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Abstract  9 

Air mass flow determination is one of the main variables on the control of internal 10 

combustion engines. Effectiveness of intake air systems is evaluated through the 11 

volumetric efficiency coefficient. Intake air systems characterization by means of 12 

physical models needs either significant amount of input data or notable calculation 13 

times. Because of these drawbacks, empirical approaches are often used by means of 14 

black-box models based on Artificial Neural Networks. As alternative to the standard 15 

gradient descendent method an adaptive learning algorithm is developed based on the 16 

increase of hidden layer weight update speed. The results presented in this paper 17 

show that the proposed adaptive learning method performs with higher learning speed, 18 

reduced computational resources and lower network complexities. A parametric study 19 

of several Multiple Layer Perceptron (MLP) networks is carried out with the variation of 20 

the number of epochs, number of hidden neurons, momentum coefficient and learning 21 

algorithm. The training and validation data are obtained from steady state tests carried 22 

out in an automotive turbocharged diesel engine. 23 
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1. Introduction 27 

Pollutant emissions in automotive diesel engines have become as a major subject of 28 

research. Combustion process is affected by the in-cylinder trapped mass and gas 29 

composition. Stratified combustion of diesel engines makes necessary a well 30 

performance of the air mass flow system. Excess of air plays an important role in the 31 

combustion efficiency since it speeds up the mixing of fuel with air and ensures 32 

complete combustion of fuel. If sufficient oxygen is not provided to the engine during 33 

combustion process, complete conversion of carbon and hydrogen is impossible to 34 

attain and that leads to particulates, hydrocarbon and carbon monoxide resulting in 35 

increased exhaust emissions [1]. If the excess air ratio is too high, the peak in-cylinder 36 

pressure is also relatively high, which has a negative influence on the reliability of the 37 

engine [2]. Higher excess of air also carries high NOx emissions and excessive 38 

exhaust gas temperature [3]. 39 

The performance of the air mass flow system is determined by the volumetric 40 

efficiency. Pressure drops, gas temperature increase trough heat transfer from the 41 

intake pipes and cylinder walls, gas inertia, overlapping valve and pressure waves at 42 

the intake manifold can difficult the cylinder filling [4, 5, 6]. 43 

Many authors have studied and modelled the intake air systems with the application of 44 

thermo-fluid dynamic governing equations. 1D wave action models are the most 45 

popular physical models in the intake air system analysis because of the tradeoff 46 

between accuracy and computational cost [7, 8, 9, 10, 11]. 47 

However, the thermo and fluid-dynamic processes occurring in an internal combustion 48 

engine are so nonlinear and complex that it is usually impossible to model all of them. 49 

Modeling based on solving real physical equations governing the engine, although 50 

accurate, is too time consuming and not suitable for a control purpose [12]. In addition, 51 

the presence of controllers and actuators has increased in the intake engine systems. 52 

A variety of new diesel engine air-path actuators, such as variable geometry 53 
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turbocharger (VGT), two-stage turbo-charging system, single- and dual-loop exhaust 54 

gas recirculation (EGR), throttling valves at the intake and exhaust for EGR 55 

enhancement and variable valve actuation (VVA), have been recently developed for 56 

providing the authorities of controlling the intake manifold gas conditions in both 57 

steady-state and transient operations [13]. The added systems involve an important 58 

increase of physical model complexity, being necessary a lot of data about such 59 

systems performance and therefore making difficult their accurate implementation. 60 

Because of the important non linarites of the thermo and fluid dynamic engine process, 61 

several researchers have developed empirical models based on Artificial Neural 62 

Networks (ANNs) [14, 15]. Volumetric efficiency is commonly modelled empirically as a 63 

black-box function of a combination of engine speed, intake manifold pressure, intake 64 

manifold temperature, and exhaust manifold pressure [16]. ANNs have become an 65 

important tool in empirical engine process modelling. The Multiple Layer Perceptron 66 

