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Abstract—In modern multi-core system, memory is shared 
among more and more concurrently running multimedia 
applications. Therefore, memory contention and interference is 
more and more seriously which induces system performance 
degradation significantly, each thread performance degradation 
differently, unfairness resource sharing and priority inversion 
even starvation. In this paper, we propose an approach of 
coordinating channel-aware page mapping policy and memory 
scheduling (CCPS) to reduce inter-multimedia application 
interference in the memory system. The idea is to map the data of 
different threads to different channels, combining with memory 
scheduling. The key principles are policies of page mapping and 
memory scheduling 1) memory address space, thread priority and 
load balance, 2) prioritize low memory request thread, row buffer 
hit access and older request. We evaluate CCPS on a variety of 
mixed single and multi-thread benchmarks and system 
configurations and compare them to four previously proposed 
state-of-the-art reducing interference policies. Experimental 
results demonstrate that CCPS improves performance while 
reducing energy consumption significantly, moreover, CCPS 
incurs much lower hardware overhead than current proposed 
policies. 

Index Terms—Memory contention, memory interference, 
performance, page mapping, memory scheduling, fairness, 
energy.  

I. INTRODUCTION 

ulti-core systems have become so prevalent not only in
desktops and servers but also in multimedia platforms,
which may be considered the norm for modern 

computing systems. However, modern multi-core systems are 
designed to allow clusters of cores to share hardware structures, 
including main memory which is one of the most important 
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shared resources. Although shared resources improve hardware 
utilization and power effective, there is a fundamental flaw 
induced by it which threads executing concurrently on a 
multi-core chip contend with each other to access main memory 
resulting in significant degradation in system performance, 
individual thread performance and fairness simultaneously for 
memory interference among threads.  

These degradations from using shared resources, especial 
sharing memory, display in many phenomenon: 1) locality 
disturbed more and more with the cores increase, row buffer hit 
ratio is worse along with the core number is more. Figure 1 
demonstrates the row buffer hit ratio decreases with the number 
of parallel running threads increased. Clearly, with the parallel 
running threads being more the row buffer hit ration decreases 
seriously; 2) performance degradation different for individual 
thread, which depends on both behavior of itself and other 
concurrently running threads. Figure 2 demonstrates the 
performance degradation of individual thread after four threads 
running concurrently relative to run solo. Obviously, the 
difference of individual thread’s performance degradation is 
serious; 3) unfairness sharing the resources, which can not 
guarantee the quality of service (QoS); 4) priority inversion, 
higher priority thread is occupied by less priority for less main 
memory allocated, moreover, starvation may happen.  

Figure 1 row buffer hit ratio decreased along with the parallel running threads 
increased 

A considerable number of prior works have proposed several 
different approaches to reduce memory interference among 
threads for improving system performance, predictable of 
individual thread performance degradation and fairness. For 
example, thread scheduling [1-6, 31, 32], leveraging the 
different characteristics information, has been demonstrated to 
be able to effectively reduce the memory contention and 
interference; memory scheduling policies [7-12, 33-35], 
prioritize the requests of row buffer hit, different applications 
and so on, which reduces interference; memory 
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channel/rank/bank partitioning [13, 14]; memory interleaving 
[15]; and source throttling [16] and so on. 

Figure 2 performance degradation of individual thread after 4 threads running 
parallel 

Although these previous proposals are effective, almost all of 
them have one or more below problems: 1) require 
non-negligible changes to the existing memory controllers; 2) 
improve not just only one of the three goals which are system 
performance, predictable of individual thread performance and 
fairness, but also at the expense of other two goals; 3) effective 
of the proposals depends on concurrent running threads, 
sometimes are good, but sometimes are negative; 4) disturb the 
priority which frequently appearing priority inversion.  

In this paper, we propose an approach to effectively reduce 
memory interference to improve system performance among 
concurrently running multimedia applications, predictable of 
individual thread performance degradation, fairness and power 
efficiency simultaneously through coordinating channel-aware 
page mapping policy and memory scheduling (CCPS). Our 
CCPS partitions memory channels for each core which 
combines thread group partition and page mapping policy to 
form one thread group run on one core using a stationary 
channel, moreover, coordinate with our behavior-aware 
memory scheduling policy. So, our CCPS reduces interference 
both from exclusively using channel and memory scheduling.  

We implement CCPS in different system configurations and 
use mixed single and multi-thread benchmarks. Experimental 
results show CCPS reduces row buffer miss rate and switch 
overhead than buddy algorithm which improves system 
performance. Besides, CCPS improves fairness which is 
mainly because of behavior-aware memory scheduling and 
channel partition. Moreover, CCPS saves 6.1% of the energy 
consumption of memory system.  

In summary, we make the following contributions: 
(1) Allocate each core stationary memory channels, which 

are enough for performance. Along with the more core number, 
memory channels are more needed, which we expand modern 
memory system into more channels.  

(2) Based on channel-aware page mapping policy, aggregate 
physical memory pages of each thread into specific memory 
channel.  

(3) Partition threads into thread groups combining with page 
allocation policy to form one thread group run on one core 
using its unique memory channels which memory access is 
parallel among cores not simultaneous any more.  

(4) According to threads’ behavior of parallel running, 
schedule memory request. In this way, interference is reduced 
further and threads are fairness in performance degradation.  

The rest of this paper is organized as follow. In section 2, we 
introduce the background of DRAM system and related works. 

