks in one 2D image where the LA and RA are differentiated by 

different label values and the pixels which overlap have label equals3. Figure 42 illustrates the post 

processing pipeline.  

 

 

 

 

 

 

 RA 

  

 

 

 

 

 

LA 

Figure 42 Post processing steps. Database 2 

 

6.3.5  3D Atrial reconstruction 

Once we have the 2D volume containing the prediction masks of both the left and right atria for 

application purposes it is interesting to visualize the 3D volume. For this we employ the Visualization 

Toolkit (VTK) extension in Python. VTK is an open-source object-oriented software system for 3D image 

processing and visualization. [109] 

To visualize the data in VTK an algorithm was developed in Python following the pipeline in Figure 43. 

The source/reader step refers to the data loading and arrangement. Once the slices have been 

 (x1, y1, z1) 
 

 (x1, y1, z1) 
 

3D dual 

U-Net 
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arranged a filter is defined that customizes the data by adding colour, opacity, and transparency 

parameters to the volume property. Then the mapper volume is defined which maps the input data 

with graphic geometries that can be displayed by the rendered. Following that, an actor must be 

created that represents the volume object integrating the volume property and mapper previously 

defined. The rendering class then converts the 3D graphics geometry form the volume actor together 

with light properties into a 2D image that can be displayed on the screen. Finally, the render window 

creates a window for renderers to draw into and the interactor provides window interaction via mouse 

and keyboard. 

  

 

Figure 43 VTK pipeline. [110] 
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Chapter 7. Results and Discussion 

As previously mentioned, the automatic segmentation algorithms trained in this project must be 

validated by testing their performance. For this the prediction masks obtained from the testing images 

were compared with the ground-truth provided in the database. As their name implies the ground-

truth is a binary segmentation mask considered as the ‘truth’ of the anatomical segmentation. In this 

project the ground-truth from all databases were manually generated by experts. Therefore, by 

comparing the prediction output of the network with the ground-truth a measure of the performance 

of the network can be obtained.  

There are different ways in which the binary prediction mask and ground-truth can be compared. In 

this project the metric used was the Dice similarity coefficient. The Dice coefficient is a statistical index 

that compares the similarity between two samples based on their spatial overlap. It can therefore be 

used to assess the pixelwise similarity between a prediction (𝑝) and ground-truth (𝑔) binary mask 

[111]. 

The formula of the dice coefficient is defined in Equation 12: 

 

 
𝐷𝐶 =

2 ∑ (𝑝𝑖  𝑔𝑖)𝑁
𝑖

∑ 𝑝𝑖
𝑁
𝑖 + ∑ 𝑔𝑖 + 𝜎𝑁

𝑖

 

 

(5) 

Where 𝑖 represents each pixel of the volumetric sample and 𝜎 a smoothing constant.  

The dice coefficient is obtained for each testing patient and the mean and standard deviation are 

computed to represent the performance of the segmentation.   

In the following section the quantitative and qualitative results obtained for each experiment along 

with the discussion will be presented. The quantitative results refer to the Dice coefficient obtained 

from the predicted segmentations and the qualitative results refer to 2D and 3D reconstructions of the 

predictions and ground-truth.  

 

7.1 Experiment 1 

As previously described in section 6, the first experiment consists of training and testing the network 

with patients from Database 1. Database 1 contains 20 testing volumes each of them composed of 88 

slices.  

 

7.1.1 Quantitative results 

Table 2 Dice coefficient of predicted segmentations for the testing subset of Database 1.presents the average 

Dice coefficient of the 20 patients for testing along with the standard deviation.  The results presented 

are computed with the final prediction output of the model.  
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Table 2 Dice coefficient of predicted segmentations for the testing subset of Database 1. 

 

7.1.2 Qualitative results 

In Figure 42 the axial slices of 3 different patients from Database 1 can be observed, along with the 

superimposed binary mask and prediction obtained.  

 

   

 

 

Figure 42. a) Patient 1, slice=42, Dice=0.9458 b) Patient 2, slice=54, Dice= 0.8962 c) Patient 3, slice=49, 

Dice=0.9060.  Axial slices of MRI images overlapped with ground-truth of LA segmentation in white, 

prediction mask in red and intersection of the two in pink. 

 

7.1.3 Discussion  

As can be observed in Table 2 Dice coefficient of predicted segmentations for the testing subset of Database 

1.the first experiment yields very accurate segmentation results. This was to be expected as Database 

1 corresponds to the data provided by the 2018 LA segmentation challenge and the network proposed 

by [25] was specifically designed to solve this challenge. Therefore, by keeping the same learning 

parameters, the dice obtained coincides with the dice reported in [25] (0.91-0.92). Furthermore, the 

network was trained with a relatively large number of patients which added to the good performance 

of the network. This can be observed in Figure 43 where the ground-truth and prediction intersection 

(pink) is almost complete. 

The reason for performing this experiment was firstly to test the capacity of the network to provide 

accurate segmentations and secondly to obtain a high-performance model as a starting point for LA 

segmentation through fine-tuning techniques.   

Mean ± σ 

0.9155 ± 0.0270 

b) 

c) 

a) 
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7.2 Experiment 2 

In the first part of this experiment the network was trained and tested with Database 2. This database 

consists of 16 volumes for training and 3 volumes for testing. As described in Chapter 3, the ground-

truth of this data contained binary masks of both LA and RA. Therefore, the network was trained and 

tested twice, once for each ground-truth binary mask.  

Furthermore, it should be considered that this data is characterized by high variability as the MRI 

volume were acquired from patients with different cardiac pathologies which may affect the size and 

shape of the atria. Furthermore, each MRI volume acquired had a different spatial dimension.  

In the second part of this experiment the technique of deep fine tuning was carried out. This was done 

by initialising the weights from all convolutional layers with the pre-trained weights obtained from the 

network trained in Experiment 1. 

