

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/148675

Jia, G.; Han, G.; Li, A.; Lloret, J. (2017). Coordinate Channel-Aware Page Mapping Policy
and Memory Scheduling for Reducing Memory Interference Among Multimedia Applications.
IEEE Systems Journal. 11(4):2839-2851. https://doi.org/10.1109/JSYST.2015.2430522

https://doi.org/10.1109/JSYST.2015.2430522

Institute of Electrical and Electronics Engineers

"© 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works."

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—In modern multi-core system, memory is shared
among more and more concurrently running multimedia
applications. Therefore, memory contention and interference is
more and more seriously which induces system performance
degradation significantly, each thread performance degradation
differently, unfairness resource sharing and priority inversion
even starvation. In this paper, we propose an approach of
coordinating channel-aware page mapping policy and memory
scheduling (CCPS) to reduce inter-multimedia application
interference in the memory system. The idea is to map the data of
different threads to different channels, combining with memory
scheduling. The key principles are policies of page mapping and
memory scheduling 1) memory address space, thread priority and
load balance, 2) prioritize low memory request thread, row buffer
hit access and older request. We evaluate CCPS on a variety of
mixed single and multi-thread benchmarks and system
configurations and compare them to four previously proposed
state-of-the-art reducing interference policies. Experimental
results demonstrate that CCPS improves performance while
reducing energy consumption significantly, moreover, CCPS
incurs much lower hardware overhead than current proposed
policies.

Index Terms—Memory contention, memory interference,
performance, page mapping, memory scheduling, fairness,
energy.

I. INTRODUCTION

ulti-core systems have become so prevalent not only in
desktops and servers but also in multimedia platforms,
which may be considered the norm for modern

computing systems. However, modern multi-core systems are
designed to allow clusters of cores to share hardware structures,
including main memory which is one of the most important

This paragraph of the first footnote will contain the date on which you
submitted your paper for review.

Gangyong Jia is now with the Department of Information & Communication
Systems, Hohai University, Changzhou, China and the Department of
Computer Science, Hangzhou Dianzi University, Hangzhou, China (Email:
gangyong@hdu.edu.cn)

Guangjie Han is now with the Department of Information &
Communication Systems, Hohai University, Changzhou, China (Email:
hanguangjie@gmail.com)

Aohan Li is now with the Department of Signal and Information Processing,
Heilongjiang University, Changzhou, China (Email: liaohan1989@gmail.com)

Jaime Lloret is with the Integrated Management Coastal Research Institute,
Universidad Politecnica de Valencia, Valencia, Spain (Email:
jlloret@dcom.upv.es).

shared resources. Although shared resources improve hardware
utilization and power effective, there is a fundamental flaw
induced by it which threads executing concurrently on a
multi-core chip contend with each other to access main memory
resulting in significant degradation in system performance,
individual thread performance and fairness simultaneously for
memory interference among threads.

These degradations from using shared resources, especial
sharing memory, display in many phenomenon: 1) locality
disturbed more and more with the cores increase, row buffer hit
ratio is worse along with the core number is more. Figure 1
demonstrates the row buffer hit ratio decreases with the number
of parallel running threads increased. Clearly, with the parallel
running threads being more the row buffer hit ration decreases
seriously; 2) performance degradation different for individual
thread, which depends on both behavior of itself and other
concurrently running threads. Figure 2 demonstrates the
performance degradation of individual thread after four threads
running concurrently relative to run solo. Obviously, the
difference of individual thread’s performance degradation is
serious; 3) unfairness sharing the resources, which can not
guarantee the quality of service (QoS); 4) priority inversion,
higher priority thread is occupied by less priority for less main
memory allocated, moreover, starvation may happen.

Figure 1 row buffer hit ratio decreased along with the parallel running threads
increased

A considerable number of prior works have proposed several
different approaches to reduce memory interference among
threads for improving system performance, predictable of
individual thread performance degradation and fairness. For
example, thread scheduling [1-6, 31, 32], leveraging the
different characteristics information, has been demonstrated to
be able to effectively reduce the memory contention and
interference; memory scheduling policies [7-12, 33-35],
prioritize the requests of row buffer hit, different applications
and so on, which reduces interference; memory

Coordinate Channel-aware Page Mapping Policy
and Memory Scheduling for Reducing Memory

Interference among Multimedia Applications

Gangyong Jia, Member, IEEE, Guangjie Han, Member, IEEE, Aohan Li, and Jaime Lloret, Senior
Member, IEEE

M

Page 1 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

channel/rank/bank partitioning [13, 14]; memory interleaving
[15]; and source throttling [16] and so on.

Figure 2 performance degradation of individual thread after 4 threads running
parallel

Although these previous proposals are effective, almost all of
them have one or more below problems: 1) require
non-negligible changes to the existing memory controllers; 2)
improve not just only one of the three goals which are system
performance, predictable of individual thread performance and
fairness, but also at the expense of other two goals; 3) effective
of the proposals depends on concurrent running threads,
sometimes are good, but sometimes are negative; 4) disturb the
priority which frequently appearing priority inversion.

In this paper, we propose an approach to effectively reduce
memory interference to improve system performance among
concurrently running multimedia applications, predictable of
individual thread performance degradation, fairness and power
efficiency simultaneously through coordinating channel-aware
page mapping policy and memory scheduling (CCPS). Our
CCPS partitions memory channels for each core which
combines thread group partition and page mapping policy to
form one thread group run on one core using a stationary
channel, moreover, coordinate with our behavior-aware
memory scheduling policy. So, our CCPS reduces interference
both from exclusively using channel and memory scheduling.

We implement CCPS in different system configurations and
use mixed single and multi-thread benchmarks. Experimental
results show CCPS reduces row buffer miss rate and switch
overhead than buddy algorithm which improves system
performance. Besides, CCPS improves fairness which is
mainly because of behavior-aware memory scheduling and
channel partition. Moreover, CCPS saves 6.1% of the energy
consumption of memory system.

In summary, we make the following contributions:
(1) Allocate each core stationary memory channels, which

are enough for performance. Along with the more core number,
memory channels are more needed, which we expand modern
memory system into more channels.

(2) Based on channel-aware page mapping policy, aggregate
physical memory pages of each thread into specific memory
channel.

(3) Partition threads into thread groups combining with page
allocation policy to form one thread group run on one core
using its unique memory channels which memory access is
parallel among cores not simultaneous any more.

(4) According to threads’ behavior of parallel running,
schedule memory request. In this way, interference is reduced
further and threads are fairness in performance degradation.

The rest of this paper is organized as follow. In section 2, we
introduce the background of DRAM system and related works.

In section 3, we present our CCPS in detail. The methodology
and metrics are discussed in section 4. We evaluate CCPS in
section 5. We conclude in section 6.