In section 3, we present our CCPS in detail. The methodology 
and metrics are discussed in section 4. We evaluate CCPS in 
section 5. We conclude in section 6. 

II. BACKGROUND AND RELATED WORKS

We provide a brief overview of modern memory subsystems, 
then analyze the OS memory management and relationship 
between thread performance with allocated channels/banks, 
finally introduce the related works. 

A. DRAM Organization 

Figure 3 illustrates the multiple levels of organization of the 
memory subsystem. To service memory accesses, the memory 
controller (MC) sends commands to the DIMMs on behalf of 
the CPU’s last-level cache across a memory bus. As shown, 
recent processors have integrated the MC into the same 
package as the CPU. To enable greater parallelism, the width of 
the memory bus is split into multiple channels. These channels 
act independently and can access disjoint regions of the 
physical address space in parallel [17]. 

Figure 3 organization of a modern memory subsystem 

Multiple DIMMs may be connected to the same channel. 
Each DIMM comprises a printed circuit board with register 
devices, a Phase Lock Loop device, and multiple DRAM chips. 
The DRAM chips are the ultimate destination of the MC 
commands. The subset of DRAM chips that participate in each 
access is called a rank. The number of chips in a rank depends 
on how many bits each chip produces/consumes at a time. Each 
DIMM can have up to 16 chips, organized into 1-4 ranks. 

Each DRAM chip contains multiple banks (typically 8 banks 
nowadays), each of which contains multiple two-dimensional 
memory arrays. The basic unit of storage in an array is a simple 
capacitor representing a bit—the DRAM cell. Thus, in a x8 
DRAM chip, each bank has 8 arrays, each of which 
produces/consumes one bit at a time. However, each time an 
array is accessed, an entire multi-KB row is transferred to a row 
buffer. This operation is called an “activation” or a “row 
opening”. Then, any column of the row can be read/written 
over the channel in one burst. Because the activation is 
destructive, the corresponding row eventually needs to be 
“pre-charged”, that is, written back to the array. 

B. OS Memory Management 

Nowadays, Linux kernel’s memory management system 
uses a buddy system to manage physical memory pages. In the 
buddy system, the continuous 2order pages (called a block) are 
organized in the free list with the corresponding order, which 
ranges from 0 to a specific upper limit. When a program 
accesses an unmapped virtual address, a page fault occurs and 
OS kernel takes over the following execution wherein the 
buddy system identifies the right order free list and allocates 
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one block (2order physical pages) for that program. Usually the 
first block of a free list is selected but the corresponding 
physical pages are undetermined [21].  

In Linux operating system, the default page allocation is 
using buddy algorithm, figure 4 demonstrates physical pages 
organization, which allocates the first block of a free list to the 
request thread. So, a thread’s occupying memory may cover all 
channels/banks of the memory.  

Figure 4 physical memory pages organization of buddy algorithm 

C. Channel/bank Amount Requirement for One Thread 

Buddy algorithm of the Linux operating system takes 
advantage of parallelism to improve performance. However, 
the experimental results demonstrate the necessary amount of 
one thread requirement banks is limited [4].  

In order to illustrate the channel/bank requirement of every 
thread is limited, we perform experiments of comparing 
performance improvement along with increased channel 
amount from 1 to 4 channels and bank amount from 8 to 64 
banks, which conduct as many as possible benchmarks. Each 
channel contains 16 banks in the experiment. Figure 5 
demonstrates the correlation between each benchmark 
performance and bank amount, which allocated banks spread 
all channels. Expectedly, the necessary required amount of 
banks for one thread is limited, mostly as we find, 16 banks are 
enough. More than necessary, the performance hardly 
improved for all threads.  

Figure 5 thread performance improves along with bank amount added 

Figure 6 shows the correlation between each benchmark 
performance and channel amount. All banks belong to the 
allocated channels can be used by the running benchmarks. 
Obviously, similarly to the figure 5, the necessary required 
amount of channels for one thread is limited, 1 channel are 
enough. More than necessary, the performance hardly 
improved. 

And for some reasons like memory dependency and high 
cache hit rate, a single core is unable to generate enough 
concurrent memory requests. Nevertheless, buddy algorithm of 
Linux interleaves memory requests across memory banks for 
taking the advantages of channel-level/bank-level parallelism, 

thus a thread’s occupying memory may cover all 
channels/banks of the memory, which largely exceeds its 
necessary channel/bank amount. Therefore, those threads of 
occupied across whole memory channels/banks only suffer 
from memory interference rather than obtain any performance 
gain. 

Figure 6 thread performance improves along with channel amount added 

Therefore, allocate unique memory channels/banks for each 
core which can reduce memory interference while not affecting 
performance. 

D. Related Works 

There are a number of related studies. 
Thread Scheduling. Scheduling algorithms aimed to 

distribute threads to get an even distribution of miss rate among 
multiple caches are proposed in [22], which avoid severe 
contention on shared resource of cache, memory controller, 
memory bus and prefetching hardware. Similar mechanisms are 
also proposed in [23, 24]. Although these methods can alleviate 
contention, they hardly eliminate the bank interference among 
threads.  

Channel Partition. Data of different threads are mapped 
into different channels according to their memory access 
behavior in [25], which can eliminate the interference between 
threads at channel level. However, channel partition cannot be 
applied to system with cache line interleaving policy between 
channels [25], which limit its applicable scope. Furthermore, 
there are usually more threads than channels in a system, so 
some threads have to be assigned to the same channel, which 
still interference with each other. Besides, channel partition 
actually partitions the bandwidth of memory system into 
several portions. Since the total number of portions is limited 
by channel amount, which is usually small, it is challenging to 
seek a balance among channels so as to ensure no bandwidth 
wasted. 

