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Abstract 

An algorithm to fit regression models aimed at predicted the average 

responses beyond a conditional quantile level is presented. This procedure is 

implemented in a case study of insured drivers covering almost 10,000. The 

aim is to predict the expected yearly distance driven above the posted speed 

limits as a function of driving patterns such as total distance, urban and night 

percent driven. Gender and age are also controlled. Results are analyzed for 

the median and the top decile. The conclusions provide evidence of factors 

influencing speed limit violations for risky drivers and they are interesting to 

price motor insurance and implement road safety policies. The efficiency of 

the algorithm to fit tail expectation regression is compared to quantile 

regression. Computational time doubles for tail expectation regression 

compared to quantile regression. Standard errors are estimated via bootstrap 

methods. Further considerations regarding in-sample predictive performance 

are discussed. In particular, further restrictions should be imposed in the 

model specification to avoid prediction outside the plausible range. 

Keywords: Telematics; quantile regression; insurance; tail value-at-risk; 

traffic safety. 
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1. Introduction 

The analysis of data collected from vehicles in motion is an emerging area in transportation 

research. The reason for its growing interest is the possibility to obtain safety improvements 

on the road and to develop new ways to calculate motor insurance prices. The aim of this 

paper is to propose new models for risk analysis. We present an algorithm that allows 

adjusting regression models for the tail expectation that are a natural generalization of 

quantile regression models. Unlike the classical linear model, which finds the effects of 

covariates on the mean of a response variable, quantile regression identifies the effects on 

the quantile of the response. Tail expectation regressions model conditional average 

responses above a given conditional quantile. In our case study, we show that quantile 

regression identifies risky drivers by modelling quantiles of distance driven yearly above 

the posted speed limits. The quantile order is fixed at high levels, such as 95%. We denote 

as cτ the quantile at the level τ (τ between 0 and 1) of a variable response Y. By definition, 

the probability that Y is greater or equal to cτ is equal to τ. Quantiles are used in areas such 

as finance, insurance and risk analysis, where they are usually referred to as τ – Value at 

Risk (𝑉𝑎𝑅τ). Another risk measure is the Expected Shortfall (ESτ) also known as 

Conditional Tail Expectation (CTEτ) or Tail Value at Risk (𝑇𝑉𝑎𝑅τ). It is defined as: 

𝑇𝑉𝑎𝑅τ(𝑌) = 𝐸(𝑌|𝑌 > 𝑐τ). (1) 

Quantile regression and tail expectation regression specify 𝑉𝑎𝑅ττ and 𝑇𝑉𝑎𝑅τ, respectively, 

as a linear combination of regressors.  

2. Methodology 

The starting point for this work is quantile regression. Quantile regression is an extension of 

the linear regression that is especially interesting when the response variable has 

asymmetry, for instance when there is a substantial difference between the conditional 

mean and the conditional median. As it is widely known, the median is robust to the 

presence of outliers, while the mean is not. Koenker and Bassett (1978) proposed an 

optimization framework to fit quantile regressions. Here, a new procedure to estimate the 

tail expectation model is presented and it is implemented in open source software R. 

A classical linear regression model is represented as follows: 

𝑌𝑖   =  β0 + β1𝑋1𝑖 + β2𝑋2𝑖 … β𝑘𝑋𝑘𝑖 + ε𝑖, (2) 

where Yi  is the response variable  for the ith individual (i = 1, ... , n), Xji represents the 

value of the ith observation of explanatory variable j (j = 1, ... , k) and βj  is the jth parameter. 

The ith linear predictor is defined as β0 + β1𝑋1𝑖 + β2𝑋2𝑖 … β𝑘𝑋𝑘𝑖. The error term, εi, is the 

part of the response variable that cannot be explained by the covariates. Parameter β0 is 
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known as the intercept and it is usually included in the model, so that it can be assumed that 

the error term has expectation equal to zero. Model (1) is usually estimated by ordinary 

least squares (OLS), i.e. by minimizing the sum of squared residuals: 

β̂ = 𝑎𝑟𝑔 min
β

∑ 𝑓𝑖(β)𝑛
𝑖 = 1 , (3) 

where fi(β) = (Yi- Xiβ)2  represents the difference between the observed response and the 

linear predictor.  

Quantile regression assumes that the quantile at level τ of the response equals a linear 

combination of the regressors: 

𝑉𝑎𝑅τ(𝑌𝑖|𝑋𝑗1, … , 𝑋𝑗𝑖) =  β0
τ + β1

τ𝑋1𝑖 + β2
τ𝑋2𝑖 + ⋯ + β𝑘

τ 𝑋𝑘𝑖. (4) 

Coefficient estimates are obtained as follows (see Koenker and Bassett, 1979; Koenker and 

Machado 1999): 

βτ  ̂ =  𝑎𝑟𝑔 min
β

∑ [ρ𝑖
τ(𝑌𝑖   −  𝑋𝑖𝑗β𝑗)𝑛

𝑖=1 ].  (5) 

where ρi
τ represents a loss function of the quantile, which is equal to τ when Yi - Xiβ is 

greater or equal than 0 and τ-1, otherwise. The standard deviation of the estimated 

coefficients can be calculated following the bootstrap method (Chernick, 2011; Hestenberg, 

2011).  