II. BACKGROUND AND RELATED WORKS

We provide a brief overview of modern memory subsystems,
then analyze the OS memory management and relationship
between thread performance with allocated channels/banks,
finally introduce the related works.

A. DRAM Organization

Figure 3 illustrates the multiple levels of organization of the
memory subsystem. To service memory accesses, the memory
controller (MC) sends commands to the DIMMs on behalf of
the CPU’s last-level cache across a memory bus. As shown,
recent processors have integrated the MC into the same
package as the CPU. To enable greater parallelism, the width of
the memory bus is split into multiple channels. These channels
act independently and can access disjoint regions of the
physical address space in parallel [17].

Figure 3 organization of a modern memory subsystem

Multiple DIMMs may be connected to the same channel.
Each DIMM comprises a printed circuit board with register
devices, a Phase Lock Loop device, and multiple DRAM chips.
The DRAM chips are the ultimate destination of the MC
commands. The subset of DRAM chips that participate in each
access is called a rank. The number of chips in a rank depends
on how many bits each chip produces/consumes at a time. Each
DIMM can have up to 16 chips, organized into 1-4 ranks.

Each DRAM chip contains multiple banks (typically 8 banks
nowadays), each of which contains multiple two-dimensional
memory arrays. The basic unit of storage in an array is a simple
capacitor representing a bit—the DRAM cell. Thus, in a x8
DRAM chip, each bank has 8 arrays, each of which
produces/consumes one bit at a time. However, each time an
array is accessed, an entire multi-KB row is transferred to a row
buffer. This operation is called an “activation” or a “row
opening”. Then, any column of the row can be read/written
over the channel in one burst. Because the activation is
destructive, the corresponding row eventually needs to be
“pre-charged”, that is, written back to the array.

B. OS Memory Management

Nowadays, Linux kernel’s memory management system
uses a buddy system to manage physical memory pages. In the
buddy system, the continuous 2order pages (called a block) are
organized in the free list with the corresponding order, which
ranges from 0 to a specific upper limit. When a program
accesses an unmapped virtual address, a page fault occurs and
OS kernel takes over the following execution wherein the
buddy system identifies the right order free list and allocates

Page 2 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

one block (2order physical pages) for that program. Usually the
first block of a free list is selected but the corresponding
physical pages are undetermined [21].

In Linux operating system, the default page allocation is
using buddy algorithm, figure 4 demonstrates physical pages
organization, which allocates the first block of a free list to the
request thread. So, a thread’s occupying memory may cover all
channels/banks of the memory.

Figure 4 physical memory pages organization of buddy algorithm

C. Channel/bank Amount Requirement for One Thread

Buddy algorithm of the Linux operating system takes
advantage of parallelism to improve performance. However,
the experimental results demonstrate the necessary amount of
one thread requirement banks is limited [4].

In order to illustrate the channel/bank requirement of every
thread is limited, we perform experiments of comparing
performance improvement along with increased channel
amount from 1 to 4 channels and bank amount from 8 to 64
banks, which conduct as many as possible benchmarks. Each
channel contains 16 banks in the experiment. Figure 5
demonstrates the correlation between each benchmark
performance and bank amount, which allocated banks spread
all channels. Expectedly, the necessary required amount of
banks for one thread is limited, mostly as we find, 16 banks are
enough. More than necessary, the performance hardly
improved for all threads.

Figure 5 thread performance improves along with bank amount added

Figure 6 shows the correlation between each benchmark
performance and channel amount. All banks belong to the
allocated channels can be used by the running benchmarks.
Obviously, similarly to the figure 5, the necessary required
amount of channels for one thread is limited, 1 channel are
enough. More than necessary, the performance hardly
improved.

And for some reasons like memory dependency and high
cache hit rate, a single core is unable to generate enough
concurrent memory requests. Nevertheless, buddy algorithm of
Linux interleaves memory requests across memory banks for
taking the advantages of channel-level/bank-level parallelism,

thus a thread’s occupying memory may cover all
channels/banks of the memory, which largely exceeds its
necessary channel/bank amount. Therefore, those threads of
occupied across whole memory channels/banks only suffer
from memory interference rather than obtain any performance
gain.

Figure 6 thread performance improves along with channel amount added

Therefore, allocate unique memory channels/banks for each
core which can reduce memory interference while not affecting
performance.

D. Related Works

There are a number of related studies.
Thread Scheduling. Scheduling algorithms aimed to

distribute threads to get an even distribution of miss rate among
multiple caches are proposed in [22], which avoid severe
contention on shared resource of cache, memory controller,
memory bus and prefetching hardware. Similar mechanisms are
also proposed in [23, 24]. Although these methods can alleviate
contention, they hardly eliminate the bank interference among
threads.

Channel Partition. Data of different threads are mapped
into different channels according to their memory access
behavior in [25], which can eliminate the interference between
threads at channel level. However, channel partition cannot be
applied to system with cache line interleaving policy between
channels [25], which limit its applicable scope. Furthermore,
there are usually more threads than channels in a system, so
some threads have to be assigned to the same channel, which
still interference with each other. Besides, channel partition
actually partitions the bandwidth of memory system into
several portions. Since the total number of portions is limited
by channel amount, which is usually small, it is challenging to
seek a balance among channels so as to ensure no bandwidth
wasted.

Thread-based Memory Scheduling. Memory controllers
are designed to distinguish the memory access behavior at
thread-level in [16, 18, 19, 25, 27], so that scheduling modules
can adjust their scheduling policy at the running time. TCM
[18], which dynamically groups threads into two clusters
(memory intensive and CPU intensive), and assign different
scheduling policy to different group, is the best scheduling
policy, which aim to address fairness and throughput at the
same time. Yet, this method needs modification to memory
controller, and the overhead at running time cannot be
neglected.

Row buffer optimization. In [26], frequently accessed data
of different rows are dynamically migrated into row buffer,

Page 3 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

which can improve the row buffer usage and performance;
power consumption is also lowered by reducing the operations
of precharge and active. In [27], the content in row-buffer will
be precharged after 4 times access, which target at the reduction
of row-buffer conflicts.

III. CCPS

Our coordinating channel-aware page mapping policy and
memory scheduling (CCPS) consists of five components: 1)
assigning unique memory channel for each core, 2) binding
threads to the running cores, 3) allocating pages of specified
channel to each thread, 4) scheduling threads for running, 5)
modifying memory scheduling policy for further reducing
interference.

The first component is soft static (Sec 3.1), one core is
assigned one memory channel, which the correspondence
between the core and memory channel is unchanged except for
special circumstances like one core shuts down. The second
component is proceeded for one time when a new thread is
created (Sec 3.2). According to memory address space, thread
priority of the thread and load balance of the system, bind the
thread to a core, which mostly run the thread on the core. Any
time when access to a missing page, the third component is
evoked (Sec 3.3). Based on the core of thread running, allocate
pages belonging the core to the thread. Both component four
and five only adjust the current policies (Sec 3.4 and 3.5), our
memory scheduling policy prioritizes low memory request
thread, row buffer hit access and older request, which further
reduces interference and improves performance.