Thread-based Memory Scheduling. Memory controllers 
are designed to distinguish the memory access behavior at 
thread-level in [16, 18, 19, 25, 27], so that scheduling modules 
can adjust their scheduling policy at the running time. TCM 
[18], which dynamically groups threads into two clusters 
(memory intensive and CPU intensive), and assign different 
scheduling policy to different group, is the best scheduling 
policy, which aim to address fairness and throughput at the 
same time. Yet, this method needs modification to memory 
controller, and the overhead at running time cannot be 
neglected.  

Row buffer optimization. In [26], frequently accessed data 
of different rows are dynamically migrated into row buffer, 
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which can improve the row buffer usage and performance; 
power consumption is also lowered by reducing the operations 
of precharge and active. In [27], the content in row-buffer will 
be precharged after 4 times access, which target at the reduction 
of row-buffer conflicts. 

III. CCPS

Our coordinating channel-aware page mapping policy and 
memory scheduling (CCPS) consists of five components: 1) 
assigning unique memory channel for each core, 2) binding 
threads to the running cores, 3) allocating pages of specified 
channel to each thread, 4) scheduling threads for running, 5) 
modifying memory scheduling policy for further reducing 
interference.  

The first component is soft static (Sec 3.1), one core is 
assigned one memory channel, which the correspondence 
between the core and memory channel is unchanged except for 
special circumstances like one core shuts down. The second 
component is proceeded for one time when a new thread is 
created (Sec 3.2). According to memory address space, thread 
priority of the thread and load balance of the system, bind the 
thread to a core, which mostly run the thread on the core. Any 
time when access to a missing page, the third component is 
evoked (Sec 3.3). Based on the core of thread running, allocate 
pages belonging the core to the thread. Both component four 
and five only adjust the current policies (Sec 3.4 and 3.5), our 
memory scheduling policy prioritizes low memory request 
thread, row buffer hit access and older request, which further 
reduces interference and improves performance. 

A. Assign Unique Memory Channel for Each Core 

In section 2.3, we have demonstrated one memory channel is 
enough for most threads. So, in this paper, we assign each core 
one memory channel.  

Most modern memory system is usually packaged as 
DIMMs, each of which usually contains 1 or 2 ranks and 8 
banks. A memory system can contain multiple channels, and 
each channel is associated with 1 or 2 DIMMs which only has 
64 memory banks. 4 channels/64 memory banks can only be 
assigned for most 4 cores if each core occupying unique 1 
channel/16 banks, demonstrated like in figure 7. Core 0, 1, 2 
and 3 occupy channel 0, 1, 2 and 3 respectively. Every core 
hardly accesses unoccupied memory unless accessing operating 
system memory.  

Figure 7 one unique channel/64 banks assigned to one core 

If there are more than four cores in the system, some cores 
need to share one channel/16 banks. Cores sharing one channel 
called a core group. Cores belonging different core groups 
occupy different channels/banks. Figure 8 demonstrates two 
cores share a channel and four core groups occupy different 
four channels. Core 0 and 4 forming group 0 occupy channel 0, 
core 1 and 5, 2 and 6, 3 and 7 form group 1, 2 and 3 respectively 
and occupy channel 1, 2 and 3 uniquely. Cores of the same 
group are still contending and interfering with each other. For 
reducing interference among the same group, we intergrade 
memory scheduling policy, which will introduce below.  

In section 2.1, we have presented each DIMM can have up to 
16 chips, each DRAM chip contains multiple banks (typically 8 
banks nowadays), which is more 128 banks, even 256 or 512. 
And if remaining only four channels in the system, every 
channel will contain more than 32 memory banks, which means 
one channel is more than necessary for one core. We can 
partition memory banks belonging one channel for cores of the 
same core group which reduces interference among cores of the 
same core group. Figure 9 presents a conceptual example 
showing the performance benefits of memory banks partition 
belonging the same channel which reduces the interference 
among cores of the same core group. Figure 9(a) and 9(b) show 
characteristic examples of what will happen with conventional 
memory assignment policy (both core 0 and 4 occupy all banks 
spread the whole channel which shares some banks) and with 
banks partition in the same channel (where core 0 and 4 occupy 
different banks of the same channel), respectively. In the first 
case, requests from both core 0 and 4 are interrupted each other 
in banks of channel 0 (see Fig 9(a)). As a result, both core 0 and 
4 stall more time for increasing row buffer miss. In contrast, if 
two cores' data are mapped to different banks of the same 
channel as shown in figure 9(b), both core 0 and 4 are not 
interrupted by the other, reducing the interference from the 
other core to speed up progress.  

Figure 8 some cores share a channel and different core groups occupy different 
channels 

In this paper, we adopt both the most modern memory 
system architecture consisting of 4 channels and 64 banks and 
memory architecture containing 4 channels and 256 banks. 
Every core is assigned 16 banks within one channel. In order to 
optimize memory power efficiency, assigned 16 banks are 
limited in less memory ranks for rank is the smallest physical 
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unit for power management. If there are no memory accesses to 
some memory ranks for cores being idle, these ranks can be set 
low power mode. 