The specification of tail expectation regression is defined as: 

𝑇𝑉𝑎𝑅τ(𝑌𝑖|𝑋𝑗1, … , 𝑋𝑗𝑖) =  β0
τ + β1

τ𝑋1𝑖 + β2
τ𝑋2𝑖 + ⋯ + β𝑘

τ 𝑋𝑘𝑖. (6) 

Acerbi and Szekely (2014) recently proposed a loss function to estimate the conditional tail 

expectation using the quantile. Despite developing this method theoretically, these authors 

did not consider a linear predictor. In the field of risk analysis, databases are large. This is 

the reason why we focus studying the optimization underlying the estimation procedure is 

of outmost interest. Computational time remains a challenge. 

3. Data 

Information about different characteristics of 9,614 car drivers was collected during 2010 

by an insurance company, using a telematics device. Driving data measure patterns of 

vehicles in motion such as distance driven, vehicle speed, time of the day, and zone (urban 

versus nonurban). For privacy reasons, GPS localization data are not recorded. A definition 

of the variables is presented in Table 1. Drivers are aged between 18 and 35 years, because 

the insurance company offered a pay-as-you drive motor policy only to young drivers. 

Boucher et al. (2017) studied the transformation of the risk factors with the same dataset; 

Ayuso et al.(2016a, 2016b) compared the driving patterns between male and female 
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drivers; Guillen et al. (2019) proposed new methods to calculate the price of motor 

insurance. Pitarque et al. (2019) used quantile regression to analyse risk of having an 

accident. 

Table 1. Definition of the variables in the insurance dataset (9,614 observations in 2010). 

Variable Description 

Toler_km Total number of kilometres driven exceeding the posted limit 

lnKm Logarithm of the total of kilometres driven 

P_urban Percentage of kilometres driven in urban areas 

P_night Percentage of kilometres driven during the night 

Age Age of the driver at 1st of January, 2010 

Male Gender of the driver (1 = male, 0 = female) 

A descriptive analysis of the data is presented in Table 2. Skewness equal to 3.64 is one of 

the most relevant features of total distance driven above the posted speed limits during one 

year. This means that while most drivers have low levels of excess speeding, a few of them 

present large values. However, it is necessary to consider total driving distance, urban 

driving and night driving to extract conclusions. 

Table 2. Descriptive statistics in the insurance dataset (9,614 observations in 2010).  

 Mean Median Minimum Maximum Standard 

deviation 

Skewness 

Toler_km 1398.21 689.23 0.00 23500.19 1995.37 3.64 

lnKm 9.27 9.37 -0.37 10.96 0.75 -1.87 

P_urban 26.29 23.39 0.00 100.00 14.18 1.03 

P_night 7.02 5.31 0.00 78.56 6.13 1.68 

Age 24.78 24.63 18.11 35.00 2.82 0.11 

4. Results 

A simple quantile regression with only one explanatory variable is adjusted to model the 

percentage of kilometres driven above the speed limit with τ = 0.9 as a function of the 

percentage of kilometres driven in urban areas. The tail expectation regression is also fitted. 

Parameter estimates are not displayed for brevity. The results are shown graphically in 
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Figure 1. Quantile regression at the 0.9 level indicates that when there is an increase of 1% 

in  the percentage of kilometres driven in urban areas, the Value at Risk of the percentage 

of kilometres driven above the speed limit decreases by 0.35% and the average beyond the 

quantile level decreases 52 basis points.  

 
Figure 1. Graph of the relation between the percentage of kilometres driven above the speed limit and the 

percentage of kilometres driven in urban areas in the insurance dataset. Blue line represents a 90% quantile 

regression line and red line represents the a 90%  tail expectation regression. 

In the multivariate case, the total number of kilometres driven above the speed limit as the 

response variable is analysed for quantile levels τ = 0.5 (median) and τ = 0.9 (upper decile). 

A linear regression model is also estimated to compare the coefficient estimates.  

