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Abstract 

The development and implementation of new capabilities to a linear elastic method for curve 

high-order 3D mesh generation, is described. The new features include the treatment of 

degenerated surfaces and an updated definition for periodic surfaces. These surfaces are widely 

used in engineering designs and are essential characteristics for the adoption of a mesh 

generator. The surfaces are described by NURBS, whose properties are used to determine 

whether surfaces are degenerated, periodic or not. 

Several examples illustrate the results of the implementation, measuring the quality of the mesh 

with a distortion method. Finally, in order to prove the utility of the generated meshes, one is 

used to solve a thermal problem.  
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1. Introduction  

The finite element method (FEM) can be traced back to the 17th century followed by an initial 

slow development. Nevertheless, the birth of the computer opened a new era in the development 

and implementation of FEM. As mention in [1], a community of academics such as A. Hrennikoff, 

R. Courant in the 1940’s and J. H. Argyris or O. C. Zienkiewicz in the 1960s and 1970s developed 

the primary FEM, and stablished the basis of the modern era of FEM. 

As the problems solved by the FEM gained in complexity, and the required accuracy of the results 

increased, high-order methods appeared. In 1978 the high-order method was proposed to solve 

fracture mechanics problems [2] and in 1981 it was published the first theoretical paper 

addressing the p-version of the FEM [3]. 

In the last years the high-order methods have grown exponentially, in fields such as 

computational fluid dynamics, acoustics or electromagnetics which are computationally 

expensive problems.   

There are some erroneous beliefs regarding the high-order method that were addressed in [4]. It 

is known that, for the same number of elements, high-order methods take more CPU time than 

linear FEM but, it is important to remember that FEM does not give an exact solution to a 

problem, but an approximation with a certain error. For the same error, high-order methods need 

a lower number of degrees of freedom (DOFs) than linear methods, what makes high-order 

methods faster than the traditional ones. 

In order to exploit the capabilities of high-order methods, different high-order curved finite 

elements techniques have been created. A comparison of four of them can be found in [5].  

Further developments in the high-order method have been made to improve its accuracy and 

velocity. For example, the h-p version, which combines increasing the order of the mesh and the 

reduction of the elements size where it is needed. More recent methods like NEFEM [6] have 

been proven to be superior in problems such as wave-scattering, where h refinement  implies 

reducing the time steps, resulting on a higher number of steps, which increases the overall 

computing time. Development in these and other methods is been made. 

A series of setbacks need to be addressed before the widespread adoption of the high-order 

method in the design process including (i) the robustness and convergence rate, (ii) the memory 

requirements, and (iii) the high-order curved mesh generation. 

As previously mention, several high-order curved finite element methods can be found, some of 

them in process of development to alleviate different problems such as the convergence rate. 

Improving the algorithms will reduce the memory requirements.  

The third problem, the availability of high-order curved mesh generators, is also been studied. 

The discretization of the domain with a high-order mesh is the first step in high-order finite 

element analysis. There exist several procedures for generating the mesh that can be divided in 

direct and a-posteriori approaches as explained in [ [7], [8]]. 
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The direct approach begins with the discretization of the curvilinear boundary of the model 

followed by the interior discretization of the domain. This method ensures a valid mesh, but it 

has a high computational cost. 

A-posteriori approaches begin with the generation of a linear mesh. Then, the entities laying on 

the curved boundary are modified to match the boundary of the domain using different methods 

such as, optimisation [9], local modification of geometric entities [10] or the solid mechanic 

analogies [11] proposed for the first time in 2009. Mesh modifications are localized in the 

boundary regions, this coupled with the already available well-developed linear mesh generators, 

made a-posteriori approaches to be preferred over the direct ones. 

The optimisation method and the modification of geometric entities method only modify the 

external edges/faces of the elements while the interior ones remain unchanged. This can lead to 

poor quality boundary elements, or even invalid ones if the deformation of the exterior edge/face 

is big enough to intersect with the interior parts, as mentioned in [ [11], [9]] and shown in the 

following  figure. 

 

These methods required a postprocess procedure to correct the invalid elements, such as the 

algorithm explained in [9], by curving also the internal entities of the domain. 

When using solid mechanics procedures, both boundary and internal edges are deformed. In this 

case, choosing the correct material properties is a key ingredient to achieving good quality 

elements. Poisson ratios near the incompressible limit, are demonstrated to give the best quality 

elements with a proper deformation of the interior edges as depicted in [8]. 

 

The first proposed solid mechanics method [11], make use of the non-linear elasticity problem, 

but later proposed procedures based on linear elasticity [12], using incremental steps to  deal 

with large deformations, are being prove to deliver high quality meshes with a lower computation 

cost [8]. 

Figure 1 Example of a mesh curved using direct methods 

Figure 2 Example of a mesh curved using a posteriori methods 
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1.1. Objectives 

This thesis is focused on the third of the above-mentioned problems, the high-order curved mesh 

generation. The following pages describe the development and implementation of new 

capabilities to the linear elastic mesh generation method explained in [12]. 

At the beginning of this project, the implementation of [12] is not automatically able to deal with 

degenerated surfaces and, although a procedure to treat periodic surfaces is already developed, 

the definition of periodic surfaces has to be changed to include a wider variety of surfaces. 

Degenerated and periodic surfaces commonly appear in engineering designs, making the 

implementation of these surfaces a key upgraded to the software, if it is to be used for finite 

element analysis. 

The work is divided in three main parts, (i)the development and implementation of the new 

capabilities to the software, (ii)the creation and study of high-order meshes involving the upgrade 

and (iii) the use of one of the meshes for solving a thermal problem and review its performance.  
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2. Geometric modelling 

2.1. Introduction to the NURBS 

This chapter is a brief introduction to the Non-Uniform Rational B-Splines. The NURBS are a type 

of piecewise parametric curves commonly used in engineering. Their characteristics are making 

NURBS spread from CAD software to finite element analysis.  

Parametric form of a curve 

The mathematical representations of a curve or surface is generally done using either an implicit 

or a parametric description.  

An implicit representation of a curve consists of a function of several variables that define the 

equation that the coordinates must satisfy to be on the curve. For instance, the implicit 

expression of the unit circle is 

 𝑥2 + 𝑦2 − 1 = 0 (1) 

In a parametric representation each coordinate is defined as a function of a common independent 

variable or parameter. The parametric expression of the unit circle is 

 𝑥(𝑡) = cos(𝑡)   𝑦(𝑡) = sin(𝑡) (2) 

It shall be noticed that, unlike the parametric curve, in the implicit form, the same value of one 

of the coordinates can lead to several points on the curve. In the example of the circle, for 𝑥 = 0, 

the point of the curve can be either in the upper or in the lower part of the circle, depending on 

the value of 𝑦 that can be 1 or -1. 

On the other hand, the parametric form of a curve can be understood as the mapping of a straight 

line of value 𝑡, the independent variable, into a curve. 

 

When it comes to representation, each method has its advantages over the other, but there are 

several reasons why the parametric method is the most common in CAD software. Among these 

reasons stands out (i) its more geometrical flavour, which gives the designer a more natural way 

of interacting with the CAD model, (ii) the ease to expand from 2D to 3D and (iii) a faster 

computation of points in the curve. 

Figure 3 Mapping of a parametric curve from its independent variable t 
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There are also some disadvantages such as the difficulty to determine if a point is on the 

curve/surface or not and the existence of parametric anomalies that does not relate to true 

geometry like the poles in a sphere. 

These issues are treated later in this document both in the point projection and degenerated 

points sections. 

Bezier curves 

There are several ways of representing the same curve in parametric form. For the sake of 

simplicity, the class of functions are restricted. 