A. Assign Unique Memory Channel for Each Core

In section 2.3, we have demonstrated one memory channel is
enough for most threads. So, in this paper, we assign each core
one memory channel.

Most modern memory system is usually packaged as
DIMMs, each of which usually contains 1 or 2 ranks and 8
banks. A memory system can contain multiple channels, and
each channel is associated with 1 or 2 DIMMs which only has
64 memory banks. 4 channels/64 memory banks can only be
assigned for most 4 cores if each core occupying unique 1
channel/16 banks, demonstrated like in figure 7. Core 0, 1, 2
and 3 occupy channel 0, 1, 2 and 3 respectively. Every core
hardly accesses unoccupied memory unless accessing operating
system memory.

Figure 7 one unique channel/64 banks assigned to one core

If there are more than four cores in the system, some cores
need to share one channel/16 banks. Cores sharing one channel
called a core group. Cores belonging different core groups
occupy different channels/banks. Figure 8 demonstrates two
cores share a channel and four core groups occupy different
four channels. Core 0 and 4 forming group 0 occupy channel 0,
core 1 and 5, 2 and 6, 3 and 7 form group 1, 2 and 3 respectively
and occupy channel 1, 2 and 3 uniquely. Cores of the same
group are still contending and interfering with each other. For
reducing interference among the same group, we intergrade
memory scheduling policy, which will introduce below.

In section 2.1, we have presented each DIMM can have up to
16 chips, each DRAM chip contains multiple banks (typically 8
banks nowadays), which is more 128 banks, even 256 or 512.
And if remaining only four channels in the system, every
channel will contain more than 32 memory banks, which means
one channel is more than necessary for one core. We can
partition memory banks belonging one channel for cores of the
same core group which reduces interference among cores of the
same core group. Figure 9 presents a conceptual example
showing the performance benefits of memory banks partition
belonging the same channel which reduces the interference
among cores of the same core group. Figure 9(a) and 9(b) show
characteristic examples of what will happen with conventional
memory assignment policy (both core 0 and 4 occupy all banks
spread the whole channel which shares some banks) and with
banks partition in the same channel (where core 0 and 4 occupy
different banks of the same channel), respectively. In the first
case, requests from both core 0 and 4 are interrupted each other
in banks of channel 0 (see Fig 9(a)). As a result, both core 0 and
4 stall more time for increasing row buffer miss. In contrast, if
two cores' data are mapped to different banks of the same
channel as shown in figure 9(b), both core 0 and 4 are not
interrupted by the other, reducing the interference from the
other core to speed up progress.

Figure 8 some cores share a channel and different core groups occupy different
channels

In this paper, we adopt both the most modern memory
system architecture consisting of 4 channels and 64 banks and
memory architecture containing 4 channels and 256 banks.
Every core is assigned 16 banks within one channel. In order to
optimize memory power efficiency, assigned 16 banks are
limited in less memory ranks for rank is the smallest physical

Page 4 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

unit for power management. If there are no memory accesses to
some memory ranks for cores being idle, these ranks can be set
low power mode.

B. Bind Threads to the Running Cores

All cores in the system are assigned 16 banks within one
channel respectively, which hardly exceeds their own assigned
region. Therefore, threads need to be bind with one unique core,
use memory region of the unique core and run on that core,
seldom migration among cores, which take advantages of
preventing frequently flushing cache, TLB, memory and so on.

(a) Conventional memory assignment policy

(b) Bank partition belonging one channel

Figure 9 conceptual example showing the performance benefits of banks
partition belonging the same channel

However, in the operating system, thread migration has some
advantages, like: 1) dynamic load distribution is possible in
multiprocessing systems to balance the load on the different
cores, by migrating threads from overloaded cores to less
loaded ones; 2) fault resilience can be achieved in such systems,
by migrating threads from cores that may have experienced a
partial failure or are likely to fail completely in the immediate
future; 3) improved system administration can be achieved by
migrating threads from cores that are about to be shut down or
otherwise made unavailable; 4) resource sharing is possible on
a grid, by migration of a thread to a specific core that is
equipped with a special hardware device, large amount of free
memory or some other unique resource.

Although our binding threads to running cores policy seldom
migrating threads among cores, we can take not less than
advantages of the thread migration. Our binding threads to
cores method combines policies of memory address space,
thread priority and load balance simultaneously. Based on load
balance policy, we can satisfy dynamic load distribution. If
some cores fail, our method can migrate threads from failure
cores to others according our adopted policies to meet fault
resilience and system administration. Introducing memory
address space policy, bind threads of sharing memory address
space to the same core, not only sufficing the resource sharing
but also improving utilization efficiency. Moreover, thread
priority policy decreases the average response time to improve

real-time.
Algorithm 1 demonstrates the process of a new thread binds

to one unique core. Every time a new created thread is bind to a
core according to three policies of memory address space,
thread priority and load balance simultaneously.

Algorithm 1: process of a new thread binds to one core

Thread T is the new thread
begin
1: check whether binding to exist cores;
2: if so
3: bind T to one of those cores;
4: else
5: find one core based on priority and load balance;
6: return;
End
Firstly, check whether there are threads binding to some

cores sharing memory address space with the new emerging
one. If exist one core and no 5 threads more than the smallest
load core, bind the new thread to one of those cores. Switching
between threads of sharing memory address space avoids
replacing the TLB and cache and increases row buffer hit ratio,
which both have advantages in performance improvement.

Secondly, if no existing thread shares memory address space
with new thread or existing one core but too many threads
binding to that core (5 threads more than other cores), find
another core according both thread priority and load balance.

 Thirdly, if exist more than one core which has threads
sharing memory address space with the new thread, find one of
these cores based on both thread priority and load balance.

Policies of thread priority and load balance choose three
smallest load cores firstly, queue the three cores based on
average thread priority decreasing. Compare the new thread’s
priority with every core’s average priority of the three cores. If
the new thread has more priority than the lowest average
priority of the three cores, bind the new thread to the core of
lowest average priority; else, bind the new thread to the core of
highest average priority.

C. Channel-aware Page Mapping

In section 2.2 has introduced buddy algorithm which is the
most used memory management method of current operating
system, allocating pages for each thread spreading all
channels/banks of the whole memory. However, every core can
only use one channel (even part banks within one channel) in
our CCPS for reducing interference among parallel running
threads in different cores. So, we proposal channel-aware page
mapping policy which maps pages according thread’s binding
core. Allocate pages for a thread within memory channel/banks
assigned to its binding core, limiting one channel/16 banks.