7.2.1 Quantitative results 

The following tables show the dice coefficient from network predictions with and without fine tuning 

implementation. Both network trainings were performed twice, once for LA segmentation (Table 3) 

and once for RA segmentation (Table 4) 

 

 

 

 

 

 

 

 

 

7.2.2 Qualitative results 

Figure 44 shows an axial view of the prediction segmentations and ground-truths superposition of LA 

and RA structures for two patients. Each row represents a different patient and the columns the 

implementation or not of fine tuning during the training of the network  

 

 

 

 

 

 

Implementation Patient 1 Patient 2 Patient 3 Mean ± σ 

w/o fine tuning 0.8693 0.8756 0.8736 0.8729 ± 0.0032 
with fine tuning 0.8781 0.8949 0.8707 0.8813 ± 0.0124 

Table 3 Dice coefficients in LA predicted segmentations. 

Implementation Patient 1 Patient 2 Patient 3 Mean ± σ 

w/o fine tuning 0.9162 0.8773 0.8892 0.8942 ± 0.0199 
with fine tuning 0.9273 0.9043 0.9166 0.9160 ± 0.0115 

Table 4 Dice coefficients in RA predicted segmentations. 



60 
 

 

     

    

            

Figure 44 LA and RA segmentations for patient 1 (P1) and patient 2(P2). Axial slice=175.  ground-truth mask in 
white, prediction mask in red and intersection in pink. (a) Prediction from network w/o fine tuning. (b) Prediction 
from network with fine tuning. (b) Prediction from network with fine tuning. 

Furthermore, to qualitatively assess the geometry of the atria structures the left and right atria 

prediction masks where 3D reconstructed. Figure 45 show the 3D reconstruction of LA and RA for 

patients 1 and 2 in three different views. Prior to the reconstruction a 3D morphological filter of 

structural element size 2 was applied, to smoothen the edges.  

  

P1

e 

P2 

LA RA 

(a) (b) (b) (a) 
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Figure 45 3D reconstruction with filter of patient 1 and 2. LA shown in light grey and RA in dark grey. 

 

7.2.3 Discussion of Experiment 2 results 

In this experiment, due to the limited number of data in Database 2 only 3 volumes were used to 

evaluate the resulting models, therefore, the results obtained serve only as a first view of the 

performance of these networks. An increased amount of testing samples would be needed to obtain 

more representative results. 

In the first place, by training the network with Database 2 the aim was to obtain a segmentation model 

of both atria cavities as Database 1 didn´t provide RA ground-truth masks. With the model from scratch 

it was of interest to test the ability of the network to generate accurate segmentations when trained 

with small number of samples. Afterwards, it was considered convenient to apply deep fine-tuning to 

transfer the knowledge of LA segmentation from Experiment 1 network as a positive inference in the 

segmentation of RA.   

Furthermore, due to the high variability of Database 2 a network trained with this database can be 

expected to have a high generalisation capacity. This will be further verified in Experiment 3.  

From the results obtained in Table 3 and 4 it can be observed that the application of deep fine-tuning 

does increase the dice coefficient in both cardiac structures. As can be seen, the fine-tuning technique 

increased the Dice coefficient by 0.01 for LA segmentation and 0.02 for RA segmentation. This may not 

seem like a huge difference however this increase in accuracy becomes of importance in medical 

applications where lower accuracy results are associated with increased patient risk.  

The results in Table 4 demonstrate that the network could successfully segment the RA. This 

generalisation capacity of the network is very important for clinical practice where it is of interest that 

the automatic segmentation algorithms are capable of segmenting different structures. Furthermore, 

as can be seen in Table 3 and 4, the dice obtained for RA segmentation was even higher than the one 

P1

e 

P2 
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obtained for LA segmentation in both training from scratch the network and fine-tuning the weights 

from Experiment 1. Upon a first consideration it would be expected that the segmentation results for 

LA were higher as the network was designed for this purpose, however several things must be 

previously considered. In the first place, as previously stated, the small testing sample may not be 

wholly representative of the network´s performance. Secondly the left atrium has a smaller and more 

complex structure than the right atrium therefore it is to be expected that the network finds a more 

challenging task the LA segmentation. 

 Furthermore, the dice coefficients obtained in both implementations were slightly lower than the dice 

values obtained in Experiment 1. As previously described, Database 2 contains different dimension 

volumes from patients with varying pathologies that can cause variations in the LA and RA anatomical 

dimensions. In addition, in the second experiment the network was trained with only 16 volumes whilst 

in the first experiment it was trained with 80, therefore, even with the application of fine tuning more 

samples would be needed for training to increase the network´s performance.  

Nevertheless, the dice obtained in both LA and RA were significantly higher than the mean dice 

obtained by several research groups reporting results in the segmentation challenge of Database 2 

(LA:0.82, RA:0.83) [81] which suggests that fine tuning technique is an effective method for LA and RA 

segmentation.  

In terms of a qualitative evaluation, it is difficult to visually assess images with dice variations in the 

range of 0.01. Figure 43 shows the slight increase in superposition between prediction mask and 

ground-truth when the fine-tuning technique is applied for both LA and RA segmentations. This may 

serve as a qualitative validation of the dice results obtained. However, it must be highlighted that this 

superposition may vary from slice to slice therefore for a more extensive qualitative analysis more 

slices must be analysed in each experiment.  

In Figure 44 the prediction segmentations are further assessed by means of a 3D reconstruction of the 

data where for each patient different views are shown to understand the 3D geometry and spatial 

relationship of both atria. As can be observed the left atrium (light gray) has a smaller and more 

complex geometry than the right atrium (dark gray) and, this is one of the reasons why it is normally a 

more challenging structure to segment. The geometry observed refers to the blood pool volume of 

both structures, other structures such as PVs and LAA in the case of LA cannot be qualitatively assessed.   

 

7.3 Experiment 3 

This experiment consisted in an extensive evaluation of the previously trained models using an external 

database (Database 3): the network trained with Database 1 (N1), the network trained with Database 

2 (N2) and the network trained with Database 2 via fine tuning technique (N3). The aim of this 

experiment was to corroborate the generalization ability of the three models. Database 3 consists of 

30 patients with only LA ground-truth therefore the networks trained with RA segmentations were 

excluded from the following experiments.  
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7.3.1 Quantitative results 

 

Table 5 shows the average dice results obtained from each trained network in the evaluation with 

Database 3. 