(MLP) performs as one of the most popular ANNs architectures in order to implement 67 

such models [17, 18, 19]. 68 

In this paper a novel gradient descendent ANN model is proposed with the aim to 69 

improve the learning process. An adaptive learning rate between network layers is 70 

applied in order to increase the learning speed of the network. The outcome of the 71 

proposed model is compared to the standard ANNs models showing the improvement 72 

obtained with the use of the adaptive model.  73 

The paper is described as follows. Section 2 details the experimental set up carried out 74 

at the laboratory showing the features of the measurement equipment. In section 3 the 75 

learning speed limitation of backpropagated ANNs is described. An adaptive learning 76 

scheme is proposed as solution of learning speed reduction problem. The methodology 77 

of ANNs implementation is included in this section. In section 4 results are shown 78 

pointing out the optimal ANN architecture and its prediction capacity. Finally, in section 79 

5 conclusions are presented.  80 
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2. Experimental methodology 81 

2.1. Test cell description 82 

Experiments with an in line 4 cylinder, 1.6 l, turbocharged HSDI diesel engine were 83 

conducted. In Table 1 the features of the engine are shown. The engine was run under 84 

steady state conditions at different operating points that covered the whole engine 85 

torque and speed range. The engine layout is shown in Fig. 1, where the engine 86 

operative variables used for the ANN model implementation are marked with blue 87 

arrows in the point of measurement. 88 

Relevant variables needed for the volumetric model implementation were recorded, 89 

such as: engine speed, torque, intake manifold pressure, turbine inlet pressure, intake 90 

manifold temperature, EGR rate and air mass flow rate. In order to assess the 91 

volumetric efficiency according to real engine conditions, EGR was performed 92 

depending on the engine load of the different running points.  93 

Engine speed was measured through a KYSTLER encoder with an error of 0.02 Crank 94 

Angle Degree (CAD). Engine torque was measured by the dynamometer SCHENK 95 

DYNAS3, with an error of 0.1%. Temperatures were measured with thermocouples 96 

type K of TCA brand, with a measurement error of 2%. Gas pressure was measured 97 

with KISTLER pressure sensors with an error of 0.3%. Air mass flow rate was 98 

measured by means of a hot wire anemometer of Sensycon brand, with a 99 

measurement error of 1%. 100 

Horiba Mexa 7100 DEGR was used to measure O2, CO2, CO, using a non-dispersive 101 

infrared analyzer. The error of the gas analyzer is in the range of 2%. Both intake and 102 

exhaust CO2 measurements were recorded in order to obtain the LP EGR rates. The 103 

EGR rate is defined as: 104 

XEGR= 
ṁegr

ṁair+ṁegr
       [1] 105 
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where ṁegr and ṁair are the mass flow of EGR gas and fresh air, respectively. Eq. [1] 106 

can be expressed as a function of a specific pollutant concentration, like CO2, 107 

measured in the intake and exhaust manifold: 108 

XEGR= 
[CO2 INT]-[CO2 ATM]

[CO2 EXH]-[CO2 ATM]
       [2] 109 

where [CO2 INT], [CO2 ATM] and [CO2 EXH] are the carbon dioxide concentration in the 110 

intake, ambient and exhaust place respectively. 111 

2.2. Experimental data 112 

71 running points were conducted at different steady engine load conditions of the 113 

operative range of an EURO V engine. Fig. 2 shows the EGR rate as a function of the  114 

engine speed and torque, where each circle corresponds to an engine operating point. 115 

The range of the operation points was as follows: 1250 to 3750 rpm for engine speed, 116 

5 to 317 Nm for engine torque, and 0% to 38% for LP EGR rates. Engine speed 117 

Variables at each steady point were obtained from the average of 300 points sampled 118 

at 10 Hz. Volumetric efficiency is calculated from: 119 

ηvol=
ṁtotal

Pintake
R∙Tintake

 ∙Vcyl∙ z ∙
n

2
 
       [3] 120 

where Pintake and Tintake are inlet manifold pressure and temperature respectively, R is 121 

the ideal gas constant, Vcyl is the cylinder displacement, z is the number of cylinders 122 

and 𝑛 is the engine speed. ṁtotalis the total mass flow rate coming into the cylinders, 123 

calculated as:  124 

ṁtotal=ṁair+ṁegr       [4] 125 

ṁtotal= ṁair+ ṁair∙
XEGR

1-XEGR
      [5] 126 

ṁtotal= 
ṁair

1-XEGR
         [6] 127 
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3. ANN model 128 

