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Abstract. 

Litter size and mortality are the reproductive traits with most important effects on the sows 

productivity (number of piglets weaned alive per sow and per year) which is one the main factors 

affecting the cost-effective in pig farms. This especially important in Iberian pig with a lower 

prolificacy than other commercial pigs and with an increase of the substitution of many 

traditional producers by intensive management farms. In white pig, maternal breeding schemes 

are based on a pyramidal scheme. Nucleus herds supply genetically improved breeding stock to 

multiplier herds, which disseminate genetic gain by supplying hybrid (crosses) stock to 

commercial herds. Conventionally, data from crosses (CB) were not used in the genetic 

evaluations of purebreds (CCPS), but in the last years, some white pig breeding programs have 

included it for increasing the purebred (PB) breeding values accuracy. On another hand, 

reproductive traits have traditionally been genetic selected by the Best Linear Unbiased 

Prediction method (BLUP) based on two sources of information: phenotypic records and 

pedigree information. Nowadays, DNA information such as a large number of single nucleotide 

polymorphisms (SNPs) along genome are available (genotypes). Recently, this information has 

been jointly used with the phenotypes and the pedigree through the single step Genomic BLUP 

(ssGBLUP) method allowing an increase on the accuracy of the breeding value compared to the 

traditional BLUP. In Iberian pigs, neither of this, CCPS or SSGBLUP have been applied. The aim of 

this study was to evaluate the inclusion of crossbred information as well as inclusion of genomic 

data in the genetic evaluation of a pyramidal Iberian pig maternal breeding scheme. A total of 

20468 phenotypic records for litter size (total born –TB, number of born alive –NBA and stillborn 

–SB) from 4753 sows of five farms in Badajoz (Spain), owned by Inga Food S.A., were used. Sows 

were purebred Iberian pigs from two pure lines, Entrepelado (EE) and Retinto (RR), as well as its 

reciprocal crosses Entrepelado x Retinto (ER) and Retinto x Entrepelado (RE). The pedigree 

included 5533 animals and went back 3 generations. From the population under study, 1.435 

animals were genotyped for 63072 markers with Illumina Porcine HD Array 70K from samples of 

blood and tail tissue. Exploratory data analyses were performed on phenotypic records as well 

as on genomic data in order to detect outliers. Finally, 20152 phenotypic records from 4717 

sows and 1114 genotypes remained to be used for the posterior analysis. Two different models 

using the BLUP and SSBLUP methods were fitted; (1) A trivariate multi trait model with TB, NBA 

and SB traits analyzed for each pure breed line (MT); and (2) a Multi breed model (MB) based 

on a trivariate model in which the records of a trait of each pure breed line and its crosses were 

assumed as different traits.  So, MT model were separately performed for TB, NBA and SB traits, 
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respectively. Genetic parameters estimation was carried out by Bayesian Analysis with Gibbs 

Sampling. Both evaluations and their approaches were validated by implementing five-fold cross 

validation (CV). Prediction ability was measured by computing the correlation between the 

corrected phenotype and the estimated breeding value of the validation population and as the 

root mean squared error (RMSE). Owing to computational time, the CV was computed using the 

restricted maximum likelihood method (REML). The estimates of heritability for the three traits 

by BLUP and ssGBLUP were similar between models. The heritability of TB and NBA in EE was 

always greater than RR. There were no differences for SB. The additive genetic correlation 

between TB and NBA was high and superior than the correlations between SB and TB and 

between SB and NBA. The correlations for TB and NBA between PB and CB were higher 

compared to SB. Predictive ability measured as Pearson's correlation was higher for SB followed 

by TB and NBA. MT models and especially ssGBLUP showed better predictive ability for the three 

traits in EE, while MB models did so for RR. No major differences in terms of RMSE were 

observed between characters using BLUP and ssGBLUP MT, although a small advantage was 

found for genomic models. EE presented lower RMSE than RR. The inclusion of genomic data 

allows to slightly reduce the bias in the prediction of (G)EBV, except for NBA in EE and SB in RR 

under MB models. 

 

Keywords: Iberian pig, genomic selection, BLUP, Single Step, GBLUP, litter size. 
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Resumen. 

El tamaño de camada y la mortalidad son los caracteres reproductivos con mayor efecto sobre 

la productividad de las cerdas (número de lechones destetados vivos por cerda y año), siendo 

este uno de los principales factores que condicionan la rentabilidad en las granjas porcinas. Esto 

es especialmente importante en el cerdo ibérico, con una prolificidad menor que otros cerdos 

comerciales y con un aumento de la sustitución de productores tradicionales a granjas de 

manejo intensivo. En el cerdo blanco, la mejora de líneas maternas se basa en un esquema 

piramidal. Los núcleos de selección suministran reproductores genéticamente mejorados a las 

granjas multiplicadores, que difunden la ganancia genética a través del suministro de híbridas 

(cruces) a granjas comerciales. Clásicamente, los datos de cruces (CB) no se han utilizado en las 

evaluaciones genéticas de las líneas puras (CCPS). Sin embargo, en los últimos años, algunos 

esquemas de mejora de cerdo blanco lo han incluido para aumentar la precisión de los valores 

de mejora de las líneas puras (PB). Por otro lado, los caracteres reproductivos han sido 

tradicionalmente seleccionados genéticamente usando el método BLUP (mejor predictor lineal 

insesgado) basado en dos fuentes de información: registros fenotípicos e información de pedigrí. 

No obstante, hoy en día está disponible la información genómica, como por ejemplo los 

polimorfismos de un solo nucleótido (SNP) a lo largo del genoma (genotipos). Recientemente, 

esta información se ha utilizado juntamente con los fenotipos y el pedigrí a través del método 

BLUP genómico de un solo paso (ssGBLUP) que permite un aumento en la precisión del valor de 

mejora en comparación con el BLUP tradicional. En cerdo ibérico, ninguno de estos métodos, 

CCPS o SSGBLUP se han aplicado. El objetivo de este estudio fue evaluar la inclusión de datos de 

ibéricos cruzados, así como la inclusión de datos genómicos en la evaluación genética de un 

esquema piramidal materno de cerdo ibérico. Un total de 20.468 registros fenotípicos para el 

tamaño de camada (nacidos totales –TB, numero de nacidos vivos –NBA y nacidos muertos –TB) 

de 4.753 cerdas de cinco granjas en Badajoz (España), propiedad de Inga Food S.A., fueron 

usados. Las cerdas ibéricas correspondieron a dos líneas puras, Entrepelado (EE) y Retinto (RR), 

así como a sus cruces recíprocos Entrepelado x Retinto (ER) y Retinto x Entrepelado (RE). El 

pedigrí incluyó 5.533 animales y se remontó a 3 generaciones. De la población en estudio, 1.435 

animales fueron genotipados para 63.072 marcadores con Illumina Porcine HD Array 70K a partir 

de muestras de sangre y tejido de la cola. Los análisis de datos exploratorios se realizaron en 

registros fenotípicos, así como en datos genómicos para detectar posibles “outliers”. 