B. Bind Threads to the Running Cores 

All cores in the system are assigned 16 banks within one 
channel respectively, which hardly exceeds their own assigned 
region. Therefore, threads need to be bind with one unique core, 
use memory region of the unique core and run on that core, 
seldom migration among cores, which take advantages of 
preventing frequently flushing cache, TLB, memory and so on. 

(a) Conventional memory assignment policy 

(b) Bank partition belonging one channel 

Figure 9 conceptual example showing the performance benefits of banks 
partition belonging the same channel 

However, in the operating system, thread migration has some 
advantages, like: 1) dynamic load distribution is possible in 
multiprocessing systems to balance the load on the different 
cores, by migrating threads from overloaded cores to less 
loaded ones; 2) fault resilience can be achieved in such systems, 
by migrating threads from cores that may have experienced a 
partial failure or are likely to fail completely in the immediate 
future; 3) improved system administration can be achieved by 
migrating threads from cores that are about to be shut down or 
otherwise made unavailable; 4) resource sharing is possible on 
a grid, by migration of a thread to a specific core that is 
equipped with a special hardware device, large amount of free 
memory or some other unique resource.  

Although our binding threads to running cores policy seldom 
migrating threads among cores, we can take not less than 
advantages of the thread migration. Our binding threads to 
cores method combines policies of memory address space, 
thread priority and load balance simultaneously. Based on load 
balance policy, we can satisfy dynamic load distribution. If 
some cores fail, our method can migrate threads from failure 
cores to others according our adopted policies to meet fault 
resilience and system administration. Introducing memory 
address space policy, bind threads of sharing memory address 
space to the same core, not only sufficing the resource sharing 
but also improving utilization efficiency. Moreover, thread 
priority policy decreases the average response time to improve 

real-time. 
Algorithm 1 demonstrates the process of a new thread binds 

to one unique core. Every time a new created thread is bind to a 
core according to three policies of memory address space, 
thread priority and load balance simultaneously. 

Algorithm 1: process of a new thread binds to one core 

Thread T is the new thread 
begin 
1: check whether binding to exist cores; 
2: if so 
3:     bind T to one of those cores; 
4: else 
5:     find one core based on priority and load balance; 
6: return; 
End 
Firstly, check whether there are threads binding to some 

cores sharing memory address space with the new emerging 
one. If exist one core and no 5 threads more than the smallest 
load core, bind the new thread to one of those cores. Switching 
between threads of sharing memory address space avoids 
replacing the TLB and cache and increases row buffer hit ratio, 
which both have advantages in performance improvement.  

Secondly, if no existing thread shares memory address space 
with new thread or existing one core but too many threads 
binding to that core (5 threads more than other cores), find 
another core according both thread priority and load balance.  

 Thirdly, if exist more than one core which has threads 
sharing memory address space with the new thread, find one of 
these cores based on both thread priority and load balance.  

Policies of thread priority and load balance choose three 
smallest load cores firstly, queue the three cores based on 
average thread priority decreasing. Compare the new thread’s 
priority with every core’s average priority of the three cores. If 
the new thread has more priority than the lowest average 
priority of the three cores, bind the new thread to the core of 
lowest average priority; else, bind the new thread to the core of 
highest average priority. 

C. Channel-aware Page Mapping 

In section 2.2 has introduced buddy algorithm which is the 
most used memory management method of current operating 
system, allocating pages for each thread spreading all 
channels/banks of the whole memory. However, every core can 
only use one channel (even part banks within one channel) in 
our CCPS for reducing interference among parallel running 
threads in different cores. So, we proposal channel-aware page 
mapping policy which maps pages according thread’s binding 
core. Allocate pages for a thread within memory channel/banks 
assigned to its binding core, limiting one channel/16 banks.  

Therefore, physical pages are organized not only according 
free block size but also inserting channel (even bank) 
information. Figure 11(a) demonstrates physical memory pages 
organization containing channel information which is enough 
for the most modern memory system architecture consisting of 
4 channels and 64 banks. But for memory architecture 
containing 4 channels and 256 banks, bank information is 
necessary to partition banks within one channel. Figure 11(b) 
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shows physical memory pages organization consisting both 
channel and bank information additionally. The most difference 
with the default organization of buddy algorithm is free block is 
organized channel/bank and free size, which the whole memory 
subsystem is partitioned regions.  

(a) physical pages organization inserting channel information 

(b) physical pages organization inserting both channel and bank information 

Figure 11 physical pages organization for different memory architecture 

After organizing the free blocks, when page request from one 
thread, our channel-aware page mapping policy checks the core 
request page before identifying the right order free list and 
allocating one block (2order physical pages). Algorithm 2 
describes how our channel-aware page mapping policy 
allocates a free page after requiring. 

Algorithm 2: channel-aware page mapping policy 

Thread T accesses an unmapped virtual address, OS 
kernel maps pages 
begin 
1: find the core C which T binds to; 
2: according to the C, find assigned channel idc (and bank 

idb); 
3: find the free lists of idc (and idb); 
4: search the suitable free block based on buddy algorithm 

within idc (and idb); 
5: allocate a block for T; 
6: return; 
End 
Firstly, determine which core requests the page for 

restricting the region of allocating. Through assigned channel 
and banks of the core, locate the region in the memory.  

Secondly, identify the right order free list within the located 
region and allocate one block (2order physical pages) for that 
thread. 