The basis functions need to have a correlation with the geometrical space in order to be easily 

used when creating the designs. 

Bezier curves are formed from a set of polynomials known as the Bernstein polynomials that are 

defined as 

 𝑪(𝑢) = ∑𝐵𝑖,𝑛(𝑢)𝑷𝒊               0 ≤ 𝑢 ≤ 1

𝑛

𝑖=0

 (3) 

where {𝐵
𝑖,𝑛

(𝑢)} are the Bernstein polynomials of 𝑛-th degree and {𝑷𝒊} are the so-called control 

points. As it will be illustrated further down, the control points are coefficients of the curve with 

a geometrical meaning. 

Bernstein basis functions {𝐵𝑖,𝑛(𝑢)} 

Bernstein basis functions have certain properties that determine the characteristic of 

Bezier curves. Some of these properties can be noticed in the following figure. 

 
Figure 4, Bernstein basis functions for n=1,n=2, n=3 and n=4. The dashed line is  σ 𝐵𝑖,𝑛(𝑢) = 1𝑛

𝑖=0  
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• Nonnegativity: 𝐵𝑖,𝑛(𝑢) ≥ 0 for all 𝑖, 𝑛 and 0 ≤ 𝑢 ≤ 1 

• Partition of unity: σ 𝐵𝑖,𝑛(𝑢) = 1𝑛
𝑖=0  for all 0 ≤ 𝑢 ≤ 1. 

• Value 1 at one edge of the first and last polynomials 𝐵0,𝑛(0) = 𝐵𝑛,𝑛(1) = 1. 

• Each polynomial attains one maximum in [0,1] at 𝑢 = 𝑖/𝑛. 

• Symmetry for any 𝑛 with respect to 𝑢 = 1/2. 

Control points {𝑷𝒊} 

The control points are the geometric coefficients. The {𝑷𝒊} points form the control 

polygon that determines the path the curve is following. Some important properties are: 

• The control polygon approximates the shape of the curve 

• The initial and final points of the curve lie in the initial and final control points. 

• The curve is tangent to the control polygon at both corners. 

• The change of a control point modifies the entire curve. 

These properties can be seen in the following figure. 

 

Among the advantages of using Bezier curves, it can be mentioned (i) the geometrical oriented 

algorithms, which help the designers, (ii) the numerical stability and (iii) the geometric invariance 

which allows the rotation, translation and scaling of the curve. 

On the other hand, the degree of the Bernstein polynomials is 𝑛 − 1, equal to the number of 

control points, leading to a high degree polynomial when the number of points increases. Also, if 

one of the control points is modified, the entire curve changes. 

B-spline curves 

Spline functions consist in piecewise polynomials constructed with 𝑚-th degree segments. This 

type of functions gives similar results to polynomials but maintaining a lower degree. 

Figure 5 Bezier curves for two similar control points distribution 
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B-splines or basis splines are a type of spline functions that, as well as Bezier curves, consists on 

a basis function multiplied by a set of control points which give the geometrical meaning to the 

curve. 

To overcome the disadvantages of Bezier curves B-splines are used. The expression for the B-

spline curves is 

 𝑪(𝑢) = ∑𝑁𝑖,𝑝(𝑢)𝑷𝒊               𝑎 ≤ 𝑢 ≤ 𝑏

𝑛

𝑖=0

 (4) 

The control points are equal to the ones in Bezier curves whereas the basis functions are changed. 

B-spline basis functions 

A knot vector 𝑼 is created. This vector consists of 𝑚 − 1 non-decreasing values 𝑢𝑖 called 

knots. The 𝑖-th B-spline basis functions of 𝑝-degree are 

 𝑁𝑖,0(𝑢) = {
𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

 𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (6) 

Looking at the equation it can be seen that, 𝑁𝑖,𝑝(𝑢) = 0 if u is outside the interval 

[𝑢𝑖, 𝑢𝑖+𝑝+1). This yields to local support property meaning that, modifying a control 

point, only modifies certain segments of the curve, solving one of the problems found in 

Bezier curves. 

In this report the knot vectors 𝑼 will be of the form 

{𝑎, … , 𝑎, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 𝑏, … , 𝑏} 

Having 𝑝 + 1 times the initial and final knot and m+1 total number of knots. 

If the knot vector is of the form 𝑼 = {0,… ,0,1… ,1}, resulting B-spline basis functions are 

the Bernstein polynomials. 

Figure 6 shows the B-spline basis functions of degree p=2 for two different knot vectors. 

𝑼 = {0,0,0,0.1,0.5,0.7,0.7,1,1,1} 

𝑼 = {0,0,0,0.2,0.4,0.6,0.8, ,1,1,1} 
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When compared with Bernstein polynomials, the nonnegativity and partition of unity is still 

satisfied in the whole domain, but symmetry is no longer a needed characteristic of the B-spline 

basis functions. 

The other problem of the Bezier curves is solved by the piecewise definition. The order of the 

curve can be chosen by the designer and no longer be set by the number of control points.  

Increasing the degree increases the continuity. Continuity is also affected by the repetition of 

knots, the more times a knot is repeated, the lower is the continuity. This can be noticed in Figure 

7 which shows the B-spline curves constructed with the control points 𝑷 and with a similar knot 

vector but with different knot repetition. 

𝑷 = [
1 2 3 
1 2 0

   
4 5 6
2 0 2

   
7
0
] 

 

Rational Curves 

Polynomials are versatile to represent many curves, but they cannot represent conic curves nor 

surfaces such as circles, hyperbolas, spheres, etc. which are widely used in mechanical 

engineering design. 

Rational functions are defined as, the division of a polynomial by another polynomial. This type 

of functions can represent conic curves and are used as basis functions for representing conic 

curves and surfaces. 

The rational B-splines are defined as 

Figure 6 B-spline basis functions of degree p=2 for two different knot vectors 

Figure 7 B-splines for same control points distribution but different knot repetition 
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 𝑪(𝑢) =
σ 𝑁𝑖,𝑝(𝑢)𝑤𝑖𝑷𝒊 

𝑛
𝑖=0

σ 𝑁𝑖,𝑝(𝑢)𝑤𝑖𝑷𝒊
𝑛
𝑖=0

= ∑𝑅𝑖,𝑝(𝑢)𝑷𝒊 

𝑛

𝑖=0

          𝑎 ≤ 𝑢 ≤ 𝑏  (7) 

where the basis functions are 

 
𝑅𝑖,𝑝 =

𝑁𝑖,𝑝(𝑢)𝑤𝑖

σ 𝑁𝑗,𝑝(𝑢)𝑤𝑖
𝑛
𝑗=0

   
(8) 

It is worth noting that the rational functions introduce the so-called weights, 𝑤𝑖. These values are 

related to each control point creating the weighted control matrix. They can be understood as 

the value of the gravity of the control points. The higher the value the closer the curve will get to 

the control point. The next figure shows a comparison of two curves with the same control points 

but different weights. 

𝑃1
𝑤 = [

1 2 3
1 2 0
1 1 1

     
4 5 6
2 0 2
1 1 1

     
7
0
1
]                𝑃2

𝑤 = [
1 2 3
1 2 0
1 1 1

     
4 5 6
2 0 2
5 1 1

     
7
0
1
] 

 

Uniform vs Non-Uniform 

In a uniform knot vector, the distance between knots is always the same. 

𝑈 = {0,2,4,6,8} 

In a Non-uniform knot vector, the distance between knots can change. 

𝑈 = {0,2,3,7,9} 

Non- uniform vectors can be used for setting knot multiplicity higher than one in case the curve 

continuity in a region wants to be changed.  