3.1 ANNs basics  129 

An artificial neural network, usually called neural network, is a mathematical model 130 

which is inspired by the structure and functional aspects of a biological nervous 131 

system. They have been shown to exhibit many abilities, such as learning, 132 

generalization and abstraction [20]. The most common network structure used in ANNs 133 

is the Multiple Layer Perceptron. MLP network has an input layer, followed by one or 134 

more hidden layers and an output layer. Each layer has some artificial neurons (nodes) 135 

with their biases (b), a weight matrix (w), and an output vector. A layer of neurons that 136 

receives inputs directly from outside the network is called input layer. A layer that 137 

produces the output of network is called output layer and layers that are between the 138 

input and output layers are called hidden layers [21]. Fig. 3 shows the general layout of 139 

an ANN. In the case of a network with one hidden layer the network output is computed 140 

according to the following equation, [22, 23]. 141 

f(xin_1,xin_2 ,…,xin_n) = θ(b21+ ∑ w2m∙θ(b1j+ ∑ w1i∙xi
n
i=1 )M

m=1 )       [7] 142 

Where xin are the input variables of the model. θ is the neural function, b are the biases 143 

of neurons, w are the synaptic weights, x are the outputs of the neural functions, n is 144 

the number of input variables of the model and M the number of hidden neurons. 145 

The use of Back Propagation (BP) learning method to train feedforward neural 146 

networks has been proven to provide powerful tools for analyzing real world and 147 

complex problems [24]. However, the BP learning method has some shortcomings 148 

such as slow learning speed associated with computational complexity [24, 25]. BP 149 

learning is based on the backward propagation of the updating synaptic weights from 150 

the output to the input layer. In this paper a descendent gradient BP with momentum is 151 



7 

implemented as learning algorithm. Logistic function is used as neuron. Weights are 152 

updated according to delta rule with momentum [26]: 153 

∆wij
t+1= - α∙

∂E

∂wij
+ μ∙∆wij

t       [8] 154 

where ∆wij
t+1 is the increase of the ij weight, α the learning rate, μ is the momentum 155 

coefficient, ∆wij
tis the last weight update and E is the network error function defined as: 156 

E= 
1

2
∙ ∑ (yp-op)

2P
p=1          [9] 157 

where 𝑃 is the number of input/output patterns, yp is the target value of the p-pattern 158 

and op is the predicted output value of the p-pattern. Delta rule can be obtained as a 159 

combination of Eq. [8] and [9]. The final expression, without including the momentum 160 

term, is shown in Eq. [10]. It shows the general equation of descendent gradient with 161 

backpropagation in a neural network. Its representation in vector notation for a network 162 

of  𝐿 layers is expressed as: 163 

[∆w]𝑙  = - α∙ ∑ (yp-op)∙ (∏ [FWk]
p

k=L
k=𝑙+1

𝑙<L

) ⊙ ([
∂θ

∂z
]

𝑙

p
∙ [x]𝑙

p)
p=P
p=1  [10] 164 

⊙ represents the element-wise product of matrices, also known as Hadamard or 165 

Schurd product. 166 

𝑙 is the layer under study in the network. 167 

[FWk] is the matrix obtained at the layer k as: 168 

[FWk] =  [
∂θ

∂z
]

k
∙ [𝑤]𝑘      [11] 169 

[
∂θ

∂z
]
k

is the derivate of each neuron function with respect to the net neuron input z, 170 

calculated at the layer k.  171 

z is the weighted neuron input. For a neuron i of the layer k it is defined as: 172 

𝑧𝑖 = bi+ ∑ wij∙xj
n
j=1       [12] 173 
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Where 𝑏𝑖 is the bias of the neuron 𝑖, 𝑤𝑖𝑗 are the weights that connects the neuron 𝑖 with 174 

the 𝑛 neurons of the previous layer and 𝑥𝑗 is the output of the previous neurons. In the 175 

case of the first hidden layer 𝑥𝑗 is the input variable of the network. 176 

The product operator multiplies all [FWk] matrices of layers located between the layer 177 

𝑙 + 1 until the output layer. In case of 𝑙 = 𝐿 is defined as the unit. 178 

The last term of the Eq. [10], [
∂θ

∂z
]