D. Schedule Threads for Running 

Every thread binds to one core, each core has many threads. 
All threads on one core are organized into an rb-tree according 
each thread’s vruntime, which is the same with the default 
Completely Fair Schedule (CFS) of Linux. So, there are N 
rb-tree groups in the system (N is also the core number). Figure 

12 demonstrates the framework of every core bind by some 
threads and assigned one channel/16 banks with the most 
modern memory system architecture consisting of 4 channels 
and 64 banks. For memory architectures containing 4 channels 
and 256 banks or more, we only need insert bank information 
additionally within channel. Commonly, threads run on their 
bind core and use assigned memory for that core, seldom 
exceed.  

Figure 12 the framework of every core bind by some threads and assigned one 
channel/16 banks 

The schedule policy for every core is almost the same with 
Completely Fair Schedule (CFS) of Linux operating system, 
which each thread is located in the rb-trees according its 
vruntime. Vruntime of every thread is related with its priority 
and its waiting time for running. Choose the thread of smallest 
vruntime to run next for each time. The mainly differences to 
CFS are regarding to migration:  

1. Prevent calling the load_balance service of the kernel as
much as possible. After calling the load_balance, threads will 
be migrated from one core to the other, which means the 
occupied memory also needs to migrate, but memory migration 
is costly.  

2.When one core is shut down, all threads bind to it are
migrated to other cores according our policy of binding threads 
to cores (introduced in section 3.2).  

Kernel threads run on all cores, which is the different with 
user threads. 

E. Modify Memory Scheduling Policy 

Our channel-aware page mapping policy mainly solve 
memory interference problem through accessing different 
memory channel/bank for parallel running threads. But if 
parallel running threads access the same channel/bank (two 
cores access the same channel/bank in the most modern 
memory system architecture), our channel-aware page mapping 
policy can not deal with them.  

In order to solve the memory interference among threads of 
accessing the same channel/bank, we propose a memory 
scheduling policy of prioritizing low memory request thread, 
row buffer hit access and older request.  

Under many experiments, we observe very low memory 
request threads will seriously interfer by other threads. But 
giving priority to run over other threads, they do not cause 
significant slowdowns to other threads. Figure 13 shows the 
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performance different degradation with/without prioritizing 
low memory request thread when benchmarks of lbm and namd 
parallel running. If not giving priority to the low memory 
request thread of namd which interfers seriously by lbm and 
degrades performance significantly. Else, both lbm and namd 
threads’ performance degrades slightly to improve the system 
throughput. Low memory request threads, like namd, seldom 
generate memory requests and prioritize these requests which 
enable the threads to quickly continue with long computation 
periods and utilize their cores better without disturbing other 
threads significantly, thereby significantly improving system 
performance.  

Figure 13 performance different degradation with/without prioritizing low 
memory request thread 

Moreover, we observe prioritizing row buffer hit access can 
shorten memory access time than in-order memory scheduling 
policy in sharing channel/bank circumstance. Figure 14 (left) 
and (right) demonstrate the result sequence of the in-order 
memory access scheduling and prioritizing row buffer hit 
access memory scheduling respectively. The x-axis shows the 
scheduling order from left to right and y-axis shows the 
execution clock cycles from top to bottom. Finish the example 
memory access trace takes 36 clock cycles for in-order 
scheduling and 30 cycles for prioritizing row buffer hit access 
scheduling which is 16.67% shorter than in-order scheduling. 
Obviously, from figure 14 we can take advantages of the 
prioritizing row buffer hit access memory scheduling.  

Considering fairness of accessing memory among parallel 
running threads sharing channel/bank, we also prioritize older 
request. If some memory requests grab by low memory request 
from threads and row buffer hit access for waiting T memory 
cycles, these requests can be executed immediately. In this way, 
one memory request will not starve and parallel running threads 
will be more fairness in accessing memory.  

Figure 14 in-order memory scheduling (left) and prioritizing row buffer hit 
access memory scheduling (right) 

In this paper, we implement the memory scheduling policy 
of prioritizing low memory request thread, row buffer hit 

access and older request simultaneously in circumstances of 
some parallel running threads sharing channel/bank. 

F. Bandwidth Partition 

After forming CCPS of parallel accessing memory for each 
core, the mainly contention is from bandwidth. If the bandwidth 
allocates to each parallel running thread fairly, the performance 
differently degradation and fairness problems induced by 
shared memory will mitigate. 

There are N parallel running threads in the N-core system, 
using T1, T2, … , TN represent each thread. And through 
performance management unit (PMU), we can count 
committed instructions and access memory numbers/last level 
cache misses of each thread, which represented by INi and Mi 
respectively for thread i. B stands for the total bandwidth. 
Therefore, we need to determine B1, B2, … , BN for each 
thread in order to fairly share. Moreover, the performance 
degradation of each thread is (INi+Bi)/(INi+Mi), which Bi is 
smaller than Mi for contending bandwidth.  

So, for random i and j which 1≤i, j≤N, must be 

(INi+Bi)/(INi+Mi) = (INj+Bj)/(INj+Mj)   (1) 

(B1+ B2+ … + BN) = B   (2) 

Through (1) and (2), we can get each Bi, which allocates for 
each thread. After that, the process of bandwidth partition 
finishes. 

IV. EXPERIMENTAL SETUP

We use MARSSX86 [28] as the base full-system 
architectural simulator to run Linux 2.6.31 and extend its 
memory part with DRAMSim simulator to simulate DDRx 
DRAM systems in the details. Table 1 shows the major 
simulation parameters of the eight core with one memory 
controller for the most modern memory system architecture, 
and most parameters are the same for memory architecture 
containing 4 channels and 256 banks, which only has more 
banks.  