 

Network N Mean ± σ 

N1 0.7773 ± 0.0643 
N2 0.8230 ± 0.0943 
N3 0.8515 ± 0.0796 

 

Table 5 Average dice for each trained network. 

 

7.3.2 Qualitative results 

Figure 46 shows the axial view of predictions obtained for 3 patients of Database 3 with the 3 

different trained networks.  

 

   

   

   

 

Figure 46 LA segmentations for 3 patients (P1,P2, P3) in networks (a) N1, (b) N2 and (c) N3. ground-truth mask 
in white, prediction mask in red and intersection in pink. 

P1 

 

 

P2 

P3 

(b) (a) (c) 
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7.3.3 Qualitative results 

Figure 47 illustrates the 3D LA reconstruction from the predictions of the three patients illustrated in 

Figure 45 along with the 3D reconstruction of the ground-truth.  

  

        

    

 

Figure 47 LA 3D reconstructions of predictions for patients P1, P2 and P3 passed through the networks (a) N1, 
(b) N2 and (c)  N3. (d) 3D reconstruction of ground-truth. 

 

7.3.4 Discussion of Experiment 3 results 

To compare the generalisation ability of the 3 different trained networks, Database 3 images were 

inferred as testing through each of them. As can be observed in Table 5 the dice coefficients obtained 

where lower than in previous experiments, this is to be expected as the networks were not trained 

with images from this database.  

As can be observed in Table 5 the higher dice coefficient was obtained with the network trained with 

Database 2+fine tuning (N3). This suggests that training a network with highly variable images by fine 

tuning the weights of a high-performance network could increase the generalisation capacity of the 

network and result in higher accuracy segmentations when evaluated with external databases. It 

should be remarked upon that a network trained with 16 volumes (N3) could provide much higher 

accurate segmentations than a database trained with 80 volumes. This is certainly interesting for 

medical applications when often the medical data available for training the networks (with ground-

truth segmentations) is not extensive.  

Additionally, the dice obtained in N3 was slightly lower than the average dice obtained from the 

research groups participating in the segmentation challenge of Database 3 (0.88) [112]. However, it 

must be highlighted that the algorithms proposed in the challenge were specifically tailored for 

Database 3 whilst in this experiment the results are obtained from a generalised trained network. This 

P1 

P2 

(a) (b) (c) (d) 
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is the case for many classical prediction algorithms where they end up overfitted for their specific 

database with a multitude of parameters fixed ad-hoc for those images.  

In terms of a qualitative evaluation, when comparing the 3D reconstruction with the 3D ground-truth, 

it can be seen that the network trained with Database 1 (N1) was not capable of capturing the 

geometrical anatomy of the atria whilst N2 and N3 remained closer. Furthermore, in N2 from patient 

1 and 2 several inconsistencies can be seen in the reconstruction which are not present when fine 

tuning is applied. For further anatomical identification a cardiac expert would be required. However, 

when comparing the geometry of the N3 prediction with the ground-truth several similarities can be 

seen especially in patient 1 (P1), which leads to believe that it provides a good approximation of the 

3D atrial geometry. Furthermore, when compared to the literature [38] it seems like a good basis for 

a 3D anatomical model which could be used in procedural applications such as catheter ablation.  

In view of the results achieved we think that if the model N3 could be validated with an external 

database containing RA ground-truths also and its performance could be compared with N1 and N2 

then we could write an article for CASEIB and CARS.   
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Chapter 8. Conclusion 

 

The main objective of this project was to experiment with state-of-the art automatic segmentation 

algorithms, such as deep neural networks, for LA and RA segmentation from MRI images. The aim was 

to obtain a trained neural network capable of accurately segmenting LA and RA cardiac structures from 

images of varying quality without the need of retraining. This is of interest in clinical practice where 

there is a need for automatic segmentation algorithms that accurately segment atrial structures and 

are easy to implement. LA and RA segmentation is especially useful in the field of AF treatment where 

atria segmentation for posterior 3D anatomical reconstruction is a widely used approach for guiding 

ablation procedures. Furthermore, in the field of research it is also useful to investigate the relationship 

of atrial geometry with mechanisms for sustaining AF.  

In order to achieve this, the neural network architecture and learning parameters proposed by Jia et 

al. were used to perform several segmentation experiments over three different databases. The neural 

network proposed by Jia et al. consists of a 3D U-Net with residual and skip connections which is 

currently the state-of-the-art in automatic segmentation algorithms therefore it was of interest to test 

the performance of this network under different quality databases. Furthermore, the technique of 

deep fine tuning was performed to increase the segmentation accuracy of the network.  

The databases used were provided by 3 different segmentation challenges. The first database was 

provided by the same challenge for which the network of Jia et al. was designed for therefore there 

was no need for further pre-processing. However, database 2 and 3 had image volumes of varying 

orientations and with different ground-truths which had to be dealt with prior to the training and 

testing of the network. Database 2, for example, was provided by a whole heart segmentation 

challenge therefore some ground-truth labels had to be extracted in order to generate the LA and RA 

ground-truth. Furthermore, this database contained images with different volume dimensions and 

from patients with varying pathologies which affected the volume of atria structures therefore it was 

considered as a database of high variability.  

Once the images were pre-processed, following the dual stage framework proposed by Jia et al., for 

each training experiment an initial training was performed to obtain a first prediction from which the 

ROI could be extracted. This was used to crop the images and ground-truths and the cropped data was 

passed as input to a second training which obtained the final output segmentation. 

The dual stage training process of the network was performed three times thus obtaining three 

different trained models. Once with images from the first database, the second with images from the 

second database for both LA and RA, and the third with images from the second database carrying out 

a deep fine tuning from the first model. This technique consisted of initialising the weights from all 

convolutional layer with were pretrained weights obtained from the first trained network.  