𝑙
∙ [x]𝑙, belongs to the layer that is being updated. 179 

Neuron biases are calculated by the application of the gradient descendent rule too. 180 

The expression of biases, Eq. [13], is quite similar than the weights, Eq. [10]. 181 

[∆b]𝑙  = - α∙ ∑ (yp-op)∙ (∏ [FWk]
p

k=L
k=𝑙+1

l<L

) ⊙ ([
∂θ

∂z
]

𝑙

p
)              

p=P
p=1   [13] 182 

3.2 Adaptive learning 183 

The learning schema shown in the previous section entails different learning speeds 184 

between layers. As the number of hidden layers increases, the term [FWk] reduces 185 

because of the logistic neural function derivate is bounded between 0-0.2. This fact 186 

drives to the phenomenon named as “vanishing gradient problem” [27, 28]. Vanishing 187 

produces lower update velocities in the weights that belong to shallow layers (layers 188 

near to the network input). As solution to the different learning speed is proposed an 189 

adaptive learning rate fit by means of the layer depth in the network. In this paper, 190 

allusions to this adaptive learning rate are referred to as ADDELE (ADaptive DEpth 191 

LEarning). The aim of this learning is to make equal the learning speed between layers 192 

through the application of different learning rates. Eq. [10] can be written as: 193 

[∆w]𝑙  = - α∙ ∑ (yp-op)∙O(hL-𝑙)
p

⊙ (O(h)p∙ [x]𝑙
p)

p=P
p=1   [14] 194 

Where 𝑂(ℎ𝐿−𝑙) is the function that represents the product operator and 𝑂(ℎ) the 
∂θ

∂z
 195 

term of the Eq. [10]. The delta weight function at the hidden layers is expressed as:.  196 

∆wl=    O(hL-𝑙+1)       [15] 197 
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In case of the output layer,∙O(hL-𝑙)
p

= 1, the delta weight expression is reduced to the 198 

following equation: 199 

∆wL=    O(h)       [16] 200 

Despite the terms [FWk]
p
 are not bounded, they usually take values lower than unit, 201 

producing the aforementioned vanishing problem at the hidden layers. In order to 202 

reduce vanishing, the weight update function of the hidden layer 𝑙, Eq. [15], is forced to 203 

have the same degree as the weight function of the output layer, Eq. [16]. 204 

As O(hL-𝑙+1)
p
 is defined by each pattern, the minimum function of the whole patterns is 205 

calculated and used as reference function for the adaptive learning calculation: 206 

O(hL-𝑙+1)= min (∏ [FWk]
p

k=L
k=l+1

l<L

∙ [
∂θ

∂z
]

𝑙

p
) , p= {0,1,2…P} [17] 207 

Once O(hL−𝑙+1) is defined by the network layer, the new learning rate coefficient is 208 

calculated at each hidden layer: 209 

𝛼𝐿∙O(hL-𝑙+1)
1

L-𝑙+1= 𝛼𝑙∙O(hL-𝑙+1)     [18] 210 

 α𝑙=αL∙
O(hL−𝑙+1)

1
L-𝑙+1

O(hL-𝑙+1)
       [19] 211 

𝛼𝑙= 𝛼𝐿∙ O(hL-𝑙+1)
𝑙-L

L-𝑙+1       [20] 212 

where αL is the learning rate of the output layer and α𝑙 is the learning rate of the hidden 213 

layer that is under study. 214 

As O(hL-𝑙+1) is a function obtained from the minimum of patterns, it can drive, in some 215 

conditions, to excessive learning rates. It was observed that too high learning rates, 𝛼𝑙, 216 

can be obtained at the first epochs of learning due to the sensibility to the random 217 

weight initialization. In order to avoid instabilities the 𝛼𝑙 is bounded to 0.5. The learning 218 

rate limitation was defined by trial and error procedure. The same procedure can be 219 
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applied in bias update correction obtaining the same mathematical expression than Eq. 220 

[20]. 221 

3.3 ANN methodology 222 

In this study a one hidden layer, feed-forward, neural network is implemented. Logistic 223 

function is used as neuron activation function at the hidden and output layers.  224 