Finalmente, 20.152 registros fenotípicos de 4.717 cerdas y 1.114 genotipos quedaron para el 

análisis posterior. Se evaluaron los métodos BLUP y ssGBLUP ajustando en cada uno de ellos dos 
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modelos diferentes. (1) Un modelo multi caracter trivariante con los caracteres TB, NBA y SB 

analizados para cada línea pura (MT); y (2) un modelo multi raza (MB) basado en un modelo 

trivariado en el que los registros de un caracter de cada línea de raza pura y sus cruces se 

asumieron como caracteres diferentes. Por tanto, el modelo MB se analizó por separado para 

los caracteres TB, NBA y SB, respectivamente. La estimación de los parámetros genéticos se 

realizó mediante análisis bayesiano con muestreo de Gibbs. Ambas evaluaciones y modelos se 

validaron mediante la implementación de cinco grupos de validación cruzada (CV). La capacidad 

de predicción se midió calculando la correlación entre el fenotipo corregido y el valor genético 

estimado de la población de validación y como la raíz del error cuadrático medio (RMSE). Debido 

al tiempo de cálculo, la CV se calculó utilizando el método de máxima verosimilitud restringida 

(REML). Las estimaciones de heredabilidad para los tres caracteres por BLUP y ssGBLUP fueron 

similares entre modelos. La heredabilidad de TB y NBA en EE fue siempre mayor que RR. No 

hubo diferencias para SB. La correlación genética aditiva entre TB y NBA fue alta y superior a las 

correlaciones entre SB y TB y entre SB y NBA. Las correlaciones de TB y NBA entre PB y CB fueron 

mayores respecto a SB. La capacidad predictiva medida como la correlación de Pearson fue 

mayor para SB seguida de TB y NBA. Los modelos MT y especialmente ssGBLUP mostraron una 

mejor capacidad de predicción para los tres caracteres en EE, mientras que los modelos MB lo 

hicieron para RR. No se observaron grandes diferencias en términos de RMSE entre caracteres 

mediante BLUP y ssGBLUP MT, aunque se encontró una pequeña ventaja de los modelos 

genómicos. EE presento RMSE menores que RR. La inclusión de datos genómicos permite reducir 

ligeramente el sesgo en la predicción de (G)EBV, excepto para NBA en EE y SB en RR bajo los 

modelos MB. 

 

Palabras clave:  cerdo ibérico, selección genómica, BLUP, Single Step GBLUP, tamaño de 

camada. 
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Resum. 

La Prolificitat i la mortalitat són els caràcters reproductius amb major efecte sobre la 

productivitat de les truges (nombre de garrins deslletats vius per truja i any), sent aquest un dels 

principals factors que condicionen la rendibilitat en les granges porcines. Això és especialment 

important en el porc ibèric amb una prolificidad menor que altres porcs comercials i amb un 

augment de la substitució de productors tradicionals a granges de maneig intensiu. En el porc 

blanc, la millora de línies maternes es basa en un esquema piramidal. Els nuclis de selecció 

subministren reproductors genèticament millorats a les granges multiplicadors, que difonen el 

guany genètic a través del subministrament d'híbrides (creus) a granges comercials. 

Clàssicament, les dades de creus (CB) no s'han utilitzat en les avaluacions genètiques de les línies 

pures (CCPS). No obstant això, en els últims anys, alguns esquemes de millora de porc blanc ho 

han inclòs per a augmentar la precisió dels valors de millora de les línies pura (PB). D'altra banda, 

els caràcters reproductius han sigut tradicionalment seleccionats genèticament usant el mètode 

BLUP (més ben predictor lineal insesgado) basat en dues fonts d'informació: registres fenotípics 

i informació de pedigrí. No obstant això, hui dia està disponible informació genòmica, com per 

exemple polimorfismes d'un sol nucleòtid (SNP) al llarg del genoma (genotips). Recentment, 

aquesta informació s'ha utilitzat juntament amb els fenotips i el pedigrí a través del mètode 

BLUP genómico d'un sol pas (ssGBLUP) que permet un augment en la precisió del valor de 

reproducció en comparació amb el BLUP tradicional. En porc ibèric, cap d'aquests nous mètodes, 

CCPS o SSGBLUP s'han aplicat. L'objectiu d'aquest estudi va ser avaluar la inclusió de dades 

d'ibèrics croats, així com la inclusió de dades genómicos en l'avaluació genètica d'un esquema 

piramidal matern de porc ibèric. Un total de 20.468 registres fenotípics per a la grandària de la 

ventrada (nascuts totals –TB, numere de nascuts vius –NBA i nascuts morts –TB) de 4.753 truges 

de cinc granges a Badajoz (Espanya), propietat de Inga Food S. a., van ser usats. Les truges 

ibèriques van correspondre a dues línies pures, Entrepelado (EE) i Retinto (RR), així com als seus 

encreuaments recíprocs Entrepelado x Retinto (ER) i Retinto x Entrepelado (RE). El pedigrí va 

incloure 5.533 animals i es va remuntar a 3 generacions. De la població en estudi, 1.435 animals 

van ser genotipats per a 63.072 marcadors amb Illumina Porcine HD Array 70K de mostres de 

sang i teixit de la cua. Les anàlisis de dades exploratòries es van realitzar en registres fenotípics, 

així com en dades genómicos per a detectar possibles “outliers”. Finalment, 20.152 registres 

fenotípics de 4.717 truges i 1.114 genotips van quedar per a l'anàlisi posterior. Es van avaluar 

els mètodes BLUP i SSBLUP ajustant en cadascun d'ells dos models diferents. (1) Un model 

multicaracter trivariante amb els caràcters TB, NBA i SB analitzats per a cada línia de raça pura 
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(MT); i (2) un model multi raça (MB) basat en un model trivariado en el qual els registres d'un 

caràcter de cada línia de raça pura i les seues creus es van assumir com a caràcters diferents. 

Per tant, el model MB es va analitzar per separat per als caràcters TB, NBA i SB, respectivament. 

L'estimació dels paràmetres genètics es va realitzar mitjançant anàlisi bayesiana amb mostreig 

de Gibbs. Totes dues avaluacions i models es van validar mitjançant la implementació de cinc 

grups de validació creuada (CV). La capacitat de predicció es va mesurar calculant la correlació 

entre el fenotip corregit i el valor genètic estimat de la població de validació i com l'arrel de 

l'error mig quadràtic (RMSE). A causa del temps de càlcul, el CV es va calcular utilitzant el mètode 

de màxima versemblança restringida (REML). Les estimacions de heredabilidad per als tres 

caràcters per BLUP i ssGBLUP van ser similars entre models. La heredabilidad de TB i NBA en EE 

va anar sempre major que RR. No va haver-hi diferències per a SB. La correlació genètica additiva 

entre TB i NBA va ser alta i superior a les correlacions entre SB i TB i entre SB i NBA. Les 

correlaciones TB i NBA entre PB i CB van ser majors respecte a SB. La capacitat predictiva mesura 

com la correlació de Pearson va ser major per a SB seguida de TB i NBA. Els models MT i 

especialment ssGBLUP van mostrar una millor capacitat de predicció per als tres caràcters en 

EE, mentre que els models MB ho van fer per a RR. No es van observar grans diferències en 

termes de RMSE entre caràcters mitjançant BLUP i ssGBLUP MT, encara que es va trobar un 

xicotet avantatge dels models genómicos. EE presente RMSE menors que RR. La inclusió de 

dades genómicos permet reduir lleugerament el biaix en la predicció de (G)EBV, excepte per a 

NBA en EE i SB en RR sota els models MB. 

 

Paraules clau: porc ibèric, selecció genòmica, BLUP, Single Step GBLUP, prolificitat. 
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1. Introduction. 

1.1. Iberian pig: brief history and general description.  

The Iberian pig (sus scrofa) is a native breed derived from one of the three ancestral 

domestic pig populations of the Iberian Peninsula, and is considered as one of the most 

important of the Mediterranean-type (Silió, 2000). Iberian pig production has always been 

deeply bounded to the Mediterranean ecosystem (Lopez-Bote, 1998) and is widely recognized 

as one of the porcine populations with the highest meat quality (Noguera et al., 2019). In fact, 

the most typical and well-known product that represents Iberian pigs is the bellota ham, which 

acts as flagships of the increasing export market (Nieto et al. 2019).  