Therefore, physical pages are organized not only according
free block size but also inserting channel (even bank)
information. Figure 11(a) demonstrates physical memory pages
organization containing channel information which is enough
for the most modern memory system architecture consisting of
4 channels and 64 banks. But for memory architecture
containing 4 channels and 256 banks, bank information is
necessary to partition banks within one channel. Figure 11(b)

Page 5 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

shows physical memory pages organization consisting both
channel and bank information additionally. The most difference
with the default organization of buddy algorithm is free block is
organized channel/bank and free size, which the whole memory
subsystem is partitioned regions.

(a) physical pages organization inserting channel information

(b) physical pages organization inserting both channel and bank information

Figure 11 physical pages organization for different memory architecture

After organizing the free blocks, when page request from one
thread, our channel-aware page mapping policy checks the core
request page before identifying the right order free list and
allocating one block (2order physical pages). Algorithm 2
describes how our channel-aware page mapping policy
allocates a free page after requiring.

Algorithm 2: channel-aware page mapping policy

Thread T accesses an unmapped virtual address, OS
kernel maps pages
begin
1: find the core C which T binds to;
2: according to the C, find assigned channel idc (and bank

idb);
3: find the free lists of idc (and idb);
4: search the suitable free block based on buddy algorithm

within idc (and idb);
5: allocate a block for T;
6: return;
End
Firstly, determine which core requests the page for

restricting the region of allocating. Through assigned channel
and banks of the core, locate the region in the memory.

Secondly, identify the right order free list within the located
region and allocate one block (2order physical pages) for that
thread.

D. Schedule Threads for Running

Every thread binds to one core, each core has many threads.
All threads on one core are organized into an rb-tree according
each thread’s vruntime, which is the same with the default
Completely Fair Schedule (CFS) of Linux. So, there are N
rb-tree groups in the system (N is also the core number). Figure

12 demonstrates the framework of every core bind by some
threads and assigned one channel/16 banks with the most
modern memory system architecture consisting of 4 channels
and 64 banks. For memory architectures containing 4 channels
and 256 banks or more, we only need insert bank information
additionally within channel. Commonly, threads run on their
bind core and use assigned memory for that core, seldom
exceed.

Figure 12 the framework of every core bind by some threads and assigned one
channel/16 banks

The schedule policy for every core is almost the same with
Completely Fair Schedule (CFS) of Linux operating system,
which each thread is located in the rb-trees according its
vruntime. Vruntime of every thread is related with its priority
and its waiting time for running. Choose the thread of smallest
vruntime to run next for each time. The mainly differences to
CFS are regarding to migration:

1. Prevent calling the load_balance service of the kernel as
much as possible. After calling the load_balance, threads will
be migrated from one core to the other, which means the
occupied memory also needs to migrate, but memory migration
is costly.

2.When one core is shut down, all threads bind to it are
migrated to other cores according our policy of binding threads
to cores (introduced in section 3.2).

Kernel threads run on all cores, which is the different with
user threads.

E. Modify Memory Scheduling Policy

Our channel-aware page mapping policy mainly solve
memory interference problem through accessing different
memory channel/bank for parallel running threads. But if
parallel running threads access the same channel/bank (two
cores access the same channel/bank in the most modern
memory system architecture), our channel-aware page mapping
policy can not deal with them.

In order to solve the memory interference among threads of
accessing the same channel/bank, we propose a memory
scheduling policy of prioritizing low memory request thread,
row buffer hit access and older request.

Under many experiments, we observe very low memory
request threads will seriously interfer by other threads. But
giving priority to run over other threads, they do not cause
significant slowdowns to other threads. Figure 13 shows the

Page 6 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

performance different degradation with/without prioritizing
low memory request thread when benchmarks of lbm and namd
parallel running. If not giving priority to the low memory
request thread of namd which interfers seriously by lbm and
degrades performance significantly. Else, both lbm and namd
threads’ performance degrades slightly to improve the system
throughput. Low memory request threads, like namd, seldom
generate memory requests and prioritize these requests which
enable the threads to quickly continue with long computation
periods and utilize their cores better without disturbing other
threads significantly, thereby significantly improving system
performance.

Figure 13 performance different degradation with/without prioritizing low
memory request thread

Moreover, we observe prioritizing row buffer hit access can
shorten memory access time than in-order memory scheduling
policy in sharing channel/bank circumstance. Figure 14 (left)
and (right) demonstrate the result sequence of the in-order
memory access scheduling and prioritizing row buffer hit
access memory scheduling respectively. The x-axis shows the
scheduling order from left to right and y-axis shows the
execution clock cycles from top to bottom. Finish the example
memory access trace takes 36 clock cycles for in-order
scheduling and 30 cycles for prioritizing row buffer hit access
scheduling which is 16.67% shorter than in-order scheduling.
Obviously, from figure 14 we can take advantages of the
prioritizing row buffer hit access memory scheduling.

Considering fairness of accessing memory among parallel
running threads sharing channel/bank, we also prioritize older
request. If some memory requests grab by low memory request
from threads and row buffer hit access for waiting T memory
cycles, these requests can be executed immediately. In this way,
one memory request will not starve and parallel running threads
will be more fairness in accessing memory.

Figure 14 in-order memory scheduling (left) and prioritizing row buffer hit
access memory scheduling (right)

In this paper, we implement the memory scheduling policy
of prioritizing low memory request thread, row buffer hit

access and older request simultaneously in circumstances of
some parallel running threads sharing channel/bank.

F. Bandwidth Partition

After forming CCPS of parallel accessing memory for each
core, the mainly contention is from bandwidth. If the bandwidth
allocates to each parallel running thread fairly, the performance
differently degradation and fairness problems induced by
shared memory will mitigate.

There are N parallel running threads in the N-core system,
using T1, T2, … , TN represent each thread. And through
performance management unit (PMU), we can count
committed instructions and access memory numbers/last level
cache misses of each thread, which represented by INi and Mi
respectively for thread i. B stands for the total bandwidth.
Therefore, we need to determine B1, B2, … , BN for each
thread in order to fairly share. Moreover, the performance
degradation of each thread is (INi+Bi)/(INi+Mi), which Bi is
smaller than Mi for contending bandwidth.

So, for random i and j which 1≤i, j≤N, must be

(INi+Bi)/(INi+Mi) = (INj+Bj)/(INj+Mj) (1)

(B1+ B2+ … + BN) = B (2)

Through (1) and (2), we can get each Bi, which allocates for
each thread. After that, the process of bandwidth partition
finishes.

IV. EXPERIMENTAL SETUP

We use MARSSX86 [28] as the base full-system
architectural simulator to run Linux 2.6.31 and extend its
memory part with DRAMSim simulator to simulate DDRx
DRAM systems in the details. Table 1 shows the major
simulation parameters of the eight core with one memory
controller for the most modern memory system architecture,
and most parameters are the same for memory architecture
containing 4 channels and 256 banks, which only has more
banks.