80% of the whole experimental data is used for training the ANN and the other 20% is 225 

used for model validation. The division of data in subsets is randomly obtained 226 

according to cross random validation technique [29].  227 

The input model variables are: engine speed, torque, intake manifold pressure, turbine 228 

inlet pressure and intake manifold temperature. Model input variables were selected 229 

according to the bibliography available in the field of volumetric efficiency modelling 230 

applied to internal combustion engines [15, 17, 23, 30]. Volumetric efficiency is defined 231 

as output variable. Variables are normalized according to min-max scaling: 232 

xn=
xi-min(x)

max(x)-min(x)
        [21] 233 

where xn is the normalized value of xi in the range of [0,1]. 234 

Training process is analyzed by means of the R2 coefficient [31], defined as: 235 

R2=1 - 
∑ (yp-op)

2p=P
p=1

∑ (yp- �̅�p)
2p=P

p=1

       [22] 236 

where yp is the target value, op is the network output of each pattern and �̅�p is the 237 

mean of target values.  238 

Validation process is evaluated by the maximum relative error of the 95% of validation 239 

samples, denoted as “error 95” in this paper. In addition the Mean Absolute Percentage 240 

Error (MAPE) is included as validation coefficient [32] and it is defined as: 241 

MAPE= 
1

P
∙ ∑ |

yp-op

yp
| ∙100

p=P
P=1      [23] 242 
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However, the analysis of validation only by means of MAPE can drive to ANNs with 243 

outliers that would be neglected by this coefficient. 244 

ANNs architecture selection is obtained from a parametric study of one hidden layer 245 

neural network. The number of hidden neurons covers the range between 6 to 16. The 246 

momentum coefficient, Eq. [8], is varied between 0.7 to 0.9. Fixed and adaptive 247 

(ADDELE) learning is included as a variable of the parametric study. The risk of 248 

overfitting, [33, 34], mainly at high number of epochs as well as high number of 249 

neurons, makes necessary to include the early stop technique [35, 36]. The number of 250 

training epochs is included in the study in the range of 200 to 15000 epochs. Because 251 

of the important computational cost, all available combinations are not tested and the 252 

number of different ANNs architectures proposed was 504. 253 

The cross validation procedure for each ANN architecture, defined by the parametric 254 

study, is repeated 40 times to reduce random initialization issues. Learning and 255 

validation performance is obtained from the average of the 40 ANNs set. Therefore, the 256 

total number of ANNs implemented in this parametric study is 20160. 257 

4.  Results and discussion 258 

ANNs learning performance is represented in Fig. 4 (a-c), for the momentum 259 

coefficients of 0.7, 0.8 and 0.9 respectively. Each chart shows the learning capacity 260 

(R2) of both fixed and ADDELE algorithm. R2 is calculated from the average of the 40 261 

repetitions of each ANN. The scatter of points is interpolated according to the Delaunay 262 

triangulation by means of matplotlib programming libraries [37]. The colorbar legend 263 

represents the R2 value at the interpolated surface. 264 

The result of the interpolation shows two different surfaces per chart, where the top 265 

surface always belongs to the ADDELE schema. This fact points out the higher 266 

learning prediction of ADDELE compared to the fixed learning. The learning R2 evolves 267 

along the epochs number as increasing monotonic function. The increase in the 268 

learning outcome with the number of epochs is notable mainly when the variation of 269 
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epochs is done in the low number of epochs zone, as observed by regarding the slope 270 

of the surface between number of epochs and R2. The increase of R2 with the number 271 

of hidden neurons is noticed too, but with lower impact than the number of epochs. 272 

Regarding the difference between figures due to the momentum term, the higher the 273 

momentum is the better the learning performs. Higher values of R2, as well as higher 274 

learning speeds , are obtained with the increase of momentum. 275 

However, the ANNs performance cannot be analyzed only by means of the learning 276 

outcome. Both learning and validation performance have to be analyzed together. Fig. 277 