Uniform knot vectors are a special case of the non-uniform knot vectors, so if non-uniform vectors 

can be computed the uniform ones are also included, that is the reason why the algorithms are 

developed considering non-uniform vectors. 

Figure 8 Rational curves for the same control points distribution but different weights 



10 
 

2.2. NURBS surfaces 

A surface is treated as an extension of the parametric curve, it is driven by two independent 

values (𝑢, 𝑣)  instead of one. The parametric form of a surface is a vector-value function which 

represents the mapping from a 2D rectangular plane to a 3D surface. The expression of NURBS 

surfaces is as follows. 

 
𝑺(𝑢, 𝑣) = ∑∑𝑅𝑖,𝑗(𝑢, 𝑣)𝑷𝒊,𝒋

𝑚

𝑗=0

𝑛

𝑖=0

 
(9) 

where 𝑅𝑖,𝑗(𝑢, 𝑣) are the basis functions. 

 
𝑅𝑖,𝑗(𝑢, 𝑣) =

𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗

σ σ 𝑁𝑘,𝑝(𝑢)𝑁𝑙,𝑞(𝑣)𝑤𝑘,𝑙
𝑚
𝑙=0

𝑛
𝑘=0

 
(10) 

Curves can be of different order in the 𝑢 and 𝑣 directions and the orders are denoted by 𝑝 and 𝑞 

respectively. The weighted control points 𝑷𝒊,𝒋 form a control net with 𝑖 points in 𝑢 direction and 

𝑗 points in 𝑣 direction. In Figure 9 two surfaces have been constructed using the same net of 

control points but, with different orders in the 𝑢 direction. 

 

The properties of NURBS surfaces, derived from its basis functions, are the same as the NURBS 

curves. 

2.3. NURBS operations  

Point projection 

As previously explained, computing a point of a parametric curve, given the independent 

parameter 𝑢 is an easy task but, to determine whether a point is in the curve or not is 

cumbersome. 

In this regard a Newton iteration method is used to build the algorithm explained below. 

Figure 9 NURBS surfaces for the same control points net. For the surface of the left p=4, q=3 and for the 
surface on the right p=2 q=3 
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A point 𝑷 is considered to be in the curve if the closest distance to the curve is under previously 

specify tolerances (𝜖1, 𝜖2). 

1. Compute n equally spaced (in the parametric space) points of the NURBS curve, these 

are the test points. The closest a test point is to 𝑷, the fastest will be the convergence of 

the method.  

 

2. Determine which test point is the closest one to 𝑷. This test point is called 𝑢𝑜. 

 

3. The following dot product function is constructed to find the minimum distance from 

𝑷  to   𝑪(𝑢). 

 
𝑓(𝑢) = 𝑪′(𝑢) ∙ (𝑪(𝑢) − 𝑷) 

(11) 

Notice that only two possibilities make this equation equal 0. The first one, if 𝑪(𝑢)= 𝑷 

which means that the point 𝑷 lies on the curve. The second one is a property of dot 

product functions. When 𝑪′(𝒖), the derivative of the curve on the point 𝑢,  is 

perpendicular to the difference 𝑪(𝑢) − 𝑷, the result will be 𝑓(𝑢) = 𝟎. 
 

4. Now the newton iteration is set. 

  
 

𝑢𝑖+1 = 𝑢𝑖 −
𝑓(𝑢𝑖)

𝑓′(𝑢𝑖)
=

𝑪′(𝑢𝑖) ∙ (𝑪(𝑢𝑖) − 𝑷)

𝑪′′(𝑢𝑖) ∙ (𝑪(𝑢𝑖) − 𝑷) + |𝐶′(𝑢𝑖)|
2 (12) 

𝑢𝑖  is the value of the parameter at the 𝑖-th Newton iteration. 

 

5. The iteration is halted when the following convergence criteria are satisfied. 

a. Point coincidence. 

 |𝑪(𝑢) − 𝑷| ≤ 𝜖1 (13) 

b. Zero cosine. 

 |𝑪′(𝑢𝑖) ∙ (𝑪(𝑢𝑖) − 𝑷)|

|𝑪′(𝑢𝑖)| ∙ |(𝑪(𝑢𝑖) − 𝑷)|
≤ 𝜖2 (14) 

c. The parameter does not change significantly from the previous iteration. 

 |(𝑢
𝑖+1

− 𝑢𝑖) ∙ 𝑪′(𝑢𝑖)| ≤ 𝜖1 (15) 

6. An extra step is needed in case the parameter is outside the valid range given by the knot 

vector of the curve  𝑼. 

 

If the curve is not closed 

𝑖𝑓 (𝑢
𝑖+1

< 𝑼(1))   →    𝑢𝑖+1 = 𝑼(1)  

𝑖𝑓 (𝑢
𝑖+1

> 𝑼(𝑒𝑛𝑑))   →    𝑢𝑖+1 = 𝑼(𝑒𝑛𝑑) 

 

If the curve is periodic. 

𝑖𝑓 (𝑢
𝑖+1

< 𝑼(1))        →    𝑢𝑖+1 = 𝑼(𝑒𝑛𝑑) − (𝑼(1) − 𝑢𝑖+1)  
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𝑖𝑓 (𝑢
𝑖+1

> 𝑼(𝑒𝑛𝑑))   →    𝑢𝑖+1 = 𝑼(1) + (𝑢𝑖+1 − 𝑼(𝑒𝑛𝑑)) 

The point projection for a surface is analogous to the one explained here for the curve, but it 

needs to be extended to consider two independent parameters 𝑢, 𝑣. 

2.4. Degenerated and periodic surfaces 

In this sections two important cases of NURBS are studied due to their importance in mechanical 

engineering design, namely closed NURBS curves and surfaces. 

Periodic curves and surfaces  

A periodic or closed curve is a curve that starts and ends at the same point. Looking at the 

parametric space of a closed curve, the first and last points of it refers to the same point in the 

real space. This can be shown in Figure 10 with a line in the middle representing the parametric 

space and the mapping to the real space. 

 

In a surface, the periodicity occurs when one edge of the parametric space is the same as the 

opposite edge. This can be seen in Figure 11. 

 

Some surfaces can be periodic without been completly closed. An example of such surfaces can 

be seen in Figure 12, where the surface is closed in one side but open in the other one. 

Figure 10 Periodic curve and it's parametric space 

Figure 11 Periodic surface and its parametric space surface, periodic line in blue 
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Degenerated surfaces 

When every point of an edge of the parametric space, yields to only one point in the real space, 

the surface is degenerated in that edge. In Figure 13  it can be seen the parametric and real spaces 

of a cone. It is degenerated in one side, colored in red, and periodic in one direction, blue lines. 

 

Other examples of degenerated surfaces can be a three edges surface or a sphere.  

 

Figure 12 Periodic open surface 

Figure 13 Degenerated and periodic surface and its parametric space surface. Periodic edge in blue, 
degenerated edge in red 

Figure 14 Examples of degenerated surfaces 
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3. High-order finite element analysis 

In this section a general high-order finite element 2D heat flow analysis will be described to assess 

the implications of using high-order elements. The explanation will be conducted using a 

quadratic Lagrangian element. Afterwards, the Fekete nodal distribution for optimal 

interpolation, will be introduced. 