In order to evaluate our CCPS, we simultaneously run
different combinations of selected from sysbench [30],
SPEC2000 and SPEC2006. In table 2, the number-appname
notation is the number of threads of the application with the
name of appname for sysbench; for SPEC2000 and SPEC2006
workload, it is the number of copies of the application with the
name of appname. After conducting experiment to get each
benchmark’s memory access characteristic, we classify the
benchmarks into different categories: memory-intensive and
memory-non-intensive. From mix1 to mix9 in table 2,
workloads are less and less memory-intensive.
Table 1 Processor and memory configurations

Feature value
CPU cores four/eight/sixteen cores
L1 I/D cache (per core) 16KB, 2-way
L2 cache (shared) 64KB
Cache block size 64bytes
Memory configuration 4 GB, 4 channels, 8 ranks, 8banks per rank

Evaluation Metrics. We measure system throughput using
weighted speedup and fairness using maximum slowdown.

Page 7 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

(2)

spared

i

alone

i i

IPC
weighted speedup

IPC

(3)

alone

i

i spared

i

IPC
maximum slowdown max

IPC

Table 2 Workload description

mix Sysbench, SPEC2000 and SPEC2006

mix1
18-sysbench cpu, 3-povray, 3-tonto, 3-calculix, 3-perlbench, 3-namd,
3-wrf

mix2 18-sysbench cpu, 3-perlbench, 3-namd, 3-wrf, 3-dealII, 3-gcc, 3-sjeng

mix3
18-sysbench cpu, 3-dealII, 3-gcc, 3-sjeng, 3-gobmk, 3-gromacs,
3-h264ref

mix4
9-sysbench cpu, 9-sysbench memory, 3-gobmk, 3-gromacs, 3-h264ref,
3-bzip2, 3-hmmer, 3-astar

mix5
9-sysbench cpu, 9-sysbench memory, 3-h264ref, 3-bizp2, 3-hmmer,
3-astar, 3-cactus, 3-omnetpp

mix6
9-sysbench cpu, 9-sysbench memory, 3-hmmer, 3-astar, 3-cactus,
3-omnetpp, 3-xalanc, 3-sphinx3

mix7
18-sysbench memory, 3-cactus, 3-omnetpp, 3-xalancbmk, 3-sphinx3,
3-gems, 3-lbm

mix8
18-sysbench memory, 3-xalancbmk, 3-sphinx3, 3-gems, 3-lbm,
3-soplex, 3-leslie3d

mix9
18-sysbench memory, 3-gems, 3-lbm, 3-soplex, 3-leslie3d,
3-libquantum, 3-mcf

V. EXPERIMENTAL RESULTS

In this section, we first examine if the CCPS improves
the system performance. Then, we analyze system fairness.
Finally, we show the power reduction and sensitivity of our
CCPS.

A. System Performance Analysis

 We compare CCPS’s performance against for four methods,
CFS, TCM, BPM and IMPS. CFS is the default method of the
Linux operating system, which taken as the standard for others;
TCM [1] is one of the best previous thread scheduling method
for trading off between performance and fairness; BPM [36] is
one of the best policy for reducing memory contention and
interference through partitioning memory banks; IMPS [6] is
one of the best policy to combine the interference reduction
benefits of both the system software page mapper and the
memory request scheduling hardware. IMPS is the most like to
our CCPS, we will detail analyze our advantages to these
methods below, especially to IMPS.

Figure 15 demonstrates the performance improvement of
four methods normalized to CFS in 8-core but with different
memory architectures, one is the most modern memory system
architecture consisting of 4 channels and 64 banks and the other
contains 4 channels and 256 banks. Obviously, from the figure,
we can easily see CCPS is better than other methods in both
memory architectures and the more banks in the memory
subsystem the better performance improvement of our CCPS.
In order to demonstrate the scalability of our CCPS with cores
number increased, we compare the performance in different
core numbers. So, besides 8-core circumstance, we also
demonstrate 4-core and 16-core circumstances in the figure 16,
and all circumstances contain both memory architecture. Our
CCPS's performance improvement proportional to the number
of cores is better than other methods, moreover, in the 256

banks circumstance, our CCPS behaves much better. With
more banks in the memory subsystem, every channel has more
banks for parallel access to obtain better performance for each
core. Therefore, CCPS is scalable to more cores for prevalent
multi-core system which core number is more and more. In the
figure, the number-core-number notation represents the core
number and bank number respectively.

Figure 15 system performance improvement in different workloads and bank
numbers

Besides of the core and bank number changing, with the
workloads switch from mix1 to mix9, which is less and less
memory-intensive, CCPS like other methods is more and more
effective in improving overall system performance.

CCPS improves 6.3%, 8.4%, 7.1%, 9.6%, 7.9% and 10.8%
system performance on average comparing to the CFS in 4-core,
8-core and 16-core with both memory architectures
respectively across 9 workloads. The system improvement is
mainly from independent memory access for each core,
changing from simultaneously to parallel in accessing shared
memory, which solves the memory contention and interference.
And another advantage of CCPS is more thread switching
between sharing memory address space which reduces the
switching overhead. Moreover, combining our memory
scheduling policy of prioritizing low memory request thread,
row buffer hit access and older request. Besides above three
advantages, removing load_balance of the kernel service is also
beneficial in improving performance.

Figure 16 average system performance improvement in different core and bank
numbers

Compared to TCM, one of the best performance previous
thread scheduling methods, CCPS combined channel aware
page allocation, independent accessing memory for each core
and our memory scheduling further to improve the overall
system performance, 2.2%, 4.2%, 2.4%, 4.8%, 2.5% and 5%
more performance than TCM in 4-core, 8-core and 16-core
with both memory architectures respectively.

BPM is one of the best performance previous partition
memory banks for each thread methods, which also behaves
better in 256 banks circumstances with all core number. But our
CCPS combined independent accessing memory for each core,
memory scheduling and thread scheduling additionally also

Page 8 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

further to improve the overall system performance, 1.4%, 1.6%,
1.5%, 1.7%, 1.5% and 1.7% more performance than BPM in
4-core, 8-core and 16-core with both memory architectures
respectively.

IMPS is the most similar method with our CCPS, except the
channel aware page allocation and independent accessing
memory for each core of our CCPS. Our CCPS is 1%, 2.9%,
1%, 3.4%, 1.1% and 3.7% more performance than IMPS.

Then, we analyze each of the three advantages in improving
system performance.
1) Row Buffer Miss Rate Reduction

Combining channel aware page allocation, independent
memory accessing for each core, our memory scheduling
policy of prioritizing low memory request thread, row buffer hit
access and older request with thread scheduling to improve
system performance, we detailed analyze each part of CCPS in
improving performance. Firstly, we analyze the reducing row
buffer miss rate through memory accessing from
simultaneously to parallel and our memory scheduling in
multi-core.