The aim of training the network with Database 2, a highly variable database, was to test the ability of 

the network to segment a different cardiac structure, the RA, and to obtain a network with increased 

generalisation capacity that was able to accurately segment images from an external database without 

further retraining.  This was tested with the third database. The third database contained LA 

segmentation masks and MRI volumes from 30 patients. This database was passed through the three 

previously described trained networks as testing images to test their ability to perform accurate 

segmentation.  
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For every experiment, the segmentation accuracy was evaluated with the dice coefficient. Once the 

training and testing were performed the predictions masks where postprocessed with a morphological 

filter to smoothen the edges and the cropped masks were relocated to their original dimension space 

to be superimposed with the original image for a qualitative evaluation, Finally, the predictions were 

assessed qualitatively with a 3D reconstruction using the VTK pipeline.  

The results obtained show that a network trained with a highly variable database is indeed more 

capable of accurately segmenting an external database without retraining. Furthermore, with the 

additional use of fine tuning the segmentation accuracy can be improved. However, to further validate 

these results the network should be tested with more external databases. In addition, the third 

database only had LA ground-truth masks therefore further testing with RA ground-truths is required 

in order to test the capability of the network in segmenting a different cardiac structure without 

retraining.  

Nevertheless, these results are promising in the field of image segmentation and are a first step 

towards the integration of automatic segmentation algorithms in the clinical practice.  
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Chapter 9. Future Work  

The future line of work for medical image segmentation algorithms is to improve their generalisation 

capacity as they are normally tailored for a specific database which in clinical practice has few 

applications. Clinicians require accurate automatic segmentation model that are capable of 

segmenting images of various contrast and image quality.  

The future line of work for this project would be to further validate the trained models obtained with 

external databases. It would be especially interesting if these databases contained RA ground-truth 

segmentations to test their ability of segmenting a different cardiac structure without retraining, 

especially for the trained network of database 2 with fine tuning which shows the most promising 

results for LA segmentation. It would be undoubtedly interesting to have generated a model capable 

of accurately segmenting the whole atria without retraining, however more data samples are needed 

to verify this.   

In light of the promising results of applying deep fine-tuning techniques, more techniques should be 

reviewed and applied in this area to aim for a higher segmentation accuracy model.  
The aim would be that this generalised model, once validated, could be integrated in the clinical 

practice for atria segmentation as a pipeline for AF management and treatment with the generation 

of 3D anatomical models.  

 

 

 

  



70 
 

 

 

 

 

 

 

 

 

 

  



71 
 

Chapter 10. References 

[1] M. Zoni-Berisso, F. Lercari, T. Carazza, and S. Domenicucci, “Epidemiology of atrial fbrillation: 
European perspective,” Clin. Epidemiol., vol. 6, no. 1, pp. 213–220, 2014. 

[2] G. Y. H. Lip, P. Kakar, and T. Watson, “Atrial fibrillation - The growing epidemic,” Heart, vol. 93, 
no. 5, pp. 542–543, 2007. 

[3] L. Li et al., “Atrial scar quantification via multi-scale CNN in the graph-cuts framework,” Med. 
Image Anal., vol. 60, p. 101595, 2020. 

[4] Y. Zheng, T. Wang, M. John, S. K. Zhou, J. Boese, and D. Comaniciu, “Multi-part Left Atrium 
Modeling and Segmentation in C-Arm CT Volumes for Atrial Fibrillation Ablation,” in Medical 
Image Computing and Computer-Assisted Intervention -- MICCAI 2011, 2011, pp. 487–495. 

[5] S. Chen, T. Kohlberger, and K. J. Kirchberg, “Advanced level set segmentation of the right atrium 
in MR,” in Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 2011, 
vol. 7964, pp. 906–911. 

[6] T. Kurzendorfer, C. Forman, M. Schmidt, C. Tillmanns, A. Maier, and A. Brost, “Fully automatic 
segmentation of left ventricular anatomy in 3-D LGE-MRI,” Comput. Med. Imaging Graph., vol. 
59, pp. 13–27, 2017. 

[7]  et al. Litjens G, Kooi T, Bejnordi BE, “A survey on deep learning in medical image analysis,” Med 
Image Anal., vol. 42, pp. 60–88, 2017. 

[8] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neural networks segment 
neuronal membranes in electron microscopy images,” Adv. Neural Inf. Process. Syst., vol. 4, pp. 
2843–2851, 2012. 

[9] M. Avendi, A. Kheradvar, and H. Jafarkhani, “Fully automatic segmentation of heart chambers 
in cardiac MRI using deep learning,” J. Cardiovasc. Magn. Reson., vol. 18, no. S1, pp. 2–4, 2016. 

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic 
Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017. 

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image 
segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics), vol. 9351, pp. 234–241, 2015. 

[12] B. Norman, V. Pedoia, and S. Majumdar, “Use of 2D U-net convolutional neural networks for 
automated cartilage and meniscus segmentation of knee MR imaging data to determine 
relaxometry and morphometry,” Radiology, vol. 288, no. 1, pp. 177–185, 2018. 

[13] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-net: Learning dense 
volumetric segmentation from sparse annotation,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9901 LNCS, no. June 2016, pp. 424–432, 
2016. 

[14] F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural networks for 
volumetric medical image segmentation,” Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016, pp. 
565–571, 2016. 

[15] Q. Tao et al., “Deep learning-based method for fully automatic quantification of left ventricle 
function from cine MR images: A multivendor, multicenter study,” Radiology, vol. 290, no. 1, 
pp. 81–88, 2019. 



72 
 

[16] F. Isensee, P. F. Jaeger, P. M. Full, I. Wolf, S. Engelhardt, and K. H. Maier-Hein, “Automatic 
cardiac disease assessment on cine-MRI via time-series segmentation and domain specific 
features,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics), vol. 10663 LNCS, pp. 120–129, 2018. 

[17] Q. Xia, Y. Yao, Z. Hu, and A. Hao, “Automatic 3D Atrial Segmentation from GE-MRIs Using 
Volumetric Fully Convolutional Networks,” Lect. Notes Comput. Sci. (including Subser. Lect. 
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11395 LNCS, pp. 211–220, 2019. 

[18] R. Karim, R. Mohiaddin, and D. Rueckert, “Left atrium segmentation for atrial fibrillation 
ablation,” Med. Imaging 2008 Vis. Image-guided Proced. Model., vol. 6918, no. 69182, p. 
69182U, 2008. 