3.1. High-order 2D heat flow 

The heat conduction law describes the transfer of thermal energy within a body. In two 

dimensions it is expressed as 

 𝜕𝑞𝑥(𝑥, 𝑦)

𝜕𝑥
+

𝜕𝑞𝑦(𝑥, 𝑦)

𝜕𝑦
− 𝑄(𝑥, 𝑦) = 0 

(16) 

where 𝑄(𝑥, 𝑦) is the heat source and 𝑞𝑥  , 𝑞𝑦 are the heat fluxes in 𝑥 and 𝑦 directions. These heat 

fluxes relate the gradient of temperature while moving along the cartesian directions, and the 

properties of the material, yielding to the following constitutive law, the Fourier’s law, 

 [
𝑞𝑥

𝑞𝑦
] = − [

𝑘𝑥𝑥 0
0 𝑘𝑦𝑦

]

[
 
 
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦]
 
 
 
 (17) 

where 𝑘𝑥𝑥 and 𝑘𝑦𝑦 coefficients are the conductivity of the material with respect to 𝑥 and 

𝑦 direction respectively. An isotropic material is considered, meaning that the conductivity is the 

same in every direction. Putting together the equilibrium (16) and constitutive (17) equations, 

the differential equation of heat conduction problems in strong form appears 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑄(𝑥, 𝑦) = 0 (18) 

Boundary conditions 

In the heat flow problem, it is mandatory that every boundary has an imposed condition either 

Dirichlet, Neumann or Cauchy. The boundary of the domain is referred as Г and is divided in three 

types, depending on the condition set in each point. 

Dirichlet: Prescribed temperature in the boundary ГT. 

 𝑇 = �̅�(𝑥, 𝑦)         𝑓𝑜𝑟 𝑥, 𝑦 𝜖 ГT  (19) 

Neumann: Prescribed normal boundary flux Гq, is the heat entering or scaping the body. 

 𝑞𝑛 = 𝑞𝑛̅̅ ̅(𝑥, 𝑦)         𝑓𝑜𝑟 𝑥, 𝑦 𝜖 Г𝑞  (20) 

Cauchy: Convective boundary conditions Гc, relate the convective heat transfer coefficient ℎ and 

the difference of temperatures between the boundary 𝑇 and the ambient temperature 𝑇∞. 
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 𝑞𝑛 = ℎ(𝑇 − 𝑇∞)         𝑓𝑜𝑟 𝑥, 𝑦 𝜖 Г𝑐   (21) 

Weak formulation 

The conditions impose in the strong formulation (18) require a solution that satisfy equilibrium in 

every point of the domain. To ease that strong condition, the differential equation is multiplied 

by a weighting function ∅ and then integrated resulting in the expression 

 
∫  

Ω 

∅ [
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑄]𝑑Ω = 0 

(22) 

that allows to calculate the solution as an average on the entire domain, instead of satisfying the 

equilibrium at every single point. 

The next step is to go from second order to first order derivatives and to extract the boundary 

terms. Integration by parts is made making use of the divergence theorem. 

After integrating and rearranging terms, the following expression appears 

 ∫  
Ω 

(
𝜕∅

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕∅

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
)𝑑Ω + ∫  

ГT 

∅𝑞𝑛𝑑Г + ∫  
Гq 

∅𝑞𝑛𝑑Г + ∫  
Гc 

∅𝑞𝑛𝑑Г =  ∫  
Ω 

∅𝑄𝑑Ω (23) 

where the heat fluxes  𝑞𝑛 terms depend on the boundary conditions.  

The first boundary term ГT , refers to the Dirichlet condition. The weighting function in this part 

of the boundary is set to 0 and will be calculated later as a reaction flux. 

The second boundary term Гq, corresponds to the Neumann condition. The heat flux is the 

already known boundary flux 𝑞𝑛 = 𝑞0.  

The last boundary term Гc is the Cauchy condition, 𝑞𝑛 = ℎ(𝑇 − 𝑇∞). It is important to notice 

here that the temperature 𝑇 is unknown at the Cauchy boundary. 

After these steps, an easier expression for the original steady state 2D heat flow problem, the 

weak formulation, appears. 

 ∫  
Ω 

(
𝜕∅

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕∅

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
) 𝑑Ω + ∫  

Гq 

∅𝑞𝑜𝑑Г + ∫  
Гc 

∅ℎ(𝑇 − 𝑇∞)𝑑Г =  ∫  
Ω 

∅𝑄𝑑Ω (24) 

Finite element discretization 

Once the weak form is obtained, the Galerkin method is used to go from a continuous to a 

discrete problem, dividing the domain in triangular quadratic elements which will be mapped to 

the reference element. 

The reference element, the basis functions and its derivatives are presented below. 
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Figure 15 Quadratic reference element 

 𝑁1 = 2𝜉2 − 𝜉 (25) 

 𝑁2 = 2𝜂2 − 𝜂 (26) 

 𝑁3 = 2(𝜉 + 𝜂)2 − 3(𝜉 + 𝜂) + 1 (27) 

 𝑁4 = 4𝜉𝜂 (28) 

 𝑁5 = −4𝜂2 − 4𝜉𝜂 + 4𝜂 (29) 

 𝑁6 = −4𝜉2 − 4𝜉𝜂 + 4𝜉 (30) 

 

 
𝜕𝑁1

𝜕𝜉
= 4𝜉 − 1 (31)  

𝜕𝑁1

𝜕𝜉
= 0 (32) 

 
𝜕𝑁2

𝜕𝜉
= 0 (33)  

𝜕𝑁2

𝜕𝜉
= 4𝜂 − 1 (34) 

 
𝜕𝑁3

𝜕𝜉
= 4𝜉 + 4𝜂 − 3 (35)  

𝜕𝑁3

𝜕𝜉
= 4𝜉 + 4𝜂 − 3 (36) 

 
𝜕𝑁4

𝜕𝜉
= 4𝜂 (37)  

𝜕𝑁4

𝜕𝜉
= 4𝜉 (38) 

 
𝜕𝑁5

𝜕𝜉
= −4𝜂 (39)  

𝜕𝑁5

𝜕𝜉
= −4𝜉 − 8𝜂 + 4 (40) 

 
𝜕𝑁6

𝜕𝜉
= −8𝜉 − 4𝜂 + 4 (41)  

𝜕𝑁6

𝜕𝜉
= −4𝜉 (42) 

Isoparametric mapping is used, meaning that the same shape functions are used to interpolate 

nodal temperatures and coordinates. To do so, the values in every node of the element are (i) 

multiplied by their corresponding basis function, evaluated in the reference coordinates, and (ii) 

added together. For the sake of simplicity, it can be expressed in vector notation as 

 𝑇(𝑒)(𝜉, 𝜂) = 𝑇1
(𝑒)

𝑁1(𝜉, 𝜂) + ⋯+ 𝑇6
(𝑒)

𝑁6(𝜉, 𝜂) = 𝑵𝑻(𝒆)  (43) 

 𝒙(𝑒)(𝜉, 𝜂) = 𝒙1
(𝑒)

𝑁1(𝜉, 𝜂) + ⋯+ 𝒙6
(𝑒)

𝑁6(𝜉, 𝜂) = 𝑵𝒙(𝒆) (44) 

where 𝑵 is a vector containing the basis functions evaluated at the point of interest, 𝑻(𝒆) contains 

the temperatures at every node of an element and 𝒙(𝒆)is formed by the real space coordinates 

(𝑥, 𝑦), of every node of a given element. 
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Using the isoparametric transformation, the weak form (24) can be expressed in terms of the 

reference element. 

First, the derivatives of the temperature term in respect to the reference coordinates are 

computed as 

 
𝜕𝑇(𝑒)

𝜕𝜉
= 𝑇1

(𝑒) 𝜕𝑁1

𝜕𝜉
+ ⋯+ 𝑇6

(𝑒) 𝜕𝑁6

𝜕𝜉
=;        

𝜕𝑇(𝑒)

𝜕𝜂
= 𝑇1

(𝑒) 𝜕𝑁1

𝜕𝜂
+ ⋯+ 𝑇6

(𝑒) 𝜕𝑁6

𝜕𝜂
 (45) 

what can be expressed in a more compact way as follows 

where the terms of 
𝜕𝑵

𝜕𝝃
 are as presented below. 