For centuries and until 1960s, the population was characterized for a large effective size, 

recording 567,000 sows in the official census of 1955 (Silió, 2000). But during the second half of 

the 20th century various factors such as urban development, intensification of animal 

production, outbreak of the African swine fever, lowered value of animal fats and the massive 

introduction of more efficient foreign breeds have drastically reduced the Iberian pig population 

(Lopez-Bote, 1998; Silió, 2000; Fabuel et al., 2004). Nevertheless, during late 1980s started the 

Iberian pig breeding recovery based on the revalorization of its products as well as on the social 

awareness for preservation of the genetic heritage and the natural habitat associated to this 

breed (Nieto et al., 2019). At the same time, the Spanish Association of Iberian Pig Breeders 

(AECERIBER) requested a normative to protect pure Iberian pig production, leading to the 

creation of the Iberian Pig Herd Book in 1987 (Ministerio de Medio Ambiente y Medio Rural y 

Marino, 2011; Ministerio de Medio Ambiente y Medio Rural y Marino & Instituto Nacional de 

Investigación y Tecnología Agraria y Alimentaria, 2011). As a result, in November 2019, 11,938 

sires and 347,664 were registered in the censuses of the Iberian breed (Ministerio de Agricultura 

Pesca y Alimentación, 2019). 

Nowadays, the Iberian Pig Herd Book recognizes five strains (Entrepelado, Retinto, 

Torbiscal, Lampiño and Manchado de Jabugo) with remarkable phenotypic and genetic 

differences among them (Fabuel et al., 2004; Ibáñez-Escriche et al., 2014; Noguera & Ibáñez-

Escriche, 2017). However, all these strains are characterized by their adaptation to tough 

environmental conditions in the South West of the Iberian Peninsula, their adipogenic nature 

(Lopez-Bote, 1998; Ibáñez-Escriche et al., 2014) and its low productivity (prolificacy and growth) 

in comparison with commercial (white) pigs (Silió et al., 2001; Barea et al., 2011). 
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1.2. Current situation: production systems and breeding programs.  

The traditional system of Iberian pig production takes place in the dehesas in 

southwestern Spain, producing heavy pigs destined as high quality dry-cured meat products 

(Silió, 2000). Pigs are bred under extensive (or semi-extensive) management up to 95-105 kg of 

body weight and 8-20 months of age, followed by a finishing period or montanera in which are 

fed with acorn and pastures up to 140-160 kg of body weight and 12 and 24 months of age 

(Lopez-Bote, 1998). However, this production system coexists with the intensive management 

farms whose implementation has been greatly increased in the last years (Noguera et al., 2019). 

This transformation involved the use of foreign and more efficient breeds such as Duroc Jersey 

(DU) in order to improve traits related to feed efficiency and noble pieces yield (Noguera & 

Ibáñez-Escriche, 2017). As regards this, a normative that regulates the Iberian pig products 

forces the sow to be Iberian, whereas the boar could be either Iberian, DU or hybrid between 

these two breeds (BOE-A-2014-318, 2014).  

Since 1992, AECERIBER is also responsible for the breeding program in Iberian Pig 

populations based on the records of the farms involved. For this purpose a Commission on 

Genetic Improvement with animals geneticist, representatives of farmers, industry and national 

public institutions related to pig production was established (Asociación Española de Criadores 

de Cerdo Ibérico, 2011). The main goal of the selection program is to improve rentability of farms 

accounting on different production systems (Ministerio de Medio Ambiente y Medio Rural y 

Marino & INIA, 2011). To reach this aim, Iberian pigs are being evaluated for productive and 

reproductive traits by different indexes of selection (Table 1). Involved farms have to share their 

records to build the Maternal Index whereas participation in Piglet Index and Complete Cycle 

Index is optional, and for the last one depends on the available infrastructure (Ministerio de 

Medio Ambiente y Medio Rural y Marino & INIA, 2011). Nevertheless, those establishments 

which are interested in participating in the Complete Cycle Index are able to provide their 

destined-to-slaughter animals (males without reproductive function) to the  Complete Cycle Test 

carried out by AECERIBER (Ministerio de Medio Ambiente y Medio Rural y Marino & INIA, 2011). 

These tests are performed in a private farm or in public testing centers such as The Animal 

Selection and Reproduction Center of Badajoz (CENSYRA) of the Extremadura joint, the 

Hontalbilla Pig Testing Center of the Agrarian Technological Institute from Castilla y León and 

the Pig Selection Center of the Institute of Agrifood Research and Technology (IRTA) in Monells 

(Ministerio de Medio Ambiente y Medio Rural y Marino & INIA, 2011). The National Institute of 

Agrifood Research (INIA) is responsible for program supervising and technical counselling as well 
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as accomplishment and test supervision (Ministerio de Medio Ambiente y Medio Rural y Marino 

& INIA, 2011). 

 

Table 1. Selection objectives, selection criteria, traits under study and statistical models used in 
the breeding program in Iberian pig (Ministerio de Medio Ambiente y Medio Rural y Marino & 
INIA, 2011).  

Selection objectives 
Selection 
criteria 

Traits under 
study 

Statistical 
models 

General reproductive ability through 
prolificacy and maternal ability. 

Maternal Index  
NBA1; NPW2; 

LWW3. 
MT-BLUP8. 

    
Growth rate at early months of age. Piglet Index BW70-90

4 ST-BLUP9. 
    

Carcass quality as noble cuts yield 
Complete Cycle 

Index 
HW%5; SW%6; 

%loin7. 
MT-BLUP8. 

1NBA: number of born alive; 2NPW: number of piglets weaned per dam; 3LWW: litter weight at weaning: 4BW70-90: 
individual bodyweight between 70-90 days; 5HW%: ham weight relative to carcass weight; 6SW%: shoulder weight 
relative to carcass weight; 7%loin: fat-free loin proportion; 8MT: multi trait animal model Best linear Unbiased 
Prediction; 9ST: single trait animal model Best Linear Unbiased Prediction.  

 

The genetic improvement of litter size (LS) in Iberian pig has been limited in comparison 

to  maternal white pig populations in which has been widely improved through the past years 

(Fernández et al., 2008; Noguera and Ibáñez-Escriche, 2017). Until 2011, the reproductive traits 

were not included in the Iberian pig breeding program carried out by AECERIBER (Corral et al., 

2010; Ministerio de Medio Ambiente y Medio Rural y Marino & INIA, 2011). Nevertheless, this 

system has also some flaws since within line selective breeding is not systematically performed 

for the farmers and is difficult to separate the herd effect from the genetic effect in the 

evaluations due the low connections between herds. Another point is that the potential 

advantages of crossbreeding, such as heterosis and line complementarity, have not been 

exploited either (Ibáñez-Escriche et al., 2016). The introduction of a maternal crossbreeding 

system like that used for modern pig production in commercial populations (Visscher et al., 

2000) could significantly improve the efficiency of Iberian pig production. In consequence, two 

non-exclusive strategies leading the genetic improvement of LS could be considered: (1) within-

line selection and (2) appropriate crossbreeding scheme between lines to exploit heterosis 

(Noguera & Ibáñez-Escriche, 2017; Noguera et al., 2019).  

1.2.1. Within line/breed selection scheme. 

Although genetic evaluations provided for AECERIBER are used for some Iberian pig 

farms to select individuals, other farms perform its own genetic evaluations. The most common 
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strategy applied in Iberian pigs breeding programs for reproductive traits by big companies as 

well as by small farms is the within line/breed selection scheme without using crosses between 

Iberian strains (Noguera & Ibáñez-Escriche, 2017).  

1.2.2. Pyramidal Scheme. 

Nowadays the 85% of the total Iberian products has its origin on the intensive 

production system (Noguera & Ibáñez-Escriche, 2017). Its products are mainly 50% Iberian which 

means animals are the result of crosses between Iberian sows and DU boars. In this context, 

reproductive efficiency is a limiting factor in the production of Iberian pigs and its improvement 

is essential for its economic profitability (Noguera et al., 2019). A complementary strategy of the 

within line selection to increase the improvement on reproductive traits is using crossbred sows 

in the commercial farms. This pyramidal structure, based on the crossbreeding scheme, has the 

aim of taking advantage of genetic variability within lines and to exploit heterosis and line 

complementarity (Figure 1) (Ibáñez-Escriche et al., 2014; Noguera & Ibáñez-Escriche, 2017). 