[19] Q. Tao, R. Shahzad, E. G. Ipek, F. F. Berendsen, S. Nazarian, and R. J. van der Geest, “Fully 
automated segmentation of left atrium and pulmonary veins in late gadolinium enhanced MRI,” 
J. Cardiovasc. Magn. Reson., vol. 18, no. S1, pp. 1–3, 2016. 

[20] X. Zhuang, K. S. Rhode, R. S. Razavi, D. J. Hawkes, and S. Ourselin, “A registration-based 
propagation framework for automatic whole heart segmentation of cardiac MRI,” IEEE Trans. 
Med. Imaging, vol. 29, no. 9, pp. 1612–1625, 2010. 

[21] W. Bai et al., “Automated cardiovascular magnetic resonance image analysis with fully 
convolutional networks,” J. Cardiovasc. Magn. Reson., vol. 20, no. 1, pp. 1–12, 2018. 

[22] A. Zhaohan Xiong, Vadim V. Fedorov, Xiaohang Fu, Elizabeth Cheng, Rob Macleod and J. Zhao*, 
“Fully Automatic Left Atrium Segmentation from Late Gadolinium Enhanced Magnetic 
Resonance Imaging Using a Dual Fully Convolutional Neural Network,” IEEE Trans Med Imaging, 
vol. 38, no. 2, pp. 515–524, 2019. 

[23] C. Bian et al., “Pyramid Network with Online Hard Example Mining for Accurate Left Atrium 
Segmentation: 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 
2018, Granada, Spain, September 16, 2018, Revised Selected Papers,” 2019, pp. 237–245. 

[24] A. Mortazi, R. Karim, K. Rhode, J. Burt, and U. Bagci, “CardiacNET: Segmentation of left atrium 
and proximal pulmonary veins from MRI using multi-view CNN,” Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10434 LNCS, pp. 377–
385, 2017. 

[25] S. Jia et al., “Automatically Segmenting the Left Atrium from Cardiac Images Using Successive 
3D U-Nets and a Contour Loss,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics), vol. 11395 LNCS, pp. 221–229, 2019. 

[26] S. Vesal, N. Ravikumar, and A. Maier, “Dilated Convolutions in Neural Networks for Left Atrial 
Segmentation in 3D Gadolinium Enhanced-MRI,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11395 LNCS, pp. 319–328, 2019. 

[27]  and P. A. H. Caizi Li, Qianqian Tong, Xiangyun Liao, Weixin Si, Yinzi Sun, QiongWang, “Attention 
Based Hierarchical Aggregation Network for 3D Left Atrial Segmentation: 9th International 
Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 
16, 2018, Revised Selected Papers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics), vol. 11395, no. January, pp. 302–310, 2019. 

[28] J. E. Hall and G. A. C., Guyton and Hall Textbook of Medical Physiology (Guyton Physiology). 
2015. 

[29] S. B. Olsson, “Atrial fibrillation - Where do we stand today?,” J. Intern. Med., vol. 250, no. 1, pp. 
19–28, 2001. 



73 
 

[30] D. Sánchez-Quintana, G. Pizarro, J. R. López-Mínguez, S. Y. Ho, and J. A. Cabrera, “Standardized 
review of atrial anatomy for cardiac electrophysiologists,” J. Cardiovasc. Transl. Res., vol. 6, no. 
2, pp. 124–144, 2013. 

[31] J. A. Cabrera, F. Saremi, and D. Sánchez-Quintana, “Left atrial appendage: Anatomy and imaging 
landmarks pertinent to percutaneous transcatheter occlusion,” Heart, vol. 100, no. 20, pp. 
1636–1650, 2014. 

[32] J. Zhao et al., “Three-dimensional integrated functional, structural, and computational mapping 
to define the structural ‘fingerprints’ of heart-specific atrial fibrillation drivers in human heart 
ex vivo,” J. Am. Heart Assoc., vol. 6, no. 8, 2017. 

[33] Hall and J. Edward, Guyton and hall textbook of medical physiology thirteenth edition. 2011. 

[34] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and 
Biomagnetic Fields. 2012. 

[35]  and J. E. O. Lesh, M.D., J.M.Kalman, “An electrophysiologic approach to catheter ablation of 
atrial flutter and tachycardia: frommechanism to practice,” in Interventional Electrophysiology, 
Baltimore: William and Wilkins, 1997, pp. 347–382. 

[36] P. Jaïs et al., “Mapping and ablation of left atrial flutter,” Circulation, vol. 101, pp. 2928–293, 
2000. 

[37] F. García Cosío, A. Pastor, A. Núñez, A. P. Magalhaes, and P. Awamleh, “Atrial flutter: An 
update,” Rev. Esp. Cardiol., vol. 59, no. 8, pp. 816–831, 2006. 

[38] A. J. Moe GK, Rheinboldt WC, “A computer model of atrial fibrillation,” Am Hear. J, vol. 67, pp. 
200–220, 1964. 

[39] M. Haïssaguerre et al., “Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating 
in the Pulmonary Veins,” N. Engl. J. Med., vol. 339, no. 10, pp. 659–666, 1998. 

[40] J. Jalife, “Rotors and Spiral Waves in Atrial Fibrillation,” J. Cardiovasc. Electrophysiol., vol. 14, 
no. 7, pp. 776–780, Jul. 2003. 

[41] J. A. B. Zaman and S. M. Narayan, “Ablating Atrial Fibrillation: Customizing Lesion Sets Guided 
by Rotor Mapping,” Methodist Debakey Cardiovasc. J., vol. 11, no. 2, pp. 76–81, 2015. 

[42] R. Arora et al., “Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution 
optical mapping,” Circulation, vol. 107, no. 13, pp. 1816–1821, 2003. 

[43] M. Wijffels, C. Kirchhof, R. Dorland, and M. Allessie, “Atrial Fibrillation Begets Atrial Fibrillation,” 
Circulation, vol. 92, pp. 1954–1968, 1995. 

[44] R. F. Bosch, X. Zeng, J. B. Grammer, K. Popovic, C. Mewis, and V. Kühlkamp, “Ionic mechanisms 
of electrical remodeling in human atrial fibrillation,” Cardiovasc. Res., vol. 44, no. 1, pp. 121–
131, 1999. 