Coefficient and standard deviation estimates are calculated using the quantreg package of R 

(Koencker et al., 2019). Standard errors were computed from 3.000 replications with 

samples of the same length as the original sample with replacement, so that a comparison 

between models can be analyzed. Table 3 presents results for the linear regression, the 

quantile regression and the tail expectation regression together with the goodness-of-fit 

statistic. As in the univariate case extrapolation of the linear specifications can produce 

abnormalities such as negative predictions or values of the conditional tail expectation 

lower than its corresponding quantile level. A summary is reported in Table 4. 
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Table 3. Models results of linear regression (OLS), quantile regression (VaR) and tail 

expectation regression (TVaR) for quantile levels τ = 0.5 and τ = 0.9 in the insurance dataset. In 

parenthesis, the standard errors of the estimated coefficients. 

Variable OLS VaR0.5 TVaR0.5 VaR0.9 TVaR0.9 

Intercept 
-8082.51 

(309.95) 

-4496.53 

(186.02) 

-11708.92 

(843.57) 

-6418.11 

(742.98) 

-14068.39 

(3505.13) 

lnKm 
1064.51 

(26.51) 

597.60 

(19.32) 

1588.38 

(86.59) 

1074.66 

(64.46) 

2229.62 

(364.14) 

P_urban 
-21.87 

(1.39) 

-9.19 

(0.62) 

-39.72 

(2.16) 

-39.59 

(2.34) 

-86.08 

(7.14) 

P_night 
7.54 

(2.93) 

5.41 

(1.82) 

11.99 

(6.10) 

21.76 

(9.80) 

26.56 

(19.21) 

Age 
-1.13 

(6.26) 

-2.56 

(3.26) 

0.96 

(11.09) 

5.16 

(15.24) 

7.71 

(37.13) 

Male 
328.01 

(35.89) 

206.76 

(19.01) 

528.84 

(66.51) 

574.08 

(103.97) 

913.63 

(223.48) 

R2 0.25 0.14 0.17 0.20 0.49 

Table 4. Percentage of cases where the predicted TVaR  is lower than the predicted VaR and 

percentage of cases where the predicted TVaR is negative in the insurance database. Two 

quantile levels are considered τ = 0.5 and τ = 0.9. 

% TVaR0.5 < VaR0.5 8.20% 

% TVaR0.5 < 0 7.41% 

% TVaR0.9 < VaR0.9 6.48% 

% TVaR0.9 < 0 3.60% 

The implementation of a routine to estimate the coefficients for the tail expectation 

regression can be compared with the VaR regression computation. An evaluation of 

computational time is presented in Table 5. The difference between TVaR regression and 

VaR regression is about double time both for the parameter estimates and the standard 

error. In both cases, the parameter estimates are obtained in less than 0.2 seconds for our 

working sample of almost 10 thousand cases and six coefficients. The most relevant result 

56



Albert Pitarque, Montserrat Guillen 

  

  

is the time needed to compute the standard errors, which is quite low given the number of 

replicates. The quantile level did not affect computational time required. 

Table 5. Computational time comparison in our case study. 

Output generated Computational time 

Estimation of the VaR coefficients 0.088 seconds 

Estimation of the standard deviation of the VaR coefficients 2.618 minutes 

Estimation of the ES coefficients 0.175 seconds 

Estimation of the standard deviation of the ES coefficients 5.410 minutes 

5. Conclusions 

An innovative method that generalizes quantile regression in order to study risky drivers 

was implemented. The study was done using a database containing approximately 10,000 

observations, which contain a highly skewed response variable. This is a typical feature of 

risk analysis problem settings. In the case of the bivariate regression, the results show that 

the percentage of kilometres driven in urban areas influences the risk of exceed speed 

limits. In particular, each additional percent point driven in an urban area reduces the 

highest decile of the percentage of distance driven above the speed limits by 0,35%  This 

decrease is emphasized in the case of the tail expectation where an increase of 1% in the 

percentage of kilometres driven in urban areas reduces 52 basis points the expected 

percentage of kilometres driven above the speed limit, for those drivers that are in the top 

decile. 

In the multivariate case similar conclusions are drawn from quantile regression and tail 

expectation regression for quantile levels 0.5 and 0.9. Some problems arose when applying 

the models for an “in-sample” prediction exercise. In a few cases, the tail expectation was 

lower than the value provided by the quantile, or even negative. This could be a result of 

the simplicity of the linear specification and further research should be carried out to 

develop possible solutions to this issue. Despite those problems, the computational time of 

the estimation procedure to obtain the coefficient estimates is  low, so the routine for the 

tail expectation regression that was created here is not excessively slow. The computational 

time for the standard errors is also relatively low, taking into account that the bootstrap 

method iterates the estimation in a large number of sample replicates. 

For future studies, other methods to calculate the standard errors of the coefficient estimates 

should be investigated so that computational effort does not increase too much with sample 

size. Specially with the bootstrap method, there are currently several possible alternatives 
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that seem suitable to our problem. Another area for further analysis is larger datasets and 

tuning the parameters of the bootstrap method to estimate coefficients and standard errors 

in a reasonable computational time window. 
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