Figure 17 demonstrates the reduced row buffer miss rate
normalized to CFS of four different methods across 9
workloads in all circumstances of 4 and 8 cores. From the
figure, we can obviously see our CCPS reduces more row
buffer miss rate comparing to other three methods. This is the
one major reason of our CCPS improves more system
performance.

CCPS reduces 5.7%, 8.2%, 5.8% and 8.4% more row buffer
miss rate compared to CFS on average in circumstances of 4
and 8 cores with both memory architectures respectively, and
reduces 1.4%, 3.8%, 0.8% and 2.3% more comparing to TCM,
comparing to BPM which reduces 0.7%, 0.8%, 0.6% and 0.9%,
and comparing to IMPS which reduces 0.6%, 2.3%, 0.5% and
1.7%. Obviously, With the more cores and more banks, CCPS
behaves better and better in reducing row buffer miss rate,
which is conserve to TCM, BPM and IMPS, reducing row
buffer miss rate slightly better along with increasing cores. In
the figure, sometimes we even notice BPM is worse when in
8-core than in 4-core, which is mainly because the effective of
BPM in reducing memory interference is bad after cores
increasing. Therefore, TCM is better than BPM in 8-core-64
circumstance even though being worse on less cores and 256
banks.

CCPS is not affected by the core numbers, with cores are
more and more in the multi-core, even in the many-core system,
our CCPS behaves well scalability.

Figure 17 the reduced row buffer miss rate across 9 workloads in four
circumstances

Partition threads into thread groups, and bind one thread
group to one core occupying one memory channel, this

independent memory accessing mode operates parallel from
simultaneously which reduces the memory contention and
interference seriously. This part of reducing row buffer miss
rate through independent memory accessing is the mainly
partial of system improvement.
2) Switch Overhead Reduction

In this section, we analyze the reducing switch overhead
through thread scheduling part. After threads partitioned,
threads of sharing memory address space are partitioned into
the same group which running in the same core and using the
same channel. The cost of switching between sharing memory
address space threads is much lower.

Figure 18 demonstrates the difference of scheduling order
between CFS and CCPS. Figure 18(a) shows the real running
sequence using CFS on one core. The slashed threads are
multi-threaded threads. Without slashed threads are
single-threaded threads. In figure 18(a) threads without slashed
are more scattered among single-threaded threads than in figure
11(b) using CCPS. In figure 18(b), sharing memory address
threads are always scheduling sequence without inserting other
threads to reduce cost.

Table 3 demonstrates the average ratio switch between
sharing memory address space in 4-core circumstances. The
more ratio of switching between sharing memory address space,
the more switch overhead reduced and better performance
improvement. From table 3, we can easily to see CCPS is much
more in ratio of switching between sharing memory. CCPS is
82.6% more than CFS on average across the 9 workloads, and
83%, 82% and 75% more than TCM, BPM and IMPS
respectively. And on other circumstances from 4 to 16 cores
with both memory architectures, the improved ratio of
switching between sharing memory is likely to 4-core. This part
of reducing switch overhead through thread scheduling is also
one of the important partial of system improvement.

(a) The scheduling order using the CFS on one core

(b) The scheduling order using the CCPS on one core
Figure 18 scheduling order on one core

Table 3 Ratio of switching between sharing memory in 4-core circumstance

CFS TCM BPM IMPS CCPS
mix1 26% 22% 26% 25% 42%
mix2 24% 23% 25% 27% 46%
mix3 25% 25% 27% 26% 47%
mix4 19% 18% 19% 21% 37%
mix5 19% 20% 18% 20% 36%
mix6 21% 21% 20% 20% 34%
mix7 25% 26% 25% 26% 45%
mix8 27% 25% 23% 27% 46%
mix9 25% 27% 26% 25% 48%

3) Advantage of our Memory Scheduling
In this paper, we combine the memory scheduling of

prioritizing low memory request thread, row buffer hit access

Page 9 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

and older request, which reduces the row buffer miss rate to
improve throughput while retaining fairness and reducing
response time as much as possible.

The aspect of reducing row buffer miss rate, we have
analyzed in the 5.1.1 section, in this section, we mainly analyze
the response time. Fairness will compare in the below section.

Figure 19 maximum prolonged response time

Figure 19 demonstrates the average response time comparing
among four methods normalized to CFS, which adopt
maximum prolonged response time as the evaluation metric,
the more maximum prolonged response time the worse ability
in real-time response. From the figure, we can see our CCPS is
not the best method but also not the worst one. Some methods,
like TCM and BPM, prolong response time proportion to the
core number. But our CCPS and IMPS do not prolong response
time with core number increased, which is a well feature for
scalability.

B. Fairness Analysis

Figure 20 demonstrates the maximum slowdown of three
methods in 4-core and 8-core with both memory architectures
circumstances. More maximum slowdown, the worse fairness
is. So, from the figure, we can easily find both TCM and IMPS
is better than our CCPS and BPM, but our CCPS is better than
BPM. BPM is the worst in the fairness for not considering
fairness among threads with only the goal of reducing
interference. Although our CCPS is worse than TCM and IMPS,
the experimental results show acceptable.

The maximum slowdown of TCM is 4.5%, 4.6%, 4.5% and
4.7% on average respectively in four circumstances. The
maximum slowdown of BPM is 10.4%, 10.9%, 10.7% and 11.2%
on average respectively in four circumstances. The maximum
slowdown of IMPS is 4.6%, 4.5%, 4.8% and 4.6% on average
respectively in four circumstances. And our CCPS is 5.9%,
6.5%, 6.3% and 6.8%, which is also scalable.

Figure 20 maximum slowdown of four methods in four circumstances

C. Bandwidth Sensitivity Analysis

Although the core number is still increasing, memory
bandwidth for per-core is decreasing because of off-chip
memory bandwidth is limited by the pin count of
micro-processor chip, which is considered as the major

bottleneck of the scalability of on-chip core number. With the
less and less bandwidth of each core, more and more
interference needed to be relieved seriously. In order to
evaluate the effectiveness of CCPS under different extreme
condition, we emulate different bandwidth scenarios for
per-core by decreasing from 1.2GB/s to 0.6GB/s.

Figure 21 illustrates the memory bandwidth sensitivity of
CCPS to the per-core bandwidth comparing with TCM, BPM
and IMPS normalized to max bandwidth. Figure 21(a) clearly
shows the negative correlation of performance improvement
and per-core bandwidth of all four methods, which means all of
TCM, BPM, IMPS and CCPS is better in performance
improvement along with increasing per-core bandwidth. But
our CCPS is better than other three methods proportion to the
reduced per-core bandwidth, which means our CCPS is more
robustness in performance than other three methods under
extreme condition of bandwidth.