[45] A. J. Workman, K. A. Kane, and A. C. Rankin, “The contribution of ionic currents to changes in 
refractoriness of human atrial myocytes associated with chronic atrial fibrillation,” Cardiovasc. 
Res., vol. 52, no. 2, pp. 226–235, 2001. 

[46] H. J. Jongsma and R. Wilders, “Gap junctions in cardiovascular disease,” Circ. Res., vol. 86, no. 
12, pp. 1193–1197, 2000. 

[47] B. Al Ghamdi and W. Hassan, “Atrial remodeling and atrial fibrillation: Mechanistic interactions 
and clinical implications,” J. Atr. Fibrillation, vol. 1, no. 7, pp. 395–416, 2009. 



74 
 

[48] D. P. Zipes, J. Jalife, and W. G. Stevenson, Cardiac Electrophysiology: From Cell to Bedside: 
Seventh Edition. 2017. 

[49] P. M. Boyle et al., “Computationally guided personalized targeted ablation of persistent atrial 
fibrillation,” Nat. Biomed. Eng., vol. 3, no. 11, pp. 870–879, 2019. 

[50] M. Elmaoğlu and A. Çelik, MRI Handbook. 2012. 

[51] J. Bogaert, S. Dymarkovsky, A. M. Taylor, and V. Muthurangu, Eds., Clinical cardiac MRI. . 

[52] D. W. McRobbie, E. A. Moore, and M. J. Graves, MRI from picture to proton. 2017. 

[53] D. J. Pennell et al., “Clinical indications for cardiovascular magnetic resonance (CMR): 
Consensus Panel report,” Eur. Heart J., vol. 25, no. 21, pp. 1940–1965, 2004. 

[54] D. T. Ginat, M. W. Fong, D. J. Tuttle, S. K. Hobbs, and R. C. Vyas, “Cardiac imaging: Part 1, MR 
pulse sequences, imaging planes, and basic anatomy,” Am. J. Roentgenol., vol. 197, no. 4, pp. 
808–815, 2011. 

[55] M. Imai et al., “Multi-ethnic study of atherosclerosis: Association between left atrial function 
using tissue tracking from cine mr imaging and myocardial fibrosis,” Radiology, vol. 273, no. 3, 
pp. 703–713, 2014. 

[56] S. Uribe et al., “Whole-heart cine MRI using real-time respiratory self-gating,” Magn. Reson. 
Med., vol. 57, no. 3, pp. 606–613, 2007. 

[57] S. Hilbert et al., “Real-time magnetic resonance-guided ablation of typical right atrial flutter 
using a combination of active catheter tracking and passive catheter visualization in man: Initial 
results from a consecutive patient series,” Europace, vol. 18, no. 4, pp. 572–577, 2016. 

[58] A. Romfh and F. R. Pluchinotta, “Congenital Heart Defects in Adults : A Field Guide for 
Cardiologists,” J. Clin. Exp. Cardiolog., vol. 01, no. S8, 2012. 

[59] A. Doltra, B. Amundsen, R. Gebker, E. Fleck, and S. Kelle, “Emerging Concepts for Myocardial 
Late Gadolinium Enhancement MRI,” Curr. Cardiol. Rev., vol. 9, no. 3, pp. 185–190, 2013. 

[60] R. S. Oakes et al., “Detection and Quantification of Left Atrial Structural Remodeling Using 
Delayed Enhancement MRI in Patients with Atrial Fibrillation,” Circulation, vol. 119, no. 13, pp. 
1758–1767, 2009. 

[61] C. McGann et al., “Atrial fibrillation ablation outcome is predicted by left atrial remodeling on 
MRI,” Circ. Arrhythmia Electrophysiol., vol. 7, no. 1, pp. 23–30, 2014. 

[62] R. J. Perea et al., “T1 mapping: characterisation of myocardial interstitial space,” Insights 
Imaging, vol. 6, no. 2, pp. 189–202, 2015. 

[63] J. J. Lee et al., “Myocardial T1 and extracellular volume fraction mapping at 3 tesla,” J. 
Cardiovasc. Magn. Reson., vol. 13, no. 1, pp. 1–10, 2011. 

[64] R. J. Kim et al., “Relationship of MRI delayed contrast enhancement to irreversible injury, infarct 
age, and contractile function,” Circulation, vol. 100, no. 19, pp. 1992–2002, 1999. 

[65] W. KIm, “THE USE OF CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING TO IDENTIFY 
REVERSIBLE MYOCARDIAL DYSFUNCTION,” pp. 1445–1453, 2000. 

[66] M. Shenasa, “Fibrosis and Ventricular Arrhythmogenesis. Role of Cardiac MRI,” Card. 
Electrphysiology Clin., vol. 11, pp. 551–562, 2019. 

[67] K. Jamart, Z. Xiong, G. D. Maso Talou, M. K. Stiles, and J. Zhao, “Mini Review: Deep Learning for 



75 
 

Atrial Segmentation From Late Gadolinium-Enhanced MRIs,” Front. Cardiovasc. Med., vol. 7, 
no. May, 2020. 

[68] C. J. McGann et al., “New Magnetic Resonance Imaging-Based Method for Defining the Extent 
of Left Atrial Wall Injury After the Ablation of Atrial Fibrillation,” J. Am. Coll. Cardiol., vol. 52, no. 
15, pp. 1263–1271, 2008. 

[69] F. Bisbal et al., “CMR-guided approach to localize and ablate gaps in repeat AF ablation 
procedure,” JACC Cardiovasc. Imaging, vol. 7, no. 7, pp. 653–663, 2014. 

[70] L. Sanchis, S. Prat, and M. Sitges, “Cardiovascular Imaging in the Electrophysiology Laboratory,” 
Rev. Española Cardiol. (English Ed., vol. 69, no. 6, pp. 595–605, 2016. 

[71] I. M. Khurram et al., “Magnetic resonance image intensity ratio, a normalized measure to 
enable interpatient comparability of left atrial fibrosis,” Hear. Rhythm, vol. 11, no. 1, pp. 85–92, 
2014. 