Nevertheless, one of the main limitations of this strategy is that selection is carried out on 

purebred nucleus lines with high health conditions and their performance can be a poor 

predictor of the crossbred offspring raised in commercial farms with different environmental 

conditions (Dekkers, 2007; Ibáñez-Escriche et al., 2009; Wientjes & Calus, 2017).  

A simple way of combining performance from purebred animals (PB) with information 

from crossbred relatives (CB) would be considering PB and CB performance as the expression of 

different traits with a genetic correlation among them ὶ  (Wei & Van Der Werf, 1994). The 

genetic regression of CB progeny performance on PB performance is influenced by gene 

frequency and dominance, genotype-environmental interaction ὋὼὉ and different 

management of PB and CB (Wei & Van Der Werf, 1994; Lutaaya et al., 2001). A theory that 

accounts for all additive and dominance (co)variances among all crosses of two pure lines does 

exist (Lo et al., 1995) but is too complex for practical applications (Lutaaya et al., 2001). Thus, to 

overcome these limitations the most advance approximation is a multiple trait approach in 

which records from each line are treated as separated traits (Spilke et al., 1998) leading to the 

implementation of combined crossbred and purebred selection (CCPS) (Wei & Van Der Werf, 

1994):  

◐  ╧♫  ╩╪  ▄  

◐  ╧♫  ╩╪  ▄  

◐  ╧ ♫  ╬  ▄  

[ 1 ] 
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where the vectors ◐ȟ◐  and ◐  contain phenotypic records on breeds A, B and crossbred AB 

animals, respectively; ♫ , ♫  and ♫  are vectors of fixed effects for A and B breeds and CB 

respectively and ▄═, ▄  and ▄  are vectors of residuals for A breed, B breed and CB respectively; 

╪  and  ╪  are vectors of random effects (breeding value) for breed A and B respectively; ╬  is 

the vector of random effects (breeding value) for CB; ╧ and ╩ are incidence matrices that relates 

phenotypic records with fixed and random effects, respectively. This methodology has not been 

applied in Iberian pig because until now a pyramidal breeding system were not implemented. 

Moreover, its traditional extensive production system makes difficult to control the pedigree 

with precision as well to register reproductive data (Fernández et al., 2008). However, its 

implementation in Iberian pig breeding schemes has the potential to meaningfully improve the 

Iberian performance (Ibáñez-Escriche et al., 2014). 

 

 

Figure 1: Typical pyramidal scheme of white pig selection programs adapted to Iberian pig 
(Noguera & Ibáñez-Escriche, 2017).  

 

1.3. Selection: methods to estimate breeding values. 

The breeding value (BV) of an individual can be defined as the sum of the average effects 

of alleles of the genes it carries (at each locus for all loci) which are transmitted to offspring 

(Falconer, 1976). If an animal Ὥ is randomly mated to a number  ὲ of individuals from the 
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population, then its BV is twice the mean deviation of the progeny from the population mean 

(Falconer, 1976): 

ὄὠ  ςz ὉὖὈ [ 2 ] 
  

where ὄὠ is the breeding value for the ὭὸὬ animal and EPD is the expected progeny difference 

(Falconer, 1976). Since only additive effects are inherited from parents to offspring, BV can be 

also expressed as additive genetic value ὥ.  

Prediction of the BVs constitutes a key step in breeding programs (Wang et al., 2018) 

and the type and amount of information available on candidates for selection lead to define the 

method to be employed for their prediction (Mrode, 2005). In consequence, many methods 

have been developed during the last decades to predict or estimate BVs. Desirable criteria for 

evaluations models such as unbiasedness, minimization of variance error of prediction and 

maximization of correlation between predictor and predictand were described by Henderson 

(1975) who defined a method capable of fulfill these criteria (the variance parameter have to be 

the true ones) as Best Linear Unbiased Prediction (BLUP).   

1.3.1. Traditional selection: BLUP.  

Conventional phenotypic selection (mass selection) in livestock has been practiced 

successfully for hundreds of years, but in the last 50 years after the BLUP application 

(Henderson, 1975) the response to selection has increased considerably (Goddard, 2009). The 

BLUP is a technique for estimating random effects and in animal breeding has been mainly used 

for estimating BVs. Its acronym stands for “Best Linear Unbiased Prediction” because maximizes 

the correlation between true and predicted BV or minimized the prediction error variance (PEV), 

its predictors are a linear functions of observations and the realized values for random variable 

(e.g. BVS) and the estimable functions of fixed effects are unbiased (Mrode, 2005). Thus, 

considering a mixed linear model:  

 

◐ ╧♫ ╩╪ ▄ [ 3 ] 
 

where ◐ is the vector of records; ♫ is the vector of fixed effects; ╪ is the vector of breeding 

values; ▄ is the vector of the associated errors; ╧ and ╩ are incidence matrices of  ♫ and ╪; 

Henderson (1963) shown that BLUP can be obtained from a solution to the following equations, 

best known as Mixed Model Equations (MME): 

 

╧╧ᴂ ╧ᴂ╩
╩ᴂ╧ ╩╩ ═

 ♫
╪

 = 
╧ᴂ◐

╩ᴂ◐
 [ 4 ] 

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=129532
http://ecoursesonline.iasri.res.in/mod/page/view.php?id=129527
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where ═  represents the inverse of numerator relationship matrix for all animals, with or 

without records; ♫ is the vector of solutions for fixed effects and ╪ is the vector of solutions for 

random effects (BV). Therefore, BVs are estimated (EBVs) using phenotypes and genetic 

relationships among individuals which are based on pedigree records (Mrode, 2005). 

1.3.2. Genomic Selection: from SNP-BLUP to single step Genomic BLUP. 

Nowadays a third source of information is available to be considered in a breeding 

program (Hayes & Goddard, 2010). The rapid development of DNA technologies has allowed 

having a large number of markers at low cost, being the simplest DNA marker the Single 

Nucleotide Polymorphism (SNP) (Blasco, 2017). Strictly, SNPs are variations in a base at the same 

point in the genome among individuals or between individual’s chromosome pairs (Hayes & 

Goddard, 2010) showing the difference between DNA inherited by two individuals (Legarra et 

al., 2014). SNPs can be associated with many of the genes controlling the economically 

interesting traits, even though the effect of each gene is small (Blasco, 2017). The use of DNA 

markers to quantitative traits as a tool to map quantitative trait loci (QTL) to chromosome 

regions was called Marker Assisted Selection (MAS) (Goddard, 2009). Nevertheless, it was not 

possible to discover enough QTLs to explain a high proportion of the genetic variance in most of 

the traits and MAS was not as successful as was expected (Goddard, 2009; Wang et al., 2018). 

Owing to this limitation, Meuwissen et al. (2001) proposed an approach considering the use of 

all genome-wide markers at once, so that all genetic variance can be explained by them. It is 

assumed that there are always some markers in linkage disequilibrium (LD) with any QTL. Hence,  

sufficient high marker density guarantees near-perfect LD between at least one marker and each 

QTL (Wang et al., 2018). The use of all these genome-wide markers simultaneously considering 

LD between the marker and the QTL to predict BVs is known as genomic selection (GS) 

(Meuwissen et al., 2001; Ibáñez-Escriche et al., 2009; Hayes & Goddard, 2010).  

GS implementation is possible if reference population with both phenotype and 

genotype records exists, which is used to derive prediction equations that predicts genomic 

estimated breeding values (GEBVs) of animals from markers effects (Hayes & Goddard, 2010):  

 

ὋὉὄὠ ὼὫ [ 5 ] 

 

where ὲ is the number of SNP markers; Ὣ is the effect of the Ὥ SNP marker and ὼ is the incidence 

matrix that relates markers’ genotypes to animals. The equations can be used to predict BVs 

from those selection candidates who have marker genotypes but do not have records (Hayes & 
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Goddard, 2010). The main advantage of GS relies on decreasing generation interval and 

increasing accuracy of EBVs (Hayes & Goddard, 2010). However, its accuracy is affected by many 

factors such as sample size, genetic relationships, marker density, heritability and LD between 

SNP and QTL (Wang et al., 2018). Besides, GS approach does not require pedigree recordings 

(Meuwissen et al., 2016). The impact of GS in terms of selection gain will be greater for those 

traits which are either sex limited, expensive or difficult to measure, only measurable after 

slaughter or expressed late in life (Hayes & Goddard, 2010). Hence, in the last years GS has 

become a main tool in dairy cattle, pig and poultry breeding programs (Blasco, 2017).  