 𝜕𝑵

𝜕𝝃
= [

4𝜉 − 1 0 4𝜉 + 4𝜂 − 3

0 4𝜂 − 1 4𝜉 + 4𝜂 − 3
    

4𝜂 −4𝜂 −8𝜉 − 4𝜂 + 4

4𝜉 −4𝜉 − 8𝜂 + 4 −4𝜉
 ]  

(47) 

The derivative of the temperature must be written on respect to the global coordinates. By using 

the chain rule, the expression can be transformed from the local to the global coordinates 

 

[
 
 
 
 
𝜕𝑇

𝜕𝜉
𝜕𝑇

𝜕𝜂]
 
 
 
 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂]
 
 
 
 

[
 
 
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦]
 
 
 

= 𝑱

[
 
 
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦]
 
 
 

 (48) 

where 𝑱 is the Jacobian, the matrix that allows the transformation from the reference space to 

the global space. The terms are computed using the derivatives of the basis functions, similarly 

to equation (45). Having a look at the expressions, 

 𝜕𝑥(𝑒)

𝜕𝜉
= 4(𝑥16

(𝑒) + 𝑥36
(𝑒)

)𝜉 + 4(𝑥45
(𝑒) + 𝑥36

(𝑒)
)𝜂 − (𝑥16

(𝑒) + 3𝑥36
(𝑒)

) 
(49) 

 𝜕𝑥(𝑒)

𝜕𝜂
= 4(𝑥35

(𝑒) + 𝑥46
(𝑒)

)𝜉 + 4(𝑥25
(𝑒) + 𝑥35

(𝑒)
)𝜂 − (𝑥25

(𝑒) + 3𝑥35
(𝑒)

) 
(50) 

 𝜕𝑦(𝑒)

𝜕𝜉
= 4(𝑦

16
(𝑒) + 𝑦

36
(𝑒)

)𝜉 + 4(𝑦
45
(𝑒) + 𝑦

36
(𝑒)

)𝜂 − (𝑦
16
(𝑒) + 3𝑦36

(𝑒)
) 

(51) 

 𝜕𝑦(𝑒)

𝜕𝜂
= 4(𝑦

35
(𝑒) + 𝑦

46
(𝑒)

)𝜉 + 4(𝑦
25
(𝑒) + 𝑦

35
(𝑒)

)𝜂 − (𝑦
25
(𝑒) + 3𝑦

35
(𝑒)

) 
(52) 

it is important to mention that, for straight edges elements with equally space nodal distribution, 

the Jacobian is reduced to a constant. In fact, the result is the same as the one for a linear 

element. A constant Jacobian term implies no deformation along the elements yielding to a good 

mesh quality. A proper representation of the domain boundaries might imply the use of curved 

 
𝜕𝑻(𝒆)

𝜕𝝃
=

𝜕𝑵

𝜕𝝃
𝑻(𝒆) (46) 
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elements, resulting in not constant Jacobians. This fact reduces the quality of the element. A 

nodal distribution that minimize the deformation of the elements will result in higher quality 

meshes. 

Using the isoparametric transformation the determinant of the Jacobian can be computed as  

 
𝐴(𝑒) = ∫  

Ω(e) 

1𝑑Ω = ∫  
Ωref 

1|𝑱(𝒆)|𝑑Ω = |𝑱(𝒆)|𝐴𝑟𝑒𝑓 

|𝑱(𝒆)| = 2𝐴(𝑒) 

 

 

(53) 

resulting in two times the area of the element. 

Putting together equations (47) and (48), the derivatives of the temperature in respect to the 

global coordinates are 

 

[
 
 
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦]
 
 
 
= 𝑱(𝒆)−𝟏

[
 
 
 
 
𝜕𝑇

𝜕𝜉
𝜕𝑇

𝜕𝜂]
 
 
 
 

= 𝑱(𝒆)−𝟏 𝜕𝑵

𝜕𝝃
𝑻(𝒆) = 𝑩(𝒆)𝑻(𝒆) (54) 

where 𝑩(𝒆) can be expressed on terms of the element area using equation (53). 

 
𝑩(𝒆) =

𝟏

|𝑱(𝒆)|
(𝑱∗ )𝑇

𝜕𝑵

𝜕𝝃
=

1

2𝐴(𝑒)
(𝑱∗ )𝑇

𝜕𝑵

𝜕𝝃
 

(55) 

Each term of the weak form is now expressed for every element in terms of the reference element 

as follows. 

 ∫  
Ωe 

(
𝜕∅

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕∅

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
) 𝑑Ω = ∅𝑇 [𝑘(𝑒) ∫  

Ωref 

𝑩(𝒆)𝑇𝑩(𝒆)|𝑱(𝒆)|𝑑Ω] 𝑻(𝒆) = ∅𝑻𝑲(𝒆)𝑻(𝒆) (56) 

 𝑲(𝒆) = 𝑘(𝑒) ∫  
0

1

(∫  
0 

1−𝜂

𝑩(𝒆)𝑇𝑩(𝒆)|𝑱(𝒆)|𝑑𝜉)  𝑑𝜂 (57) 

 ∫  
Ωe  

∅𝑄𝑑Ω = ∅𝑻𝑄(𝑒) ∫  
Ωe  

𝑵𝑻𝑑Ω = ∅𝑻𝒓𝑄
(𝑒)

 (58) 

 ∫  
Гq
e  

∅𝑞𝑜𝑑Г = ∅𝑻𝑞𝑜
(𝑒)

∫  
Гq
e  

𝑵𝑇𝑑Г = ∅𝑻𝒓𝑞
(𝑒)

 (59) 

 ∫  
Гc
e 

∅ℎ(𝑇 − 𝑇∞)𝑑Г = ∅𝑻 [ℎ(𝑒) ∫  
Гq
e  

𝑵𝑇𝑵 𝑑Г ] 𝑻(𝒆) − ∅𝑻ℎ(𝑒)𝑻∞
(𝒆)

= ∅𝑻𝒉(𝒆)𝑻(𝒆) − ∅𝑻𝒓∞
(𝑒)

 (60) 
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Figure 16 Fekete nodal distribution in the reference element for p=2, p=3, p=9 and p=20 

After assembling the contributions of every element, the global system of finite element 

equations can be written as 

 (𝑲𝑇 + 𝑯𝑇)𝑻 = 𝑹∞ + 𝑹𝑄 + 𝑹𝑞 (61) 

It is important to mention that, numerical integration is needed. Notice that 𝑩(𝒆) contains the 

inverse of the Jacobian, whose terms are polynomial expressions. This yields to a non-polynomial 

expression that can be approximated by using a quadrature, but cannot be exactly computed. 

The accuracy of the finite element solver depends on the distribution of the interpolation points 

and the numerical quadrature. In the next section, the Fekete nodal distribution is introduced to 

compute appropriate interpolation points. 

3.2. High-order elements with Fekete points nodal distribution 

As it has been already stated, the position of the nodes within the reference element will affect 

the final solution. There are different strategies available to distribute the nodes. 

The accuracy of different distributions can be measured using the Lebesgue constant as explained 

in [13]. The smaller the Lebesgue constant, the better. 

For low order functions, the use of equally spaced nodal distribution gives low Lebesgue constant 

values but, as the degree increases, the Lebesgue constant grows exponentially with it. 