5 shows the relation between learning and validation of the whole ANN set formed by 278 

the 504 different networks. Each mark in the chart represents the average learning R2 279 

and error 95 (Error 95) of the 40 repeated networks. According to the figure, as it was 280 

shown in Fig. 4, it is obtained higher learning R2 with ADDELE, compared to the fixed 281 

learning. ADDELE increases the velocity of learning and therefore, for the same 282 

network architecture, ANNs with higher R2 are obtained. In addition to the learning 283 

speed it is remarkable the tendency observed between learning and validation 284 

performance. As the learning capacity increases the validation error (error 95) 285 

increases too. This tendency is the proof of the overfitting phenomenon, where 286 

accuracy and generalization are faced. This outcome matches the conclusions 287 

obtained by several researchers [38, 39]. 288 

The ANNs selection is a tradeoff between the learning and validation performance. In 289 

order to carry out this selection an objective function that relates both coefficients, R2 290 

and error 95, is defined. The objective function, named as Normalized Error Function 291 

(NEF), represents the global error of both learning and validation. NEF is calculated by 292 

each ANN (denoted as NEF_i ) that has a R2 higher than 0.75 with the expression:  293 

NEF_i=CR2∙(1-Rnorm_i
2 )+(1-CR2)∙Enorm_i

95 ,𝑅𝑖 2 ≥ 0.75   [24] 294 

where CR2is the weight of the learning term, bounded between 0 – 1. Rnorm_i
2 and Enorm_i

95  295 

are the normalized 𝑅2 and error 95 respectively by each ANN: 296 
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Rnorm_i
2 =

Ri
2-min([R2])

max([R2])-min([R2])
       [25] 297 

Enorm_i
95 =

Ei
95−min ([E95])

max([E95])- min([E95])
      [26] 298 

where Ri
2 is the determination coefficient by ANN and [R2] is the vector of Ri

2 that are 299 

higher than 0.75. Ei
95 is the error 95 of each ANN validation and [E95] is a vector of Ei

95 300 

of ANNs whose Ri
2 are higher than 0.75. 301 

The CR2 coefficient of the objective function NEF is fitted to 0.4 in order to give more 302 

importance to the generalization capacity of neural networks. 303 

Table 2 shows the best 5 ANNs architectures of the whole simulated set. The first two 304 

ANNs at the top of that table show similar NEF values. The first one with the ADDELE 305 

schema while the second with the fixed algorithm. Despite similar global performance 306 

is achieved, the number of hidden neurons as well as the number of learning epochs 307 

needed in case of ADDELE is significantly lower than the fixed learning. Learning 308 

calculation time depends on the number of training epochs as well as on the number of 309 

mathematical operations performed per epoch. The calculation time is proportional to 310 

the number of learning epochs because of the calculation time by epoch remains 311 

constant during the training process. Regarding the mathematical operations by epoch, 312 

they can be divided in sums, products and neuron function evaluations. According to 313 

the backpropagation learning, Eq.[10] and Eq.[13], the weights and biases update 314 

requires firstly an evaluation of the network output and then, the application of the 315 

chain rule from the output layer to the network layer where the weight under update is 316 

placed. 317 

 The number of operations to evaluate the output of an ANN model is defined by the 318 

number of hidden layers, neurons and model input variables. In the case of one hidden 319 

layer neural networks with one neuron at the output layer the number of both sums and 320 

multiplications is as follows: 321 

𝜒+ = 𝜒𝑥 = (𝑛 + 1) ∙ 𝑀      [27] 322 



14 

Where 𝜒+ and 𝜒𝑥 represent the number of sums and multiplications, n is the number of 323 

inputs to the network and M is the number of hidden neurons. The number of neurons 324 

function evaluations is: 325 

𝜒𝑁 = 𝑀 + 1        [28] 326 

Where 𝜒𝑁 is the number of neuron function evaluations. From the sum of the three kind 327 

of operations is obtained: 328 

𝜒𝑇 = 2 ∙ (𝑛 + 1) ∙ 𝑀 + (𝑀 + 1)     [29] 329 

Where 𝜒𝑇 represents the total number of operations for network output calculation. As 330 

the number of inputs is not modified between the different ANN performed in this 331 

paper, the total number of operations can be expressed as a function only dependent 332 

on the number of hidden neurons. In the particular case of six input variables the total 333 

number of operations for network output evaluation can be expressed as: 334 

𝜒𝑇 = 15 ∙ 𝑀 + 1       [30] 335 

The number of operations per layer carried out by the application of the chain rule to 336 

update the weights and biases in a one hidden layer network can be expressed as: 337 