In order to evaluate our CCPS, we simultaneously run 
different combinations of selected from sysbench [30], 
SPEC2000 and SPEC2006. In table 2, the number-appname 
notation is the number of threads of the application with the 
name of appname for sysbench; for SPEC2000 and SPEC2006 
workload, it is the number of copies of the application with the 
name of appname. After conducting experiment to get each 
benchmark’s memory access characteristic, we classify the 
benchmarks into different categories: memory-intensive and 
memory-non-intensive. From mix1 to mix9 in table 2, 
workloads are less and less memory-intensive. 
Table 1 Processor and memory configurations 

Feature value 
CPU cores four/eight/sixteen cores 
L1 I/D cache (per core) 16KB, 2-way 
L2 cache (shared) 64KB 
Cache block size 64bytes 
Memory configuration 4 GB, 4 channels, 8 ranks, 8banks per rank 

Evaluation Metrics. We measure system throughput using 
weighted speedup and fairness using maximum slowdown. 
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(2)

spared

i

alone

i i

IPC
weighted speedup

IPC
  

(3)

alone

i

i spared

i

IPC
maximum slowdown max

IPC
  

Table 2 Workload description 

mix Sysbench, SPEC2000 and SPEC2006 

mix1 
18-sysbench cpu, 3-povray, 3-tonto, 3-calculix, 3-perlbench, 3-namd, 
3-wrf 

mix2 18-sysbench cpu, 3-perlbench, 3-namd, 3-wrf, 3-dealII, 3-gcc, 3-sjeng 

mix3 
18-sysbench cpu, 3-dealII, 3-gcc, 3-sjeng, 3-gobmk, 3-gromacs,
3-h264ref 

mix4 
9-sysbench cpu, 9-sysbench memory, 3-gobmk, 3-gromacs, 3-h264ref, 
3-bzip2, 3-hmmer, 3-astar 

mix5 
9-sysbench cpu, 9-sysbench memory, 3-h264ref, 3-bizp2, 3-hmmer, 
3-astar, 3-cactus, 3-omnetpp 

mix6 
9-sysbench cpu, 9-sysbench memory, 3-hmmer, 3-astar, 3-cactus, 
3-omnetpp, 3-xalanc, 3-sphinx3 

mix7 
18-sysbench memory, 3-cactus, 3-omnetpp, 3-xalancbmk, 3-sphinx3, 
3-gems, 3-lbm 

mix8 
18-sysbench memory, 3-xalancbmk, 3-sphinx3, 3-gems, 3-lbm,
3-soplex, 3-leslie3d 

mix9 
18-sysbench memory, 3-gems, 3-lbm, 3-soplex, 3-leslie3d, 
3-libquantum, 3-mcf 

V. EXPERIMENTAL RESULTS 

In  this  section,  we  first  examine  if  the  CCPS  improves 
the system performance. Then, we analyze system fairness. 
Finally, we show the power reduction and sensitivity of our 
CCPS. 

A. System Performance Analysis 

 We compare CCPS’s performance against for four methods, 
CFS, TCM, BPM and IMPS. CFS is the default method of the 
Linux operating system, which taken as the standard for others; 
TCM [1] is one of the best previous thread scheduling method 
for trading off between performance and fairness; BPM [36] is 
one of the best policy for reducing memory contention and 
interference through partitioning memory banks; IMPS [6] is 
one of the best policy to combine the interference reduction 
benefits of both the system software page mapper and the 
memory request scheduling hardware. IMPS is the most like to 
our CCPS, we will detail analyze our advantages to these 
methods below, especially to IMPS.  

Figure 15 demonstrates the performance improvement of 
four methods normalized to CFS in 8-core but with different 
memory architectures, one is the most modern memory system 
architecture consisting of 4 channels and 64 banks and the other 
contains 4 channels and 256 banks. Obviously, from the figure, 
we can easily see CCPS is better than other methods in both 
memory architectures and the more banks in the memory 
subsystem the better performance improvement of our CCPS. 
In order to demonstrate the scalability of our CCPS with cores 
number increased, we compare the performance in different 
core numbers. So, besides 8-core circumstance, we also 
demonstrate 4-core and 16-core circumstances in the figure 16, 
and all circumstances contain both memory architecture. Our 
CCPS's performance improvement proportional to the number 
of cores is better than other methods, moreover, in the 256 

banks circumstance, our CCPS behaves much better. With 
more banks in the memory subsystem, every channel has more 
banks for parallel access to obtain better performance for each 
core. Therefore, CCPS is scalable to more cores for prevalent 
multi-core system which core number is more and more. In the 
figure, the number-core-number notation represents the core 
number and bank number respectively.  

Figure 15 system performance improvement in different workloads and bank 
numbers 

Besides of the core and bank number changing, with the 
workloads switch from mix1 to mix9, which is less and less 
memory-intensive, CCPS like other methods is more and more 
effective in improving overall system performance.  