The Fekete points are closer to the optimal interpolation points yielding to a smaller Lebesgue 

constant. In [13], Fekete points have been proved to maintain a better performance than other 

methods while increasing the order of the element, and an algorithm has been developed to 

compute the points in a triangle. 

The Fekete points for a triangular face in the reference element triangle for different degrees are 

shown Figure 16. 
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4. High-order mesh generation with periodic and degenerated 
surfaces 

In this essay the incremental linear elastic method proposed in [12] has been used. A brief 

summary of the method can be read bellow. 

First an initial linear mesh is constructed making use of the well-developed linear mesh 

generators available.  

With the aim of creating the high-order mesh, internal nodes laying on the low order elements 

are added. These nodes are located following the Fekete nodal distribution explained in section 

3.2  

To create the high-order curved mesh, these newly created nodes have to be moved to their 

corresponding location in the real domain, which is given by the geometrical model described 

using NURBS.  

Finding these points in the NURBS surface is not trivial. For doing so, the point projection 

algorithm, presented in section 2.3, is used. 

Once both the nodes in the mesh and the corresponding points on the surface are known, the 

distance between them is computed. The distance is imposed as a Dirichlet boundary condition 

and the linear elastic problem governed by equation 

  𝜵 ∙  𝝈 = 𝟎 (62) 

is solved. The solution is a displacement field that when applied to the original mesh will result in 

a high-order curved mesh. It is important to mention that at this point, the NURBS definition of 

the boundary is no longer used. 

A modified scaled Jacobian is used to measure the quality of the resulting elements. As previously 

mentioned in section 3.1, the fact that curved elements are used yields to a non-constant 

Jacobian which means that the element is deformed. The location of the nodes will impact the 

amount of deformation along the element, which can be measured using 

 
 𝐼 =

𝒎𝒊𝒏𝝃𝜖𝑅|𝑱(𝝃)|

𝒎𝒂𝒙𝝃𝜖𝑅|𝑱(𝝃)|
 

(63) 

where a negative value of 𝐼 indicates that the element is not valid. The closer 𝐼 is to 1 the better 

the quality of the element is. When looking at the expression of the Jacobian on equation (53), it 

can be noticed that, the scaled Jacobian is nothing else than a quotient of areas (in 2D). The same 

area is place in different locations of the reference element, then the projection of those areas in 

the real space can be compared. If the resulting areas in the real space are the same, it has 

occurred no distortion, the value of 𝐼 is one, but if the areas are different from each other the 

value decreases. 

Low quality elements are mainly related to an inappropriate distribution of the nodes in the 

curved elements and to large deformations of the elements. 
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Figure 18 Curved element and the domain boundary for p=2 with corrected high-order nodes in the left, and 
p=3 with non-corrected nodal distribution 

High-order nodes are placed in the linear element following the Fekete nodal distribution and 

then projected to the curved boundary. If the curvature of the boundary inside an element is too 

high, the projection gives back a bad nodal distribution. When a polynomial going through these 

nodes is constructed, the boundary is not well represented.  

Take a look at Figure 17 where this has been illustrated using an equally spaced nodal distribution. 

The projection of the high-order nodes to the curved boundary is represented in black and the 

polynomial going through the nodes is represented in blue. In the lower side of the picture there 

is a straight line representing the location of the nodes along a normalize line. Notice that the 

distribution of the nodes is not even, the segments on the sides are smaller than the middle one. 

This means a large deformation of the element yielding to a low  𝐼 value. 

 

A better representation of the boundary can be achieved by increasing the order of the mesh. 

Another option is to relocate the nodes, finding a better distribution along the boundary. The two 

approaches are represented in Figure 18. 

 

 

 

 

 

 

 

 

 

Figure 17 Curved element and the domain boundary for p=2 
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On the right side of Figure 18, where the mesh degree has been changed from 𝑝 = 2 to 𝑝 = 3, 

the representation of the boundary is more accurate. Nevertheless, looking at the normalize line, 

the segments size is still uneven.  If the scaled Jacobian is computed, its value will still be low due 

to the high deformation suffered by the element. On the other hand, the figure on the left, where 

the nodes have been relocated, presents a better nodal distribution and will have a higher 𝐼 value. 

Increasing the order of the mesh will provide a better representation of the domain, but not 

necessarily a higher 𝐼 value. The main factor affecting the quality of the elements is the nodal 

distribution, which at the same time can affect on the accuracy of the boundary representation. 

Some work about a proper nodal distribution has been made in  [12] using geodesics. Other 

possible approach is the use of optimisation methods on those elements with not enough quality. 

In some cases, where the curvature within the elements is too high, the best approach is to 

reduce the element size of the initial mesh on those elements. 

Large deformations related errors can be corrected using a multistep solving process. Divide the 

total deformation into several steps, can alleviate the errors introduced by the usage of a linear 

elastic model that does not account for large displacements. 

4.1. Periodic surfaces  

As explained in section 2.4, periodic surfaces can go from cylindrical like surfaces to semi-periodic 

ones such as the one in Figure 19. 

 

The implementation of the method explained in [12] needs a definition of periodicity that englobe 

all these surfaces.  A surface is considered periodic if it is formed by at least one closed curve, in 

other words, if two points in opposite edges of the surface’s parametric space correspond with 

the same point in the real space, the surface is periodic.  

Checking the surface periodicity requires selecting several points on the parametric space edges 

and computing their coordinates in the real space. If the real coordinates of more than one point 

are the same, the surface is treated as a periodic surface.  

Figure 19 Periodic surface 
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4.2. Degenerated surfaces 

Degenerated surfaces are implemented for the first time and are the main development of this 

work. 

A definition must be given for such surfaces. A surface is considered degenerated if any of their 

edges in the parametric space is projected to a single point in the real space. 

 

Some CAD software provide an inappropriate parametric space when dealing with degenerated 

surfaces. If the given parametric space does not have rectangular shape it has to me modified to 

assure that no edge crosses the parametric space. Figure 21 shows the parametric space 

reconstructed, from the information given by a CAD software, before and after fixing it. 

 

The final step on the categorization of the degenerated surface, is to identify the faces of the 

elements laying on the degenerated edge. If one of the face’s nodes is placed on the degenerated 

edge, that face is classified as degenerated. 

Remeshing the parametric space 

The mesh is built in the real space and afterwards projected to the parametric space of the 

NURBS. As a result, there is only one node in the degenerated edge. This node is shared by every 

element in that side, what leads to a parametric space that is not completely mesh.  

. 

 

Figure 20 Parametric and real space of a degenerated surface 

Figure 21 . Cone parametric space before and after correction 
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A new type of element is created to be able to mesh the entire parametric domain. The node in 

the degenerated edge can be unfold in several nodes laying all of them in the degenerated edge. 

The projection of all these nodes in the real space, will have the same coordinates, maintaining 

the same DOF in the real space. 

This new element will be named collapsed quadrilateral. It is a four-sided element, containing 

𝑝 + 1 nodes on one side, 1 node on the opposite one and 𝑝 nodes on the rest of the edges. Inner 

nodes are placed in line with the p nodes sides. In total the collapsed quadrilateral element is 

formed by the same number of nodes as the initial triangular element. Figure 23 shows the 

collapsed quadrilateral elements for several degrees. 

 

By changing the triangular elements for the new ones, the mesh on the degenerated edge covers the entire 
parametric space as can be seen in Figure 24. 