[72] E. Lin and A. Alessio, “What are the basic concepts of temporal, contrast, and spatial resolution 
in cardiac CT?,” J Cardiovasc Comput Tomogr, vol. 3, no. 6, pp. 403–408, 2009. 

[73] L. Zhong, R. S. Tan, E. Y. K. Ng, and D. N. Ghista, Computational and Mathematical Methods in 
Cardiovascular Physiology. 2019. 

[74] L. Hrvoje and M. W. Greenstaff, X-Ray Computed Tomography Contrast Agents, vol. 113, no. 3. 
2014. 

[75] M. R. M. Jongbloed et al., “Atrial Fibrillation: Multi–Detector Row CT of Pulmonary Vein 
Anatomy prior to Radiofrequency Catheter Ablation—Initial Experience,” Radiology, vol. 234, 
no. 3, pp. 702–709, 2005. 

[76] J. Hur et al., “Left atrial appendage thrombi in stroke patients: Detection with two-phase cardiac 
CT angiography versus transesophageal echocardiography,” Radiology, vol. 251, no. 3, pp. 683–
690, 2009. 

[77] A. J. Vorre MM, “Diagnostic Accuracy and Radiation Dose of CT Coronary Angiography in Atrial 
Fibrillation :,” vol. 267, no. 2, 2013. 

[78] Y. Zheng, D. Yang, M. John, and D. Comaniciu, “Multi-Part Modeling and Segmentation of Left 
Atrium in C-Arm CT for Image-Guided Ablation of Atrial Fibrillation,” IEEE Trans. Med. Imaging, 
vol. 33, no. 2, pp. 318–331, 2014. 

[79] J. M. Sohns et al., “Right Atrial Volume is Increased in Corrected Tetralogy of Fallot and 
Correlates with the Incidence of Supraventricular Arrhythmia: A CMR Study,” Pediatr. Cardiol., 
vol. 36, no. 6, pp. 1239–1247, 2015. 

[80] “http://atriaseg2018.cardiacatlas.org/.” . 

[81] X. Zhuang et al., “Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An 
open-access grand challenge,” Med. Image Anal., vol. 58, p. 101537, 2019. 

[82] “https://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/.” . 

[83] C. Tobon-Gomez et al., “Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and 
MRI Datasets,” IEEE Trans. Med. Imaging, vol. 34, no. 7, pp. 1460–1473, 2015. 

[84] “https://www.jetbrains.com/es-es/pycharm/.” . 

[85] “https://www.python.org.” . 



76 
 

[86] “https://keras.io/tle.” . 

[87] “https://www.mathworks.com/products/matlab.html.” . 

[88] “https://mobaxterm.mobatek.net/.” . 

[89] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha, “Gradient Based Learning Applied to Document 
Recognition,” Proc. IEEE, no. November, pp. 1–46, 1998. 

[90] “https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-
convolutions-in-deep-learning-669281e58215No Title.” . 

[91] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” no. 1, pp. 2–8, 2018. 

[92] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in 
Convolutional Network,” 2015. 

[93] J. Kuen et al., “Stochastic Downsampling for Cost-Adjustable Inference and Improved 
Regularization in Convolutional Networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 
Recognit., pp. 7929–7938, 2018. 

[94] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14, 2016. 

[95] “https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/o 
Title.” . 

[96] N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image Analysis: Full Training 
or Fine Tuning?,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1299–1312, 2016. 

[97] V. Iglovikov and A. Shvets, “TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet 
for Image Segmentation,” 2018. 

[98] S. Cai, Y. Shu, W. Wang, M. Zhang, G. Chen, and B. C. Ooi, “Effective and Efficient Dropout for 
Deep Convolutional Neural Networks,” pp. 1–12, 2019. 

[99] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing 
internal covariate shift,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015. 

[100] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance Normalization: The Missing Ingredient for 
Fast Stylization,” no. 2016, 2016. 

[101] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “Brain tumor 
segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge,” 
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 
vol. 10670 LNCS, pp. 287–297, 2018. 

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9908 
LNCS, pp. 630–645, 2016. 

[103] C. Odena, Augustus; Dumoulin, Vincent and Olah, “Deconvolution and Checkerboard Artifacts,” 
Distill, 2016. 

[104] B. Kayalibay, G. Jensen, and P. van der Smagt, “CNN-based Segmentation of Medical Imaging 
Data,” 2017. 

[105] H. Chen, Q. Dou, L. Yu, and P.-A. Heng, “VoxResNet: Deep Voxelwise Residual Networks for 
Volumetric Brain Segmentation,” pp. 1–9, 2016. 

[106] Q. Dou, H. Chen, Y. Jin, L. Yu, J. Qin, and P. A. Heng, “3D deeply supervised network for 



77 
 

automatic liver segmentation from CT volumes,” Lect. Notes Comput. Sci. (including Subser. 
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9901 LNCS, pp. 149–157, 2016. 

[107] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016. 

[108] Z. Eaton-Rosen, F. Bragman, S. Ourselin, and M. J. Cardoso, “Improving Data Augmentation for 
Medical Image Segmentation,” 1st Conf. Med. Imaging with Deep Learn., vol. 10670 LNCS, no. 
Midl, pp. 450–462, 2018. 

[109] “VTK.” [Online]. Available: https://vtk.org/. 

[110] J. Lin, “Introduction to VTK,” Distrib. Comput., vol. 2007, no. March, 2008. 

[111] K. H. Zou et al., “Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap 
Index,” Acad. Radiol., vol. 11, no. 2, pp. 178–189, 2004. 

[112] C. Tobon-Gomez et al., “Left Atrial Segmentation Challenge: A unified benchmarking 
framework,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics), vol. 8330 LNCS, pp. 1–13, 2014. 

[113] M. S. H. Al-Tamimi and G. Sulong, “Tumor brain detection through MR images: A review of 
literature,” J. Theor. Appl. Inf. Technol., vol. 62, no. 2, pp. 387–403, 2014. 

 

 

 

  



78 
 

 

 



 

 

 

    

 

 

 

 

 

Budget 
 

 

Design and development of a system for semantic 

segmentation of atrial cavity with a neural network 

architecture encoder-decoder. 