In the last years, several methods for deriving prediction equations based on different 

priors assumptions about distributions of SNPs effects as well as considering SNP markers 

individually or by a genotype matrix have been defined (Table 2) (Hayes & Goddard, 2010). One 

of the possible assumptions of the SNP effects is to be normally distributed ▌ͯ ὔπȟ╘„  with 

the same variance across all SNPs and uncorrelated (Blasco, 2017) as in SNP-BLUP, Genomic 

BLUP (GBLUP) or single step Genomic BLUP (ssGBLUP). The advantage of considering marker 

effects normally distributed is its algebraic simplicity (Legarra, 2015). In SNP-BLUP, markers 

effects are estimated individually (Meuwissen et al., 2001; Blasco, 2017) by solving MME 

(Henderson, 1963). The GBLUP is similar to SNP-BLUP but in this case BV are estimated 

simultaneously by applying a genomic relationship matrix for genotyped animals (Blasco, 2017). 

Finally, in ssGBLUP the idea is to replace the pedigree relationships with a matrix that contains 

the genomic relationships for the genotype animals and the pedigree relationships for those 

without genotypic data (Meuwissen et al., 2016).  
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Table 2. Models for implementation of genomic selection according how single nucleotide 
polymorphisms (SNPs) effects are considered and prior assumptions for SNPs effects. 

SNP effect Individually considered Genomic matrix 

Normally distributed SNP-BLUP1 
GBLUP2 

ssGBLUP3 
   
ὸ-distribution Bayes A  
   
Mixed distribution of zero effect 
and ὸ-distribution 

Bayes B  

   
Mixed distribution of zero effect 
and normal distribution  

Bayes C  

   
Double exponential distribution Bayes LASSO4  
   
Mixture of four normal 
distributions 

Bayes R  

1BLUP: Best Linear Unbiased Prediction; 2GBLUP: Genomic Best Linear Unbiased Prediction; 3ssGBLUP: Single Step 
Genomic Best Linear Unbiased Prediction; 4LASSO: Least Absolute Shrinkage and Selection Operator. 

 

There  are also methods assuming that only a fraction (π) of the SNPs have an effect on 

the trait  of interest, therefore, a fraction (1 – π) have no effect which is biologically reasonable 

(Meuwissen et al., 2016). These prior assumptions lead to the application of Bayesian regression 

methods, in which SNPs can have different posterior distributions. Nevertheless, regression 

coefficients do not reflect the weight of each SNP and  these coefficients may vary according to 

the number of SNPs (Blasco, 2017). Several Bayesian procedures named as Bayes Alphabet have 

been developed and characterized by different degrees of shrinkage which depend on the prior 

assumptions (Blasco, 2017). Bayes A assumes prior ὸ-distribution for all SNPs and with the same 

variance each one. Bayes B is similar to Bayes A, but in this case a large number of SNPs are 

considered to have zero effect (Meuwissen et al., 2001). Bayes C is similar to SNP-BLUP, but in 

this case a large number of SNPs are considered to have zero effect (Habier et al., 2011). Bayes 

LASSO assumes prior double exponential distribution for all the SNPs (De Los Campos et al., 

2009). Bayes R consider all SNPs assigned with a mixture of four normal distributions (Erbe et 

al., 2012). Nevertheless, in routinely genomic evaluations the most used are the GBLUP and the 

ssGBLUP methods.  

1.3.2.1. Genomic BLUP. 

The Genomic BLUP (GBLUP) method is very similar to BLUP method, except for the replacement 

of pedigree relationships by the genomic relationships matrix (Meuwissen et al., 2016).  In BLUP 

method EBVs are estimated based on phenotype records and pedigree information whereas in 



24 
 
 
GBLUP method GEBVs are estimated using phenotype records and genomic relationships based 

on genome-wide dense marker data (Meuwissen et al., 2016). GBLUP assumes that SNPs effects 

are normally distributed with the same variance for every SNP (Meuwissen et al., 2016) like in 

SNP-BLUP. GBLUP results are equivalent to SNP-BLUP by solving MME in which GEBV are 

predicted instead of marker effects (Legarra et al., 2014): 

 

╧ᴂ╧ ╧ᴂ╩
╩ᴂ╧ ╩╩ ╖

 ♫
◊

 = 
╧ᴂ◐

╩ᴂ◐
 [ 6 ] 

 

where ♫  is the vector of fixed effects,  ◊ is the vector of (G)EBV and ╖ is the genomic relationship 

matrix, with: 

ὺὥὶ◊ ὤὈὤ [ 7 ] 
 

where ╩ ╜ ╟, being ╜ the matrix of dimensions number of individuals (n) x the number of 

loci (m) that specifies which marker alleles each individual inherited (coded as -1, 0, 1 for the 

homozygote, heterozygote, and other homozygote, respectively) and ╟ contains allele 

frequencies expressed as a difference from 0.5 and multiplied by 2, such that column Ὥ in ╟ is 

ςὴ πȢυ where ὴ is the frequency of the second allele at locus Ὥ (VanRaden, 2008).  

Subtraction of ╟ from ╜ sets mean values of the alleles effects to 0. And Ὀ Ὅz
В

 where 

„  is the variance for marker effects and ὴ and ή are the allele frequencies at the locus Ὥ. 

Therefore:  

ὺὥὶ◊ „╪╖ [ 8 ] 
where:  

╖ ╩╩ ς ρ ὴ  [ 9 ] 

 

Division by ςВρ ὴ  scales ╖ to be analogous to the numerator relationship matrix ═ 

(VanRaden, 2008).  

Therefore, ╖ represents the genomic relationship matrix which can be seen as an 

improved estimator of relationships based on markers instead of pedigrees (Legarra et al., 

2014).  

1.3.2.2. Single step GBLUP.  

One of the main limitations of the above-mentioned methods (SNP-BLUP; GBLUP and Bayesian 

regression methods) is that only genotyped individuals are used. However, in the breeding 

schemes many animals are not genotyped, but their phenotypes can be highly valuable for 
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estimate their own BV or of its relatives. At first, genomic predictions were obtained by 

combining traditional genetic evaluation results with genotypic data (VanRaden, 2008; Vitezica 

et al., 2010). This multiple-step procedure (Hayes et al., 2009; VanRaden et al., 2009) included 

running a regular BLUP animal model evaluation based on pedigree, extracting pseudo-

phenotypes for genotyped animals (e.g., daughter deviations – DD or de-regressed EBV), 

estimating SNP effects using pseudo-data as records by simple sire models and combining 

genomic prediction with parent averages (PA) (VanRaden, 2008; Aguilar et al., 2010; Misztal et 

al., 2013). This method can lead to a lack of information, inaccuracies and biases (Legarra et al., 

2014). First of all, key parameters such as pseudo-observations were difficult to obtain (Legarra 

et al., 2014) and its use may inflate genetic evaluation accuracy when they were computed from 

animals with small progeny numbers (Vitezica et al., 2010). Moreover, most genotyped animals 

have undergone strong selection and the information of a close relative is ignored in the 

genomic prediction as well as in the creation of pseudo-phenotypes and covariances among 

pseudo-phenotypes are not corrected modelled (Legarra et al., 2014). Later, a model capable of 

solving multiple-step issues by blending information between genotyped and non-genotyped 

animals in one step was developed and named Single Step Genomic BLUP (ssGBLUP). The origin 

of the ssGBLUP method was raised based on two different points of view which were developed 

almost simultaneously. Legarra et al. (2009) developed the method as a Bayesian update of the 

relationship matrix whereas Christensen and Lund (2010) developed the method as a tool to 