CCPS improves 6.3%, 8.4%, 7.1%, 9.6%, 7.9% and 10.8% 
system performance on average comparing to the CFS in 4-core, 
8-core and 16-core with both memory architectures 
respectively across 9 workloads. The system improvement is 
mainly from independent memory access for each core, 
changing from simultaneously to parallel in accessing shared 
memory, which solves the memory contention and interference. 
And another advantage of CCPS is more thread switching 
between sharing memory address space which reduces the 
switching overhead. Moreover, combining our memory 
scheduling policy of prioritizing low memory request thread, 
row buffer hit access and older request. Besides above three 
advantages, removing load_balance of the kernel service is also 
beneficial in improving performance. 

Figure 16 average system performance improvement in different core and bank 
numbers 

Compared to TCM, one of the best performance previous 
thread scheduling methods, CCPS combined channel aware 
page allocation, independent accessing memory for each core 
and our memory scheduling further to improve the overall 
system performance, 2.2%, 4.2%, 2.4%, 4.8%, 2.5% and 5% 
more performance than TCM in 4-core, 8-core and 16-core 
with both memory architectures respectively.  

BPM is one of the best performance previous partition 
memory banks for each thread methods, which also behaves 
better in 256 banks circumstances with all core number. But our 
CCPS combined independent accessing memory for each core, 
memory scheduling and thread scheduling additionally also 
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further to improve the overall system performance, 1.4%, 1.6%, 
1.5%, 1.7%, 1.5% and 1.7% more performance than BPM in 
4-core, 8-core and 16-core with both memory architectures 
respectively.  

IMPS is the most similar method with our CCPS, except the 
channel aware page allocation and independent accessing 
memory for each core of our CCPS. Our CCPS is 1%, 2.9%, 
1%, 3.4%, 1.1% and 3.7% more performance than IMPS.  

Then, we analyze each of the three advantages in improving 
system performance. 
1) Row Buffer Miss Rate Reduction

Combining channel aware page allocation, independent 
memory accessing for each core, our memory scheduling 
policy of prioritizing low memory request thread, row buffer hit 
access and older request with thread scheduling to improve 
system performance, we detailed analyze each part of CCPS in 
improving performance. Firstly, we analyze the reducing row 
buffer miss rate through memory accessing from 
simultaneously to parallel and our memory scheduling in 
multi-core. 

Figure 17 demonstrates the reduced row buffer miss rate 
normalized to CFS of four different methods across 9 
workloads in all circumstances of 4 and 8 cores. From the 
figure, we can obviously see our CCPS reduces more row 
buffer miss rate comparing to other three methods. This is the 
one major reason of our CCPS improves more system 
performance.  

CCPS reduces 5.7%, 8.2%, 5.8% and 8.4% more row buffer 
miss rate compared to CFS on average in circumstances of 4 
and 8 cores with both memory architectures respectively, and 
reduces 1.4%, 3.8%, 0.8% and 2.3% more comparing to TCM, 
comparing to BPM which reduces 0.7%, 0.8%, 0.6% and 0.9%, 
and comparing to IMPS which reduces 0.6%, 2.3%, 0.5% and 
1.7%. Obviously, With the more cores and more banks, CCPS 
behaves better and better in reducing row buffer miss rate, 
which is conserve to TCM, BPM and IMPS, reducing row 
buffer miss rate slightly better along with increasing cores. In 
the figure, sometimes we even notice BPM is worse when in 
8-core than in 4-core, which is mainly because the effective of 
BPM in reducing memory interference is bad after cores 
increasing. Therefore, TCM is better than BPM in 8-core-64 
circumstance even though being worse on less cores and 256 
banks.  

CCPS is not affected by the core numbers, with cores are 
more and more in the multi-core, even in the many-core system, 
our CCPS behaves well scalability.  

Figure 17 the reduced row buffer miss rate across 9 workloads in four 
circumstances 

Partition threads into thread groups, and bind one thread 
group to one core occupying one memory channel, this 

independent memory accessing mode operates parallel from 
simultaneously which reduces the memory contention and 
interference seriously. This part of reducing row buffer miss 
rate through independent memory accessing is the mainly 
partial of system improvement. 
2) Switch Overhead Reduction

In this section, we analyze the reducing switch overhead 
through thread scheduling part. After threads partitioned, 
threads of sharing memory address space are partitioned into 
the same group which running in the same core and using the 
same channel. The cost of switching between sharing memory 
address space threads is much lower.  

Figure 18 demonstrates the difference of scheduling order 
between CFS and CCPS. Figure 18(a) shows the real running 
sequence using CFS on one core. The slashed threads are 
multi-threaded threads. Without slashed threads are 
single-threaded threads. In figure 18(a) threads without slashed 
are more scattered among single-threaded threads than in figure 
11(b) using CCPS. In figure 18(b), sharing memory address 
threads are always scheduling sequence without inserting other 
threads to reduce cost.  

Table 3 demonstrates the average ratio switch between 
sharing memory address space in 4-core circumstances. The 
more ratio of switching between sharing memory address space, 
the more switch overhead reduced and better performance 
improvement. From table 3, we can easily to see CCPS is much 
more in ratio of switching between sharing memory. CCPS is 
82.6% more than CFS on average across the 9 workloads, and 
83%, 82% and 75% more than TCM, BPM and IMPS 
respectively. And on other circumstances from 4 to 16 cores 
with both memory architectures, the improved ratio of 
switching between sharing memory is likely to 4-core. This part 
of reducing switch overhead through thread scheduling is also 
one of the important partial of system improvement. 