 

 

Author: Marta Saiz Vivó 

Directors: Valery Naranjo Ornedo 

Adrian Colomer Granero 

 

 

July, 2020 



 

 

 

 



 

I 
 

 

Contents 
Chapter 1. Budget ................................................................................................................... 1 

1.1 Partial budget ................................................................................................................ 1 

1.1.1 Labour costs .......................................................................................................... 1 

1.1.2 Hardware costs ...................................................................................................... 1 

1.1.3 Software costs ....................................................................................................... 3 

1.2 Grand Total .................................................................................................................... 4 

 

 
  



 

II 
 

  



 

III 
 

List of Tables 
 

Table 1. Labour Costs .................................................................................................................... 1 

Table 2. Personal Computer Costs ................................................................................................ 2 

Table 3. Server CVBLab Hardware Costs ....................................................................................... 2 

Table 4. Total Hardware Costs ...................................................................................................... 3 

Table 5. Total Software Costs ....................................................................................................... 3 

Table 6. Total Costs ....................................................................................................................... 4 

Table 7. Grand Total ...................................................................................................................... 4 

 

  



 

IV 
 

 



 

1 
 

Chapter 1. Budget 

In the following section a detailed economic assessment of the research project development 

is described. 

1.1 Partial budget  

To quantify the budget this has been divided into three parts: a) Labour costs b) Hardware 

costs c) Software costs 

1.1.1 Labour costs 

In this section the labour costs are presented taking into account the human resources needed 

for the development of this project.  

Table 1 shows the labour costs in terms of the remuneration per participant and the time 

dedicated to the project. Specifically, for the development of this project the following people 

have participated: 

• Valery Naranjo Ornedo, full professor at the Universitat Politecnica de Valencia and 

director of this project. 

• Adrián Colomer Granero, PhD, doctor at the Universitat Politecnica de Valencia and 

cotutor of this project. 

• Marta Saiz Vivó, student of Biomedical Engineering Degree and author of this project. 

  

 

1.1.2 Hardware costs 

The main part of this project has been developed in a personal computer. However, due to the 

high computational costs of training a neural network this algorithm has been trained in an 

external server provided by CVBLab. The network has been trained a total of 5 times with the 

Nº Labour description 
Units 

Quantity 
Unit 

Price 
Total 

1 Biomedical engineering student h 350 12 €/h 4200.00 € 

2 
PhD in charge of tutoring and 

supervising the work 

h 
48 22 €/h 1056.00 € 

3 
Professor in charge of tutoring 

and supervising the work 

h 
56 48 €/h 2688.00 € 

    TOTAL 7944.00 € 

 

Table 1. Labour Costs 
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different databases. Due to the relatively low number of samples the training of the network 

was achieved during the span of a day. However, due to the different experiments and 

techniques tried this server has been used intermittently for 5 months.  Furthermore, this 

server has also been used to store the images generated by the network.  

Table 2 shows the hardware costs associated with the personal computer and Table 3 shows 

the cost of the different components associated with the CVBLab servers. Finally, Table 4 

shows the total costs associated with hardware for the development of this project.  

Personal computer 

 

Nº Hardware 

description 

Quantity Unit 

cost 

Amort. 

period 

Amort. 

ratio 

Total 

1 XPS 13 9360 

Intel®Core™ i5-7200U 

CPU @2.5GHz 

8.00GB RAM 

1 u 800.00 48 8/48 133.33 € 

  TOTAL 133.33 € 

 

Table 2. Personal Computer Costs 

 

Server CVBLab hardware 

 

Nº Hardware 

description 

Quantity Unit 

cost 

Amort. 

period 

Amort. 

ratio 

Total 

1 Intel i7 @4.20GHz 

processor 

1 u 1200.00 48 8/48 200.00€ 

2 Graphics card 

NVIDIA Titan V 

1 u 3300.00 48 8/48 550.00€ 

3 Disk SSD of 250 

GB 

1 u 77.00 48 8/48 12.83 € 

  TOTAL 762.83 € 

 

Table 3. Server CVBLab Hardware Costs 
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Total Hardware Costs 

 

Nº Hardware description Total 

1 Personal computer 133.33€ 

2 Server CVBLab hardware 762.83€ 

 TOTAL 891.16€ 

 

Table 4. Total Hardware Costs 

 

1.1.3 Software costs 

In the following section the costs of the software used in this project will be detailed. The 

neural network algorithms were programmed with Python which is an open source 

programming language. However, as an Integrated Development Environment (IDE) for Python 

the professional version of PyCharm was used which has associated license costs.  

Furthermore, for external function design MATLAB was used which has also associated license 

costs. Finally, to draft this document the program Microsoft Office Word was used which has 

also license costs. These costs are described in Table 5. 

Nº Sotware description Quantity Unit 

cost 

Amort. 

period 

Amort. 

ratio 

Total 

1 
Microsoft Office prof. 

2019 
1 u 579 12 

8/12 
386.00€ 

2 MATLAB R2019b 1 u 800 12 8/12 533.33€ 

3 Pycharm 2019.3.2 1 u 199 12 8/12 132.67€ 

  TOTAL 1052.00€ 

 

Table 5. Total Software Costs 
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1.2 Grand Total 

Once the costs have been broken down into its different components of labour, hardware and 

software costs the Total Cost of the budget is computed in Table 6 by adding the costs 

previously described.  

Nº Description Total 

1 Labour cost 2688.00€ 

2 Hardware cost 891.16€ 

3 Software cost 1052.00€ 

  TOTAL 4631.16€ 

 

Table 6. Total Costs 

The grand total of the development of this End of Degree Project is calculated by including the 

General Expenses (13% of the total cost) and the estimated profit (6% of the total cost). Finally, 

21% of the total cost is included as value-added tax (VAT). The grand total is detailed in Table 

7.   

Nº Description Total 

1 Total Cost 4631.16€ 

2 
General Expenses 

(13%) 
602.05€ 

3 Profit (6%) 277.87€ 

  SUBTOTAL 5511.08€ 

  VAT (21%) 1157.33€ 

  GRAND 
TOTAL 

6668.41€ 

 

Table 7. Grand Total 
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