“impute” phenotypes (Legarra et al., 2014). The result of both developments leaded an 

augmented or extended genomic relationship matrix (╗) for both genotyped and non-

genotyped animals (Legarra et al., 2014): 

╗
═  ═ ═ ═ ═ ═ ╖═ ═    

 ╖═ ═

 ═ ═ ╖

╖
 [ 10 ] 

where subscripts 1 and 2 indicates ungenotyped and genotyped animals respectively; ═ is the 

numerator relationship matrix and ╖ the genomic relationship matrix. The ssGBLUP provides an 

explicit inverse of the  augmented matrix ╗ (Legarra et al., 2014): 

╗  ═
╖  ═

  [ 11 ] 

thus, its application to genomic evaluation is immediate (Legarra et al., 2014) by applying the 

mixed model: 

◐ ╧♫ ╩◊ ▄ [ 12 ] 
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where ◐ is the vector of records; ♫ is the vector of fixed effects; ◊ is the vector of breeding 

values; ▄ is the vector of the associated errors; ╧ and ╩ are incidence matrices of the vectors 

♫ and ◊, respectively, with ὠὥὶό ╗„   and ὠὥὶὩ ╘„ . Then, solutions are obtained by 

solving the MME using ╗ matrix instead of ═ matrix:   

 

╧╧ᴂ ╧ᴂ╩
╩ᴂ╧ ╩╩ ╗

 ♫
◊

 = 
╧ᴂ◐

╩ᴂ◐
 [13] 

 

Although this method is straightforward applied in routinely genetic evaluation, its 

implementation has some issues due to the incompatibilities between ═  and ╖ matrices that 

arises in the different amount of information accounting for changes on allele frequencies 

(Masuda, 2019). To solve this issue, some adjustments should be implemented. First, ╖ should 

be blending as ╖ᶻ ╖  ═  ╘    (usually ɾ π,  ɿ π and ɻ ɼ ρ). Second, 

╖ should be tuning to be scaled to ═ , because in real populations most genotypes are from 

recent generations, but the pedigree comes from long generations. Finally, ╖ and ═  need to 

be scaled in order to achieve the maximum predictive ability in GEBVs for young animals in case 

of having incomplete pedigrees or/and unqualified genotypes (Masuda, 2019).  

1.4. Impact of genomics on crossbreeding schemes  

Despite proving CCPS increase response to selection for CB performance in comparison 

to the classical method of selection on PB performance, its application was limited due to the 

difficulty and cost of routine collection of pedigree data on the field (Dekkers, 2007; Duenk et 

al., 2019b). However, the availability of genetic markers can overcome this main issue (Ibáñez-

Escriche et al., 2009). Further, it could reduce the lack of generations between CB and PB and it 

makes accommodating non-additive gene action easier than the classical CCPS (Dekkers, 2007; 

Esfandyari et al., 2016). Dominance can be an explanation of the heterosis (Falconer & Mackay, 

1996; Charlesworth & Willis, 2009). Thus, the inclusion of dominance in GS models may be 

beneficial for selection of PB for CB performance (Zeng et al., 2013).  

Several genomic models have been suggested for the prediction of PB individuals BVs 

for CB performance (Esfandyari et al., 2018). These models are the standard additive genomic 

prediction models (Dekkers, 2007; Christensen et al., 2014), models with across-breed effects of 

SNP genotypes (ASGM) or with breed-specific effects of SNP alleles (BSAM) (Ibáñez-Escriche et 

al., 2009), dominance models (Zeng et al., 2013) and breed-specific dominance model (BSDM) 

(Esfandyari et al., 2015). The ASGM assumed SNP effects to be the same across breeds (Ibáñez-

Escriche et al., 2009). Under this context, ὶ  can be also estimated when the PB and CB animals 
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are more distantly related or when pedigree information is not recorded by replacing de ═ 

matrix by ╖ (VanRaden, 2008; Legarra et al., 2015). Genomic relationships between PB and CB 

animals should ideally be based on alleles from only one of the PB parental lines (Duenk et al., 

2019a). However, the ordinary ╖ is based on both alleles of an individual, which in case of CB 

individuals also include those from the another PB line (Duenk et al., 2019a). BSAM assumed 

breed-specific effects of SNP alleles (Ibáñez-Escriche et al., 2009). This model was proposed by 

Dekkers (2007) based on the fact that substitution effects at the QTL for paternal and maternal 

alleles would be different if the parental breeds differ in alleles frequencies at the QTL (Zeng et 

al., 2013). Zeng et al. (2013) proposed a dominance model that simultaneously fits additive and 

dominance effects of SNPs enabling the computation of allele substitution effects using 

appropriate allele frequencies. Finally, Esfandyari et al. (2015) extend the dominance model 

considering the breed specific allele which allows to distinguish between alternate 

heterozygotes in the CB. These studies have shown that dominance models have a better 

performance than the additive ones. However, these results are mainly based on simulation 

studies. In practice, only the additive models have been applied showing that the BSAM models 

only are superior to ASGM models when ὶ  values are lower than 0.7. Thus, CCPS can be applied 

for many traits and breeding schemes using the classical ASGM. 

1.5. Outline. 

The application of Iberian pig genomic evaluations for reproductive traits such as LS with 

low heritability and recording in only one sex could be appropriate to improve genetic gain. 

Furthermore, sows are selected early in life and own records of LS are not available in the 

evaluations. Nevertheless, the herd nucleus has a small size leading limited phenotypes and 

genotypes for applying genomic evaluations. Thus, considering commercial sows’ records would 

be a valuable strategy for both genomic and genetic evaluations. Although this strategy has 

already been studied in white pigs, it has never been evaluated in Iberian pig. In this study we 

evaluate the implementation of genomic information and the crossbred animal records in the 

Iberian Pig genetic evaluations of the Inga Food company S.A. This is the only company applying 

an Iberian maternal pyramidal scheme as in the white pig breeding programs. This study is 

framed underlying a research line for improvement of reproductive efficiency in Iberian pig by 

the Institute of Agrifood Research and Technology (IRTA), University of Zaragoza (UNIZAR), 

Polytechnic University of Valencia (UPV) and the Autonomous University of Barcelona (UAB) in 

collaboration with Inga Food company S.A. 
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1.6. Objective. 

The aim of this study was to evaluate the inclusion of crossbred information as well as 

inclusion of genomic data in the genetic evaluation of a pyramidal Iberian pig maternal breeding 

scheme for improving the accuracy of the estimated breeding values.  
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2. Materials and methods. 

2.1. Ethics statements. 

The research ethics committee of  Institute of IRTA approved all the management and 

experimental procedures involving live animals, which were performed in accordance with the 

Spanish Policy of Animal Protection RD1201/05, which complies with the European Union 

Directive 86/609 about the protection of animals used in experimentation. 

2.2. Phenotypic data. 

Phenotypic data of LS come from five farms located in Almadrejo (Badajoz), Spain, 

belonging to the Iberian pig breeding scheme of the Inga Food company S.A. Data sets 

compromised two purebred lines recognized in Spain’s official Iberian herd-book (AECERIBER), 

Entrepelado (EE) and Retinto (RR) and their reciprocal crosses (Entrepelado x Retinto – ER and 

Retino x Entrepelado – RE). LS was quantified as the number of total born (TB), number of born 

alive (NBA) and stillborn (SB). A total amount of 20468 records for LS of 4753 sows were 

registered from 2010 to 2019. The pedigree included 5533 animals and went back 3 generations. 

The distribution of data according location in farms and sow line is presented in Table 3. The 

purebred sows were located into two selection farms under intensive commercial management, 

while the purebred boars were kept in an artificial insemination center. The third group, PB and 

CB, were located in three commercial production farms where both purebred and crossbred 

sows were mated with DU boars according to usual commercial production system in 

Iberian pig. Distribution of records according breed of boar of service are shown in Table 4.  

 

Table 3. Number of litter size records according to sow line and farms. 