(a) The scheduling order using the CFS on one core 

(b) The scheduling order using the CCPS on one core 
Figure 18 scheduling order on one core 

Table 3 Ratio of switching between sharing memory in 4-core circumstance 

CFS TCM BPM IMPS CCPS 
mix1 26% 22% 26% 25% 42% 
mix2 24% 23% 25% 27% 46% 
mix3 25% 25% 27% 26% 47% 
mix4 19% 18% 19% 21% 37% 
mix5 19% 20% 18% 20% 36% 
mix6 21% 21% 20% 20% 34% 
mix7 25% 26% 25% 26% 45% 
mix8 27% 25% 23% 27% 46% 
mix9 25% 27% 26% 25% 48% 

3) Advantage of our Memory Scheduling
In this paper, we combine the memory scheduling of 

prioritizing low memory request thread, row buffer hit access 
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and older request, which reduces the row buffer miss rate to 
improve throughput while retaining fairness and reducing 
response time as much as possible.  

The aspect of reducing row buffer miss rate, we have 
analyzed in the 5.1.1 section, in this section, we mainly analyze 
the response time. Fairness will compare in the below section.   

Figure 19 maximum prolonged response time 

Figure 19 demonstrates the average response time comparing 
among four methods normalized to CFS, which adopt 
maximum prolonged response time as the evaluation metric, 
the more maximum prolonged response time the worse ability 
in real-time response. From the figure, we can see our CCPS is 
not the best method but also not the worst one. Some methods, 
like TCM and BPM, prolong response time proportion to the 
core number. But our CCPS and IMPS do not prolong response 
time with core number increased, which is a well feature for 
scalability. 

B. Fairness Analysis 

Figure 20 demonstrates the maximum slowdown of three 
methods in 4-core and 8-core with both memory architectures 
circumstances. More maximum slowdown, the worse fairness 
is. So, from the figure, we can easily find both TCM and IMPS 
is better than our CCPS and BPM, but our CCPS is better than 
BPM. BPM is the worst in the fairness for not considering 
fairness among threads with only the goal of reducing 
interference. Although our CCPS is worse than TCM and IMPS, 
the experimental results show acceptable. 

The maximum slowdown of TCM is 4.5%, 4.6%, 4.5% and 
4.7% on average respectively in four circumstances. The 
maximum slowdown of BPM is 10.4%, 10.9%, 10.7% and 11.2% 
on average respectively in four circumstances. The maximum 
slowdown of IMPS is 4.6%, 4.5%, 4.8% and 4.6% on average 
respectively in four circumstances. And our CCPS is 5.9%, 
6.5%, 6.3% and 6.8%, which is also scalable. 

Figure 20 maximum slowdown of four methods in four circumstances 

C. Bandwidth Sensitivity Analysis 

Although the core number is still increasing, memory 
bandwidth for per-core is decreasing because of off-chip 
memory bandwidth is limited by the pin count of 
micro-processor chip, which is considered as the major 

bottleneck of the scalability of on-chip core number. With the 
less and less bandwidth of each core, more and more 
interference needed to be relieved seriously. In order to 
evaluate the effectiveness of CCPS under different extreme 
condition, we emulate different bandwidth scenarios for 
per-core by decreasing from 1.2GB/s to 0.6GB/s.  

Figure 21 illustrates the memory bandwidth sensitivity of 
CCPS to the per-core bandwidth comparing with TCM, BPM 
and IMPS normalized to max bandwidth. Figure 21(a) clearly 
shows the negative correlation of performance improvement 
and per-core bandwidth of all four methods, which means all of 
TCM, BPM, IMPS and CCPS is better in performance 
improvement along with increasing per-core bandwidth. But 
our CCPS is better than other three methods proportion to the 
reduced per-core bandwidth, which means our CCPS is more 
robustness in performance than other three methods under 
extreme condition of bandwidth.  

Figure 21(b) shows the correlation of fairness and per-core 
bandwidth. Proportion to the decreased bandwidth of per-core, 
CCPS can maintain the fairness. Although other methods can 
also maintain, our CCPS behaves more non-sensitive. 
Therefore, our CCPS is also more robustness in fairness than 
other two methods under extreme condition of bandwidth. 

(a) correlation of performance improvement and per-core bandwidth 

(b) correlation of fairness and per-core bandwidth 
Figure 21 bandwidth sensitivity 

D. Power Reduction of CCPS 

The active operation is the most power-consuming operation 
in the DRAM system, because it has to move an entire row 
from array to a row buffer. CCPS can lower the power 
consumption of DRAM because of the reduced both row buffer 
conflict miss rate and switching overhead (as illustrated in 
Figure 18 and table 3 respectively). We measure the power 
consumption by simulator, so we can get the value of power 
savings on memory system. Our experimental results show that 
CCPS with open-page policy can save up to 5.9% of memory 
power consumption, better than the configurations without 
CCPS. 

VI. CONCLUSION

In this paper, we propose a CCPS approach, coordinating 
channel-aware page mapping policy, memory scheduling and 
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thread scheduling, which map the data of different threads to 
different channels based on memory address space, thread 
priority and load balance and prioritize low memory request 
thread, row buffer hit access and older request. We evaluate 
CCPS on a variety of mixed single and multi-thread 
benchmarks and system configurations and compare them to 
four previously proposed state-of-the-art reducing interference 
policies. Experimental results show CCPS reduces both row 
buffer miss rate and switch overhead which improves system 
performance than modern memory management approaches 
while reducing energy consumption nearly 5.9%. Moreover, 
CCPS incurs much lower hardware overhead than current 
proposed policies. 
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