Figure 22 Mesh projection into the parametric space 

Figure 23 Reference collapse quadrilateral element for p=2, p=3, p=9 and p=20 
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Certain surfaces are trimmed in their interior or in the perimeter. In this case an elasticity problem 

must be solved in the parametric space to relocate the mesh nodes. Collapsed quadrilateral are 

not suitable for FEM calculations so they need to be modified. A hybrid mesh is created changing 

the collapsed elements by regular quadrilateral elements as shown in Figure 42.  

The location of the nodes in the quadrilateral element has been proved to have an important 

influence on the final quality of the mesh. The nodal distribution on the regular quadrilateral 

elements, is made by using the blending function method explained in [14]. 

After solving the elasticity problem in the parametric space, the quadrilateral elements are again 

changed into the collapsed quadrilateral elements. The rest of the meshing process is conducted 

in the same manner as for other surfaces. 

  

Figure 24 Corrected parametric space using collapse quadrilaterals 
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5. Numerical examples 

In this chapter the different steps carried out for the generation of the high-order mesh are 

explained. A series of examples are introduced, gradually increasing the complexity of the 

geometry and explaining how the mesh generator deals with certain especial cases. 

5.1. Deformed Cube 

The first geometry is a cube with four deformed faces for which a 𝑝 = 3  triangular mesh is 

generated. The first input to the process is the geometrical definition of the boundary surfaces, 

given using NURBS. 

 

The triangular linear elements mesh is created thanks to a linear mesh generator. 

 

The high-order meshing process requires the creation of a parametric space for every boundary 

surface of the domain. The top surface can be seen in Figure 27, it is formed by 4 curves in the 

real space that are projected to the parametric space. The area delimited by the four projected 

Figure 25 Deformed cube geometry 

Figure 26 Deformed cube linear mesh 
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lines formed a closed planar surface that corresponds with the projection of the curve in the 

parametric space. 

 

In a similar way, the linear mesh nodes can be projected in the parametric space yielding to the 

mesh of the parametric space shown in Figure 28. 

 

Continuing with the meshing process, the high-order nodes are added on the linear real space 

elements following the Fekete distribution explained in section 3.2. The result can be seen in 

Figure 29. 

 

Figure 27 Curves of the upper surface of the cube on the left and the surface parametric space on the right 

Figure 28 Parametric space mesh 

Figure 29 Non-curved high-order mesh 
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It shall be noticed that, these high-order elements are still straight-sided elements, the newly 

created nodes have yet to be moved to the boundary of the domain. 

The initial nodes, created in the generation of the linear mesh, are laying on the NURBS. That is 

the reason why they have a known position on the surface parametric space. Nevertheless, the 

high-order nodes have been added on the linear elements and are not laying in the NURBS. 

Using the NURBS point projection algorithm, explained in section 2.3, for every high-order node 

the closest point laying on the NURBS surface is found. The parametric space mentioned before 

is necessary to complete this step. 

The distance between the high-order nodes and their correspondent point in the NURBS surface 

is measured and set as a Dirichlet boundary condition for the linear elastic solver. Solving the 

problem results on a deformation field of the high-order nodes, giving the high-order curved 

mesh. 

 

The resulting mesh accurately represents the boundaries of the domain, but the quality of the 

elements needs to be checked if the mesh is going to be used for solving a high-order problem. 

The quality measure used is the scaled Jacobian, explained in section 4, which gives the volumetric 

deformation caused on an element during the high-order mesh creation process. 

The maximum value of the scaled Jacobian is 1, meaning not deformation at all, and a value under 

0 means a non-valid element. Even if a value of 0 gives a theoretical valid element, the results 

achieve in the resolution of a problem with such elements will be incorrect. In practice, the value 

of the scaled Jacobian for most of the elements must be above 0.5 to be considered a proper 

mesh.  

 

Figure 30 Curved high-order mesh 
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As mention in section 4, optimisation methods can be used in the elements with too low 𝐼 value. 

5.2. Cylinder 

For this second example a periodic surface is presented. The geometry and linear mesh can be 

seen in the next figure. 

 

The direct projection of the linear mesh into the parametric space results in an invalid mesh. 

Figure 31 Scaled Jacobian values for the curved high-order mesh 

Figure 32 Cylinder geometry and linear mesh 
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This is produced by the projection of the nodes laying on the periodic edge. A node in that edge 

corresponds to a single point in the real space, but it has to represent two points in the parametric 

space. To solve this issue the nodes on the periodic edge are duplicated and placed on both sides 

of the parametric space. 

 

Once the mesh is corrected, the high-order mesh can be generated following the same procedure 

as for the deformed cube. 

 

Figure 33 Original mesh of the cylinder on the parametric space  

Figure 34 Corrected mesh of the cylinder on the parametric 
space 

Figure 35 High-order curved mesh of the cylinder 
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To analyse the behaviour of the mesh quality for different order meshes, six high-order meshes 

from 𝑝 = 2  to  𝑝 = 7 are generated and compared using the scaled Jacobian. 

 

The maximum scaled Jacobian values are similar for every mesh going from 0.98 to 0.99. 

However, the minimum values fluctuate with the mesh degree. When moving from 𝑝 = 2 to 𝑝 =

4  the minimum value of 𝐼 decreases. As previously mention in section 4, the quality of the 

elements is not necessarily related to the order of the mesh. 

It shall be noticed in Figure 37, that the lower quality elements are the same while the degree 

increases. The elements are those covering larger curvatures. Increasing the quality of these 

elements, could be done relocating the high-order nodes on the NURBS surface, using 

optimisation methods. 

 

  

Figure 36 Comparison of the minimum and maximum quality of the elements for different 
degree high-order meshes 

Figure 37 Scaled Jacobian for p=3 mesh on the left and p=7 on the right 
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5.3. Sphere  

The sphere presented here is constructed with only one NURBS surface, it is periodic in one 

direction and degenerated in the two opposite edges. 

 

The projection of the mesh into the parametric space is affected by the fact that the surface is 

periodic and degenerated. 

 

First the periodicity is corrected as it was explained in the cylinder example.  

 

Figure 38 Sphere geometry and linear mesh 

Figure 39 Original mesh of the sphere on the parametric space 

Figure 40 Mesh of the sphere on the parametric space after periodicity correction 
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Now the elements of the mesh laying on the degenerated edge need to be modified. The process 

explained in section 4.2  is implemented. One node is added for each of the degenerated elements 

and placed in the degenerated edge at a proper location. Using these nodes, the collapsed 

quadrilateral elements are created. Figure 41 shows how the entire parametric space has been 

meshed. 

 

Remember that the collapsed quadrilateral elements, are auxiliary elements with a nodal 

distribution that cannot be used to solve an elasticity problem in the parametric space. For doing 

so, the elements must be transformed to regular quadrilateral elements. Figure 42 shows the 

distribution of the nodes on the degenerated elements, for a 𝑝 = 3 mesh, using collapsed 

quadrilateral elements and regular quadrilateral elements.  

 

After solving the linear elastic problem in the parametric space, which is used to ensure the 

boundaries of the surface match the domain, the mesh is again transformed into the collapsed 

quadrilateral elements mesh.  

Once the parametric space is correctly meshed, the rest of the procedure can be conducted 

resulting in the following high-order mesh.  

Figure 41 Corrected mesh of the sphere on the parametric space 

Figure 42 Nodal distribution on the degenerated elements using collapsed quadrilateral elements 
on the left and using regular quadrilateral elements on the right 
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The quality of the high-order curved mesh is analyse using the scaled Jacobian. For this example, 

every element of the high-order mesh has a good quality. 

5.4. Sphere intersected by a cylinder 

This example is aimed to demonstrate the capacities of the new implementations to deal with 

trimmed surfaces. The sphere is formed by five surfaces, four surfaces form the shape of the 

sphere and the fifth one the cylindrical cut. 