Figure 21(b) shows the correlation of fairness and per-core
bandwidth. Proportion to the decreased bandwidth of per-core,
CCPS can maintain the fairness. Although other methods can
also maintain, our CCPS behaves more non-sensitive.
Therefore, our CCPS is also more robustness in fairness than
other two methods under extreme condition of bandwidth.

(a) correlation of performance improvement and per-core bandwidth

(b) correlation of fairness and per-core bandwidth
Figure 21 bandwidth sensitivity

D. Power Reduction of CCPS

The active operation is the most power-consuming operation
in the DRAM system, because it has to move an entire row
from array to a row buffer. CCPS can lower the power
consumption of DRAM because of the reduced both row buffer
conflict miss rate and switching overhead (as illustrated in
Figure 18 and table 3 respectively). We measure the power
consumption by simulator, so we can get the value of power
savings on memory system. Our experimental results show that
CCPS with open-page policy can save up to 5.9% of memory
power consumption, better than the configurations without
CCPS.

VI. CONCLUSION

In this paper, we propose a CCPS approach, coordinating
channel-aware page mapping policy, memory scheduling and

Page 10 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

thread scheduling, which map the data of different threads to
different channels based on memory address space, thread
priority and load balance and prioritize low memory request
thread, row buffer hit access and older request. We evaluate
CCPS on a variety of mixed single and multi-thread
benchmarks and system configurations and compare them to
four previously proposed state-of-the-art reducing interference
policies. Experimental results show CCPS reduces both row
buffer miss rate and switch overhead which improves system
performance than modern memory management approaches
while reducing energy consumption nearly 5.9%. Moreover,
CCPS incurs much lower hardware overhead than current
proposed policies.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation of China under grants (No. 61003077, No.
61100193). Zhejiang provincial Natural Science Foundation
(No. LQ14F020011).

REFERENCES

[1] Y. Kim, M. Papamicheal and O. Mutlu. Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Access Behavior. In
MICRO-43, 2010.

[2] Y. Kim et al. ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In HPCA-16, 2010.

[3] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems. In
ISCA-35, 2008.

[4] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX Security, 2007.

[5] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In MICRO-40, 2007.

[6] S. Prashanth et al. Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning. In Micro-44, 2011.

[7] R. Ausavarungnirun et al. Staged memory scheduling: Achieving high
performance and scalability in heterogeneous systems. In ISCA, 2012.

[8] Y. Kim et al. ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In HPCA, 2010.

[9] Y. Kim et al. Thread cluster memory scheduling: Exploiting differences
in memory access behavior. In MICRO, 2010.

[10] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In MICRO, 2007.

[11] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems. In
ISCA, 2008.

[12] K. J. Nesbit et al. Fair queuing memory systems. In MICRO, 2006.

[13] M. K. Jeong et al. Balancing DRAM locality and parallelism in shared
memory CMP systems. In HPCA, 2012.

[14] S. P. Muralidhara et al. Reducing memory interference in multicore
systems via application-aware memory channel partitioning. In MICRO,
2011.

[15] D. Kaseridis et al. Minimalist open-page: A DRAM page-mode
scheduling policy for the many-core era. In MICRO, 2011.

[16] E. Ebrahimi et al. Fairness via source throttling: A configurable and
high-performance fairness substrate for multi-core memory systems. In
ASPLOS, 2010.

[17] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini.
MemScale: Active Low-Power Modes for Main Memory. In ASPLOS,
2011.

[18] V. Cuppu, B. Jacob, B. Davis, T. Mudge. High-performance drams in
workstation environments. IEEE Transactions on Computer 50 (11)
(2001) 1133–1153.

[19] B. Davis. Modern dram architectures. Ph.D. thesis, Department of
Computer Science and Engineering, University of Michigan, 2001.

[20] R. Crisp. Direct rambus technology: the new main memory standard. In:
Micro-30: Proceedings of the 30rd annual ACM/IEEE International
Symposium on Microarchitecture, 1997, pp. 18–28.

[21] S. Cho, and L. Jin. Managing Distributed, shared L2 Caches through
OS-Level page Allocation. In MICRO-39, 2006.

[22] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ASPLOS -
XV, 2010.

[23] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: a System for Energy
Efficient Computing in Virtualized Environments. In Proceedings of
International Symposium on Low Power Electronics and Design. In
ISLPED-2009.

[24] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
Observations to Improve Performance in Multicore Systems. In Micro-
41, 2008.

[25] S. Prashanth et al. Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning. In Micro-44, 2011.

[26] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis. Micro- Pages: Increasing DRAM Efficiency with Locality-
Aware. In ASPLOS- 2010.

[27] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist Open-page: A
DRAM Page-mode Scheduling Policy for the many-core Era. In
MICRO-44, 2011.

[28] Patel, Avadh, et al. MARSSx86: a full system simulator for x86 CPUs. In
DAC, 2011.

[29] Z. Zhang, Z. Zhu, X. Zhang. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality. In
MICRO’33: Proceedings of the 33rd annual ACM/IEEE International
Symposium on Microarchitecture, 2000, pp. 32–41.

[30] Kopytov, A. SysBench: a system performance benchmark.
http://sysbench.sourceforge.net/index.html. 2004.

[31] Gangyong Jia, Xi Li, Jian Wan, Liang Shi, Chao Wang. Coordinate Page
Allocation and Thread Group for Improving Main Memory Power
Efficiency. In Hotpower’13.

[32] Gangyong Jia, Xi Li, Jian Wan, Chao Wang, Dong Dai, Congfeng Jiang.
Coordinate Task and Memory Management for Improving Power
Efficiency. In ICA3PP’13.

[33] Xi Li, Gangyong Jia, Chao Wang, Xuehai Zhou, Zongwei Zhu. A
Scheduling of Periodically Active Rank of DRAM to Optimize Power
Efficiency. First Workshop on Highly-Reliable Power-Efficient
Embedded Design (HARSH) in conjunction with HPCA’13, 2013.

[34] Gangyong Jia, Xi Li, Chao Wang, Xuehai Zhou, Zongwei Zhu. Memory
Affinity: Balancing Performance, Power, Thermal and Fairness for
Multi-core Systems. IEEE Conference on Cluster Computing, Beijing,
China, Sep.24-28, 2012.

[35] Xi Li, Gangyong Jia, Yun Chen, Zongwei Zhu, Xuehai Zhou. Share
Memory Aware Scheduler: Balancing Performance and Fairness.
ACM/IEEE the 22th Great Lakes Symposium on VLSI (GLSVLSI).
2012.

[1] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen,
Chengyong Wu. A Software Memory Partition Approach for
Eliminating Bank-level Interference in Multicore Systems. In PACT’12,
2012.