𝜒𝑥 =  ∑ (𝐿 − 𝑙 + 2) ∙ 𝑀𝑙−1 ∙ 𝑀𝑙
𝑙=𝐿−1
𝑙=1    Weights.  [31] 338 

𝜒𝑥 =  ∑ (𝐿 − 𝑙 + 1) ∙ 𝑀𝑙
𝑙=𝐿−1
𝑙=1     Biases.  [32] 339 

Where 𝐿 is the total number of layers in the network (input, hidden and output), 𝑙 is the 340 

layer number where the weight is placed, 𝑀 is the number of neurons in a layer. The 341 

learning rate used for weight velocity update control is included in the above 342 

expressions. In the case presented in this paper a six input neurons networks is 343 

propose, so the total number of operations according to the chain rule required by the 344 

backpropagation technique is: 345 

𝜒𝑇 = 32 ∙ 𝑀        [33] 346 
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The above expression is slightly higher in case of the ADDELE learning application, 347 

because of the learning rate (α) has to be calculated by layer at each training epoch. 348 

The number of multiplications in the case of ADDELE learning is: 349 

𝜒𝑇 = 32 ∙ 𝑀 + 2       [34] 350 

Considering the Eq [30], Eq [33] and Eq [34] the total amount of operations is as 351 

follows. 352 

𝜒learning = 47 ∙ 𝑀 + 1  Fixed learning   [35] 353 

𝜒learning = 47 ∙ 𝑀 + 3  ADDELE learning  [36] 354 

In case of neural networks with 6 hidden neurons or more the above expressions can 355 

be approximated, with an error lower than 1%, to: 356 

𝜒learning = 47 ∙ 𝑀      [37] 357 

Therefore, the calculation time can be considered as proportional to the number of 358 

hidden neurons and epochs. 359 

Comparing the two best ANN, placed at the top of the Table 2, the total reduction of 360 

time by using the ADDELE algorithm is 57%. With the ADDELE algorithm the number 361 

of learning epochs has been reduced to the half and the number of hidden neurons 362 

have been reduced in two. So, taking into account the lower complexity and calculation 363 

time of the ADDELE ANN, it is selected as the optimal network. 364 

The performance of the selected network, 6-12-1 topology, momentum=0.9, learning 365 

epochs=6000 with ADDELE algorithm, is shown in Fig. 6, 7, 8 and 9. The best fixed 366 

ANN learning (6-14-1 topology, momentum=0.9, learning epochs=12000) is included in 367 

the charts too. 368 

Fig. 6 is a goodness of fit chart where network outcomes of the training data are plotted 369 

against the respective target values. Dotted lines represent the 5% relative error above 370 

and below the measured value. Higher dispersion is observed in case of fixed learning 371 

schema, which shows higher amount of points that are closer or outside the boundary 372 
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of the 5% relative error. In Fig. 7 the validation goodness of fit is depicted. The network 373 

makes predictions of data that have not been shown during the learning process and 374 

therefore the accuracy of prediction reduces. The coefficient of determination in the 375 

case of validation data is 0.3 for both fixed and adaptive learning algorithms. The 376 

reason of this low fitting value is twofold: on one hand, is caused by the low range of 377 

the target variable since the volumetric efficiency is constrained to values between 378 

0.73-1 with high density of points (50% of total data) between 0.8-0.9. The lower the 379 

natural variability is the higher the accuracy of a model has to be in order to obtain high 380 

determination coefficients. On the other hand, the complex non linear relation between 381 

the input variables and the volumetric efficiency makes difficult the validation process. 382 

For getting higher determination coefficients the data sample size for the training 383 

process would need to be significantly higher, which for internal combustion engines 384 

experimental testing involves high cost on laboratory measurements. 385 

Fig. 8 shows the distribution of the relative error in ANN validation. The histogram error 386 

roughly meets the characteristic normal distribution in both learning schemas: fixed and 387 