 EE1 ER2 RE3 RR4 Total 

Farm 1 1683 19 36 2328 4066 
Farm 2 2757 37 39 1910 4743 
Farm 3 611 4116 1953 1005 7685 
Farm 4 2003 0 0 1544 3457 
Farm 5 179 30 51 167 427 

Total 7233 4202 2079 6954 20468 
1EE: Entrepelado line; 2RR: Retinto line; 3ER: Entrepelado x Retinto cross; 4RE: Retinto x Entrepelado cross. 
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Table 4. Number of litter size records according to breed of service boar  

Total of records 20468 

Duroc Jersey 8174 
Entrepelado line 6220 

Retinto line 6074 

 

2.2.1. Exploratory data analysis. 

Exploratory analysis of TB, NBA and SB were conducted using the R language (R core 

Team, 2014). Distribution of phenotypic data was checked by histograms and outliers were 

identified using boxplots analysis. After exploratory data analysis, 20152 records from 4714 sows 

remained from later analysis. Those records were distributed as follows: 7132 from 1635 EE 

purebred sows, 6843 records from 1575 RR purebred sows, 4132 records from for 906 ER sows 

and 2045 records from 598 RE sows.  

2.3. Genomic data. 

A total number of 1435 animals were genotyped from DNA isolated from samples of 

blood and tail tissue. DNA from tails’ samples was extracted according to phenol/chloroform 

protocol whereas DNA from blood’s samples was extracted following two different methods. 

First, extraction of DNA on plate was carried out using Invisorb® Blood Mini HTS 96 kit/C 

(STRATEC Molecular GmbH, 2013) and, second,  E. Z. N. A Blood DNA Mini kit d’OMEGA (Omega 

Bio-tek, 2017) for extraction of DNA in column. Genotyping was performed with Illumina GGP 

Porcine HD Array 70K (Illumina Inc., San Diego, CA, USA) which contains 63072 Single Nucleotide 

Polymorphism (SNPs).  

2.3.1. Quality control of genomic data. 

Quality control (QC) of genomic data was performed with Plink software (Purcell, 2009) 

by removing SNPs: (i) with minor allele frequency (MAF) below 0.05, (ii) with missing genotype 

rate per marker > 10%, (iii) with missing genotype rate per individual > 10%  and (iv) mapped to 

sexual chromosomes. Additionally, plink software was used to perform principal components 

analysis (PCA) to identify outliers. QC was also implemented with PreGSF90 software (Misztal & 

Tsuruta, 2018) in order to verify and eliminate parent-progeny Mendelian Conflicts. The 

genomic relationship matrix (╖) and the additive relationship matrix for genotyped animals 

(═ ) were built to check genomic relationships and to identify inconsistencies in the pedigree 

or mislabeled animals. Analysis of diagonal and off-diagonal elements of ╖ and numerator 

relationship matrix for genotyped animals ═  were conducted in R (R core team, 2014). After 
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that, 1114 genotyped animals and 34496 SNP markers remained for further analysis. Detailed 

information of the markers by sex and line after QC is shown Table 5.  

 

Table 5. Information of the number of markers and animals genotyped by sex and line. 

 All animals Entrepelado pure line Retinto pure line 

Markers 34496 34741 26226 
Animals 1114 382 357 
Females 1040 341 327 

Males 74 41 30 

 

2.4. Statistical analysis. 

A first step was to identify systematic effects influencing the LS traits. For that, a general 

linear model for each systematic effect (e.g. parity order, farm-year-season) was fitted to the 

traits under study using R (R core Team, 2014). Variables with a relevant effect on traits were 

included in later analysis. To decide whether an effect was relevant for each trait or not 

confidence intervals were computed. Thus, an effect was considered relevant when zero value 

was not contained in its 95% confidence interval.   

2.4.1. Models. 

Two different models were fitted depended on the data set (purebred lines only or 

purebred lines and its crosses). First, for each purebred line a trivariate multi trait model (MT) 

for TB, NBA and SB was fitted. Second, for each trait separately, a so-called multi breed model 

(MB) was fitted. This model is a multivariate model in which the records of each purebred line 

and crossbred are considered as a different trait (Wei & Van Der Werf, 1994). In this case, 

diallelic crosses between purebred lines (ER and RE) were considered as only one trait instead 

of two.  

2.4.1.1. Multi trait model (MT). 

The assumed model for TB, NBA and SB was: 

◐ ╧♫ ╩╪ ╦▬ ▄ [ 14 ] 

where ◐ is the vector of observations (TB, NBA and SB); ♫ is the vector of systematic effects 

including parity order, mating boar line and herd-year-season of parity; ╪ is the vector of 

additive genetic effects; ▬ is the vector of permanent environmental effects of the dam; ▄ is the 

vector of residuals; and ╧, ╩ and ╦ are the incidence matrix associated to the vectors ♫, ╪, and 

▬, respectively.  
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In matrix form: 

◐╣║
◐╝║═
◐╢║

  
╧╣║ π π
π ╧╝║═ π
π π ╧╢║

╫╣║
╫╝║═
╫╢║

╩╣║ π π
π ╩╝║═ π
π π ╩╢║

╪╣║
╪╝║═
╪╢║

╦╣║ π π
π ╦╝║═ π
π π ╦╢║

▬╣║
▬╝║═
▬╢║

▄╣║
▄╝║═
▄╢║

 

[ 15 ] 

where subscripts ╣║, ╝║═ and ╢║ indicate the traits.  

2.4.1.2. Multi breed model (MB). 

The next model was fitted for each trait (TB, NBA and SB): 

◐ ╧♫ ╩╪ ╦▬ ▄ [ 16 ] 

where ◐ is the vector of observations of the trait for the EE, RR and ER-RE lines; ♫ is the vector 

of systematic effects including parity order, mating boar line and herd-year-season of parity and 

TB as covariate when SB was evaluated; ╪ is the vector of additive genetic effects; ▬ is the vector 

of permanent environmental effects of the dam; ▄ is the vector of residuals; and ╧, ╩ and ╦ are 

the incidence matrix associated of the vectors ♫, ╪, and ▬, respectively. In matrix form: 

◐╔╔░
◐╡╡░
◐╔╡╡╔░

  

╧╔╔░ π π

π ╧╡╡░ π

π π ╧╔╡╡╔░

╫╔╔░
╫╡╡░
╫╔╡╡╔░

╩╔╔░ π π

π ╩╡╡░ π

π π ╩╔╡╡╔░

╪╔╔░
╪╡╡░
╪╔╡╡╔░

╦╔╔░ π π

π ╦╡╡░ π

π π ╦╔╡╡╔░

▬╔╔░
▬╡╡░
▬╔╡╡╔░

▄╔╔░
▄╡╡░
▄╔╡╡╔░

 

[ 17 ] 

where subscript Ὥ indicates the analyzed trait (Ὥ= TB, NBA or SB) and EE, RR and ER-RE the 

corresponding breed data.  

2.4.2. Bayesian analysis. 

The Bayesian analysis were performed with the BLUPF90 family programs (Misztal & 

Tsuruta, 2018). All models assumed flat prior distributions for systematic effects (♫) and 

multivariate Gaussian distributions for additive (╪), permanent (▬) and residual effects (▄). 

Permanent environmental effects and residual effects were assumed identically and 

independently distributed, their prior distributions were as follows: 
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▬ͯ ╝ ȟ╘ṧ╟  being ╘ an identity matrix, ╟ the (3x3) permanent environmental 

variance-covariance matrix of the traits in MT model or the line for trait Ὥ  in the MB model and 

ṧ the Kronecker product operator.  

▄ͯ ╝ ȟ╘ṧ╡  being ╘ an identity matrix, ╡ the (3x3) residual variance-covariance 

matrix with the residual variances of the trait in MT model or the line for trait Ὥ  in the MB model 

and ṧ the Kronecker product operator.  