Gangyong Jia is currently an Assistant
Professor of Department of Computer
Science at Hangzhou Dianzi University,
China. He received his Ph.D. degree in
Department of Computer Science from
University of Science and Technology of
China, Hefei, China, in 2013. He has
published over 20 papers in related
international conferences and journals. He

has served as a reviewer of Microprocessors and Microsystems.
His current research interests are power management, operating
system, cache optimization, memory management. He is a
member of IEEE.

Page 11 of 12 IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER

Guangjie Han received
from Northeastern University, Shenyang,
China, in 2004. From 2004 to 2006, he
was a Product Manager for the ZTE
Company. In February 2008, he finished
his work as a Postdoctoral Researcher
with the Department of Computer Science,
Chonnam National University, Gwangju,
Korea. From October 2010 to 2011, he

was a Visiting Research Scholar with Osaka University, Suita,
Japan. He is currently a Professor with the Department of
Information and Communication System, Hohai University,
Nanjing, China. He is the author of over 130 papers published
in related international conference proceedings and journals,
and is the holder of 55 patents. His current research interests
include sensor networks, computer communications, mobile
cloud computing, and multimedia communication and security.

Dr. Han has served as a Cochair for more than 20
international conferences/workshops and as a Technic
Program Committee member of more than 70 conferences. He
has served on the Editorial Boards of up to 1
journals, including the International Journal of Ad Hoc and
Ubiquitous Computing, Journal of Internet Technology
KSII Transactions on Internet and Information Systems.
served as a Reviewer of more than 50 journals. He received the
2014 Second International Conference on Computing,
Management, Computing, Communications and IT
Applications Conference and Telecommunications and
International Conference on Communications and Networking
in China Best Paper Awards. He is a member of the Association
for Computing Machinery.

Aohan Li is currently pursuing M.S
degree in signal and information
processing at Heilongjiang University,
China. She received her B.S degree in
electronic information engineering from
Heilongjiang University, China, in
Her current research interests are wireless
sensor networks and cognitive radio
networks

Jaime Lloret received his M.Sc. in Physics
in 1997, his M.Sc. in electronic
Engineering in 2003 and his Ph.D. in
telecommunication engineering (Dr. Ing.)
in 2006. He is a Cisco Certified Network
Professional Instructor. He worke
network designer and administrator in
several enterprises.
Associate Professor in the Polytechnic

University of Valencia. He is the head of the
"communications and remote sensing" of the Integrated
Management Coastal Research Institute and h
the "Active and collaborative techniques and use of technologic
resources in the education (EITACURTE)" Innovation Group.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

received the Ph.D. degree
from Northeastern University, Shenyang,

From 2004 to 2006, he
was a Product Manager for the ZTE

. In February 2008, he finished
his work as a Postdoctoral Researcher
with the Department of Computer Science,
Chonnam National University, Gwangju,
Korea. From October 2010 to 2011, he

was a Visiting Research Scholar with Osaka University, Suita,
e is currently a Professor with the Department of

Information and Communication System, Hohai University,
Nanjing, China. He is the author of over 130 papers published
in related international conference proceedings and journals,

tents. His current research interests
include sensor networks, computer communications, mobile
cloud computing, and multimedia communication and security.

Dr. Han has served as a Cochair for more than 20
international conferences/workshops and as a Technical
Program Committee member of more than 70 conferences. He
has served on the Editorial Boards of up to 16 international

International Journal of Ad Hoc and
Journal of Internet Technology and

on Internet and Information Systems. He has
served as a Reviewer of more than 50 journals. He received the
2014 Second International Conference on Computing,

Computing, Communications and IT
and Telecommunications and

nternational Conference on Communications and Networking
e is a member of the Association

Aohan Li is currently pursuing M.S
degree in signal and information

at Heilongjiang University,
China. She received her B.S degree in
electronic information engineering from
Heilongjiang University, China, in 2012.
Her current research interests are wireless
sensor networks and cognitive radio

received his M.Sc. in Physics
his M.Sc. in electronic

Engineering in 2003 and his Ph.D. in
telecommunication engineering (Dr. Ing.)

He is a Cisco Certified Network
Professional Instructor. He worked as a
network designer and administrator in

. He is currently
rofessor in the Polytechnic

head of the research group
"communications and remote sensing" of the Integrated

and he is the head of
"Active and collaborative techniques and use of technologic

)" Innovation Group.

He is the director of the University Expert Certificate “Redes y
Comunicaciones de Ordenadores
Certificate “Tecnologías Web y Comercio Electrónico”,
the University Master "Digital Post Production"
currently Chair of the Internet Technical Committee (IEEE
Communications Society and Internet society)
authored 12 books and has
published in national and international conferences,
international journals (more than
Factor). He has been the co
proceedings and guest editor of several i
journals. He is editor-in-chief of the
"Networks Protocols and Algorithms
Chair (8 Journals) and he is associate
international journals. He has been involved in more than
Program committees of international conferences and in
organization and steering committees.
and international projects. He is currently
Working Group of the Standard IEEE 1907.1
general chair (or co-chair) of 1
conferences (chairman of SENSORCOMM 2007, UBICOMM
2008, ICNS 2009, ICWMC 2010, eKNOW 2012
COMPUTATION 2013, COGNITIVE 2013,
2013, and co-chairman of ICAS 2009, INTERNET 2010,
MARSS 2011, IEEE MASS 2011, SCPA 2011, ICDS 2012
2nd IEEE SCPA 2012, GreeNets 2012
SSPA 2013 and local chair of
co-chairman AdHocNow 2014
GreeNets 2014, and local chair IEEE Sensors 2014
Senior and IARIA Fellow.

CLICK HERE TO EDIT) < 12

He is the director of the University Expert Certificate “Redes y
Comunicaciones de Ordenadores”, the University Expert

Web y Comercio Electrónico”, and
Master "Digital Post Production". He is

hair of the Internet Technical Committee (IEEE
Communications Society and Internet society). He has

has more than 240 research papers
published in national and international conferences,

more than 80 with ISI Thomson Impact
He has been the co-editor of 15 conference

proceedings and guest editor of several international books and
chief of the international journal
lgorithms", IARIA Journals Board

(8 Journals) and he is associate editor of several
He has been involved in more than 200

ternational conferences and in many
rganization and steering committees. He led many national

. He is currently the chair of the
the Standard IEEE 1907.1. He has been
chair) of 19 International workshops and

SENSORCOMM 2007, UBICOMM
2008, ICNS 2009, ICWMC 2010, eKNOW 2012, SERVICE
COMPUTATION 2013, COGNITIVE 2013, and ADAPTIVE

chairman of ICAS 2009, INTERNET 2010,
EEE MASS 2011, SCPA 2011, ICDS 2012,

GreeNets 2012, 3rd IEEE SCPA 2013,
and local chair of MIC-WCMC 2013). He is

hairman AdHocNow 2014, MARSS 2014, SSPA 2014 and
hair IEEE Sensors 2014. He is IEEE

Page 12 of 12IEEE Systems Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