ADDELE. Anomalous pattern is observed at the positive tail edge of the normal 388 

distribution, where the error is the highest and reaches the 25%. The worst 389 

performance of both models occurs in the same experimental point. The poor 390 

prediction at this point is observed in the different repetitions of ANNs. These two facts 391 

drive to consider this experimental point as an outlier because the high prediction error 392 

has no dependency on the model features. The prediction error without considering the 393 

aforementioned outlier is shown in Fig. 9 where the error pattern fits better to the 394 

normal distribution and the maximum error is reduced to around 20%. 395 

5. Conclusions 396 

The application of a neural network method to predict the volumetric efficiency in a 397 

diesel engine has been examined. Experimental data of an engine map were used as 398 

input variables. Measurement points were carried out at steady state conditions.  399 
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A cross validation methodology based on the minimization of an objective function was 400 

proposed. The learning and validation performance was analyzed together.  401 

An adaptive learning algorithm based on the application of different learning rates 402 

between network layers as a way to enhance the learning network speed was 403 

proposed. The results of the optimization procedure showed that ADDELE 404 

architectures performs with higher learning speed without sacrificing prediction capacity 405 

than fixed networks.  406 

Despite vanishing phenomenon has higher impact on deep neural networks, the effect 407 

on learning speed is remarkable even in the architecture of one hidden layer analyzed 408 

in this paper. The learning acceleration through ADDELE drives to lower computational 409 

costs and lower network complexities. 410 

The maximum generalization error of the neural network, according to the validation 411 

analysis, was bounded to around 13% with an average relative error of 5.5%. The 412 

learning coefficient of determination was 85%. 413 
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Appendix A. tables. 543 

Table 1 544 

Engine specifications. 545 

  

Cylinder number In-line 4 

Bore x stroke (mm) 80 x 79.5 

Displacement (cm3) 1598 

Compression ratio  15.4:1 

Valve number 16 

Valvetrain Double cam shaft 
over head 

Fuel delivery system Common rail. Direct 
injection. 

EGR system HP and LP cooled 
EGR 

Intake boosting Turbocharger with 
VGT 

Maximum power 
(kW/rpm) 

96/4000 

Maximum torque 
(Nm/rpm) 

320/1750 

Torque at maximum 
power (Nm) 

315 

Specific power 
(kW/liter) 

60.86 

  546 
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Table 2. 547 

Parametric study outcome. Ranking of ANNs by NEF 548 

Hidden 

neurons 

Momentum Epochs R2 Error 95 

(%) 

MAPE 

(%) 

Learning 

algorithm 

NEF 

12 0.90 6000 0.85 12.92 5.52 ADDELE  0.333 

14 0.90 12000 0.79 12.01 4.95 FIXED  0.340 

14 0.70 9000 0.77 11.68 5.06 ADDELE 0.351 

8 0.80 15000 0.80 12.26 5.29 ADDELE 0.356 

16 0.90 7000 0.89 13.86 5.8 ADDELE 0.360 

  549 
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Appendix B. Figures. 550 

 551 

Figure 1. Engine layout. In capital letters the main components of the engine are 552 

indicated. In italics and pointed with blue arrows the measured operative engine 553 

variables used as model inputs are denoted. 554 

  555 
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556 
Figure 2. Engine map for engine speed torque and EGR rate. 557 

  558 
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 559 

 560 

Figure 3. ANN general layout.  561 
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 562 

Figure 4(a). ANNs learning outcome for moment term of 0.7.  563 
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 564 

Figure 4(b). ANNs learning outcome for moment term of 0.8.  565 
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 566 

Figure 4(c). ANNs learning outcome for moment term of 0.9.  567 
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 568 

Figure 5. Parametric study. Validation (error 95) and learning (R2) of the different 569 

ANNs. In red circles adaptive learning (ADDELE), in blue triangles fixed learning.  570 
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 571 

Figure 6. Predicted and measured volumetric efficiency. In red circles ADDELE 572 

algorithm. In blue triangles fixed learning schema.  573 
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 574 

Figure 7. Predicted and measured volumetric efficiency validation data. In red circles 575 

ADDELE algorithm. In blue triangles fixed learning schema. 576 

  577 
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 578 

Figure 8. Validation relative error distribution of the whole validation sample. In red 579 

ADDELE algorithm. In blue fixed learning.  580 
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 581 

Figure 9. Validation relative error distribution without including the outlier value. In red 582 

ADDELE algorithm. In blue fixed learning.  583 
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