 

Figure 45 shows the corrected parametric space for one of the sphere surfaces intersect by the 

cylinder. 

Figure 43 High-order p=3 mesh of the sphere with the values of the scaled Jacobian  

Figure 44 Intersected sphere geometry and linear mesh 
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The black line is the curve produced by the intersection of the sphere surface and the cylinder 

surface. The quadrilateral shape, shaded in white, is not an element but the hole in the mesh 

created by the intersection. 

A linear elastic problem has to be solved in the parametric space. First, the high-order nodes, on 

the parametric space, are projected to the hole boundary curve. The distance between the nodes 

and their projections are set as Dirichlet boundary conditions and the problem is solved. 

 

Figure 46 shows how the high-order nodes surrounding the hole are moved to meet the boundary 

curve.  

Have a look now at the cylinder parametric surface in Figure 47. In this case the surface is cut at 

both ends, where the cylinder meets the sphere. This time the high-order nodes to be moved are 

the ones on the boundaries of the parametric space. 

Figure 45 Parametric space of one of the sphere intersected surfaces after been corrected 

  

Figure 46 Parametric space mesh of one of the sphere surfaces, before and after applying the 
deformation to match the boundary, produced by the intersection with the cylinder 
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The high-order mesh of the real space for this example can be seen in Figure 48. 

 

Some of the elements are too large. It is decided to reduce the size of the elements using a 

different linear mesh. The result is shown in Figure 49. 

 

Figure 47 Parametric space mesh of the cylindrical hole before and after applying the 
deformation to match the boundary 

Figure 48 High-order p=3 mesh of the holed sphere with the values of the scaled Jacobian 

Figure 49 High-order p=3 refined mesh of the holed sphere with the values of the scaled Jacobian 
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The process of trimming the surface has led to large deformations at some of the elements. 

Imposing a multistep solving procedure reduces the influence of large deformations on the mesh. 

 

The problem is solved by dividing the total deformation in 3 steps, the result can be seen in Figure 

50. In this case, large deformations are not caused by large curvatures, that is the reason why the 

multistep procedure significantly increases the quality of the mesh.  

5.5. Cone 

The last example exposes one limitation of this method. The geometry to mesh is a cone. Notice 

that a cone is periodic in one direction and degenerated in one edge. 

 

As previously done, the mesh on the parametric mesh is corrected beginning with the periodic 

elements following with the degenerated elements. 

Figure 50 High-order p=3 refined mesh of the holed sphere with the values of the scaled Jacobian, 
solved using 3 deformation steps 

Figure 51 Cone geometry and linear mesh 
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Once the parametric space is corrected the high-order mesh can be generated.  

 

The elements near to the cone tip have negative values of 𝐼. Increasing the number of steps used 

to solve the linear elastic problem improve the quality, but they are still invalid elements. Using 

higher order meshes do not solve de problem neither. 

 

Figure 52 Steps followed to correct the parametric space mesh 

Figure 53 High-order p=3 mesh of the cone 

Figure 54 On the left p=3 high-order mesh constructed dividing the deformation in 5 steps. On 
the right, p=5 high-order mesh 
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Refining the mesh still gives low quality elements at the cone tip. This is produced by the 

characteristics of this geometry. If many elements are placed on the tip of the element, the angle 

of these elements would be too small yielding again to low quality elements.  

 

This result, again, points out the importance of a correct nodal distribution for a good quality 

mesh. In these types of geometries, the usage of optimisation methods is compulsory for 

obtaining valid meshes. 

  

Figure 55 Refine high-order p=3 mesh 
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6. Applications 

High-order methods make use of high-order curved meshes to compute physical problems, with 

a higher accuracy than linear meshes for the same number of elements. 

Making use of a test problem, the high-order meshes created for the sphere are analysed and 

compared with the initial linear mesh. 

The source term is selected so that the analytical solution is 

 𝑢(𝑥, 𝑦) = exp(𝛼 𝑠𝑖𝑛(𝑎𝑥 + 𝑐𝑦 + 𝑒𝑧) + 𝛽 𝑐𝑜𝑠(𝑏𝑥 + 𝑑𝑦 + 𝑓𝑧))  (64) 

with 𝛼 = 0.1, 𝛽 = 0.3, 𝑎 = 5.1, 𝑏 = 4.3, 𝑐 = −6.2, 𝑑 = 3.4, 𝑒 = 1.8 and 𝑓 = 1.7 . Dirichlet 

boundary conditions, corresponding to the analytical solution, are imposed. 

The problem is solved for meshes from 𝑝 = 1 to 𝑝 = 5. The results obtained by solving the 

problem, making use of the finite element method, are compared with the result given by the 

analytical equation (64). The accuracy of the results is meshed using the L2 norm. 

 

It can be seen a reduction of the error, beginning with an initial error of 11.49% for the linear 

mesh and finishing with a 0.1% error for the 𝑝 = 5 mesh. Notice the logarithmic scale. This is 

consistent with the exposed in [15]. 

The high-order method used in this test is discontinuous Galerkin DG. In this method, the 

continuity of the temperature field does not have to be satisfied at the boundaries of the 

elements. The continuity increases as the error diminishes. This can be observed in Figure 57 that 

shows  the temperature field on the sphere boundary for different order meshes.  

Figure 56 L2 norm for different degree meshes 
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For the linear and quadratic meshes the discontinuity along the elements’ edges can be seen at 

first sight, while for the 𝑝 = 5 mesh, a smooth temperature distribution has been achieved. 

 

 

 

 

  

𝑝 = 1 𝑝 = 2 

𝑝 = 5 𝑝 = 3 

Figure 57 Temperature on the sphere surface for different degree meshes 
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7. Conclusions 

The development of a procedure for treating degenerated and periodic surfaces, and the 

implementation of this process into a linear elastic method for the generation of high-order 

curved meshes, have been described. The quality of the elements on the resulting meshes was 

analysed using the scaled Jacobian. 

The process begins with the detection of the type of surface to be meshed. When a degenerated 

surface is detected, the elements laying on the degenerated edge have to be found.  Then the 

parametric space mesh is corrected making use of the collapsed quadrilateral elements, 

explained above. For trimmed surfaces, the collapsed quadrilateral elements are again changed 

by regular quadrilateral elements. This step is needed to solve a linear elastic problem in the 

parametric space. After solving this problem, regular quadrilateral elements are substituted again 

for collapsed quadrilateral elements and the meshing process continues with the 3D mesh 

deformation. 

In a similar way, when the mesh is periodic the parametric space mesh has to be corrected before 

solving the 3D elastic problem for generating the high-order mesh. 

The implementation was tested by creating several meshes. The geometries contained different 

combinations of periodicity and degeneration. The proposed process was able to mesh all of 

them. The quality of the meshes has been related to the high-order nodes distribution and the 

amount of deformation. Degenerated and periodic elements behaved in a similar manner to the 

rest of the elements, in terms of quality.  

Low quality elements produced by large deformations, can be corrected using a multistep 

deformation process. The distortion caused by the location of high-order nodes on the NURBS 

surface, needs to be addressed in the future to improve the quality of the meshes created with 

this method.  
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8. Future work 

The high-order nodal distribution has been proved to be of great importance in the quality of the 

curved elements.  A new method to project the high-order nodes, from the linear elements to 

their final location on the NURBS surface, that could reduce the distortion of the curve elements 

would improve the quality of the final mesh. 

Other possible approach is to implement an optimisation algorithm to relocate the nodes on 

those elements with a quality under a preestablished value. 

The refinement of the algorithms created during this project could, potentially, reduce the mesh 

generation time.  
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