The distribution of the additive genetic effect was assumed as follows: 

╪ͯ ╝ ȟ╚ṧ╖ ȟ being ╚ the numerator relationship matrix among animals, ╖  the 

(3x3) additive genetic variance-covariance matrix of the traits in MT model or the line for trait Ὥ  

in the MB model and ṧ the Kronecker product operator. The ╚ matrix was equal to ═ when the 

traditional BLUP method with phenotypic and pedigree information was used. However, the ╚ 

matrix was equal to ╗ when the ssGBLUP method with phenotypic, pedigree and genotyped 

data was used. ╗ matrix results from blending genomic and pedigree information for both 

genotyped and non-genotyped animals (Aguilar et al., 2010; Legarra et al., 2009, 2014). ╗ matrix 

can be defined as: 

╗  
═ ═
═ ╖

 ═  
π π
π ╖  ═  

 [ 18 ] 

where subscripts 1 and 2 represent ungenotyped and genotyped animals, respectively; ═ is the 

numerator relationship matrix and ╖ is a genomic relationship matrix (Aguilar et al., 2010). ╖ 

was constructed as ╖ ╩╩ᴂςВὴήϳ  (VanRaden, 2008), being ╩ a matrix for SNP markers and ὴ 

and ή marker allele frequencies. ╩ can be constructed as: ╩ ╜ ╟ where ╜ is a matrix of 

dimensions (ὲ number of individuals x (ά  number of loci, that specifies which marker alleles 

each individuals inherited and ╟ a matrix containing allele frequencies expressed as a difference 

from 0.5 and multiplied by two (VanRaden, 2008).   

In order to solve mixed model equations (Henderson, 1963) ╗  is needed. Therefore, 

╗  can be defined as: 

╗  ═  
π π
π ╖  ═  

 [ 19 ] 

 

Where ═  is the inverse of numerator relationship matrix for genotyped animals only 

(Legarra et al., 2014). Nevertheless, ╖ cannot be inverted directly due to its singular or close to 

singular appearance. In order to achieve inversion of ╖, some weights were implemented as 

described by Aguilar et al. (2010) and VanRaden (2008): 
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ἑᶻ πȢωυ╖ πȢπυ═  [ 20 ] 

Finally, flat priors were also considered for variance-covariances components.  

The analysis of each model was performed using Gibbs sampling algorithm (Gelfand et 

al., 1990) with a single chain of 200,000 iterations, a ‘burn-in’ period of 20000 iterations and a 

thin interval of 20 samples with THRGIBBS1F90 software (Misztal & Tsuruta, 2018). Posterior 

marginal inferences were performed with POSTGIBBSF90 software (Misztal & Tsuruta, 2018). 

The inference was focused on mean, standard deviation and Highest Posterior Density Intervals 

at 95% of the marginal posterior distributions of the parameters of interest. Convergence of 

posterior distributions were assessed with graphical analysis by time series plots and histograms 

using the package boa (Smith, 2007). The models and data used for Bayesian BLUP and ssGBLUP 

genetic evaluations are shown in Table 6.  

 

Table 6. Models, data sets, traits and number of records analyzed for Bayesian BLUP (Best Linear 
Unbiased Prediction) and ssGBLUP (single step Genomic Best Linear Unbiased Prediction) 
genetic evaluations. 

Model Data set Traits 
Number of 

records 

Multi trait  
 

EE1  TB4 NBA5 SB6 7132 
RR2  TB4 NBA5 SB6 6843 

Multi breed  EE1, RR2, ER-RE3 
TBEE TBRR TBER-RE 20152 

NBAEE NBARR NBAER-RE 20152 
SBEE SBRR SBER-RE 20152 

1EE: Entrepelado line; 2RR: Retinto line; 3ER-RE: crossbred animals; 4TB: total born; 5NBA: number of born alive; 6SB: 
stillborn. 

 

2.5. Cross validation. 

In practice, Cross validation (CV) can be performed in a sample of individuals (validation 

animals) that are related to those individuals in the training set (training animals) but without 

being in it (Saatchi et al., 2011). In our study the K-fold cross validation (CV) with K equal to five 

was used in the purebred genotyped animals to compare the prediction ability of the fitted 

models (Figure 2). For all the scenarios, the five-fold CV was repeated 10 times. Owing to 

computational time, estimations for BVs were computed based on restricted maximum 

likelihood (REML) procedure with BLUPF90 software (Misztal & Tsuruta, 2018). Two different 

criteria were computed on the validation data set for each CV to compare the predictive ability 

of the models: 

- The accuracy of the prediction measured as the Pearson’s correlation between true BV and 

(G)EBV from de validation population divided by the heritability root of the trait estimated 
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by the classical multi trait animal model (Mehrban et al., 2019). This standardization of the 

Pearson’s correlation allows comparison between traits (Saatchi et al., 2011): 

 

ὃὧὧόὶὥὧώ
ὧέὶὄὠȟὋὉὄὠ

ЍὬ
 

 
[ 21 ] 

 

- The root mean squared error (RMSE) between the true BV and (G)EBV from de validation 

population: 

ὙὓὛὉ 
ὄὠȟὋὉὄὠ

ὔ
 [ 22 ] 

 

Accuracy and RMSE were estimated as the mean of accuracies and RMSE for five-fold 

cross validation procedures. Due to the true BV is unknown, the corrected phenotype (◐╬ was 

used instead (Mehrban et al., 2017). Phenotypic records were corrected for fixed effects and 

permanent effects in all evaluation models. Therefore, the corrected phenotype was defined as:  

 

◐╬= Ⱨ+╩╪+▄ [23] 

 

where ◐╬, is the corrected phenotype; , is the vector of ones; Ⱨ is the estimated general mean 

for each trait; ╪ is the vector of estimated breeding values and ▄ is the vector of estimated 

associated error; ╩ was the incidence matrix associated to the vector ╪. ◐╬  was computed with 

PREDICTF90 software (Misztal & Tsuruta, 2018) based on previous prediction and estimation of 

fixed and random effects with BLUPF90 software (Misztal & Tsuruta, 2018). 
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Figure 2. Schematic representation of the cross-validation pipeline to assess predictive ability. 
EE: Entrepelado line; RR: Retinto line; ER-RE: crossbred animals; (G)EBV: (genomic) estimated breeding value; 
ὋὉὄὠ: (genomic) estimated breeding value on training set for validation animals; ὄὠȡ breeding value; ώ: corrected 

phenotype of validation animals according BLUP (Best Linear Unbiased Prediction) or ssGBLUP (single step Genomic 
Best Linear Unbiased Prediction) multi trait/multi breed models.   
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3. Results and discussion. 

After the exploratory analysis, 316 phenotypic records (101 for EE, 111 for RR, 70 for ER 

and 34 for RE) were removed from the data, which represents 1.5% of the total amount of 

records. The distributions for each trait were not substantially modified after quality control (see 

Figure 10 in supplementary material). As expected, TB and NBA followed a nearly normal 

distribution whereas SB followed a Zero-Truncated Poisson distribution (Figure 3). 

 

Figure 3. Distribution of litter size records for all animals after quality control. TB: total born; 
NBA: number of born alive; SB: stillborn. 

 

The number of animals with records, those with genotypes (in brackets) and the basic 

statistics for LS traits are shown in Table 7. The mean values for all traits in both purebred lines 

EE and RR were similar and comparable with the values in other Iberian pig populations 

(Fernández et al., 2008; García-Casco et al., 2012). The mean values for TB and NBA of CB were 

around 0.3 piglets greater than those for PB. This advantage of CB over PB can be mainly due to 

the heterosis as was found by Noguera et al. (2019).  As expected, the TB and NBA for the Iberian 

pig lines were clearly lower than those reported for maternal white pigs lines ranging from 11.46 

to 15.91 and 10.40 to 15.4, respectively (Arango et al., 2005; Freyer, 2018; Lopes et al., 2017; 

Song et al., 2017; Zhang et al., 2016). The mean values for SB were also into the range than those 

reported for maternal white pigs lines (Large White) varying from 0.31 to 1.19 (Arango et al., 

2005; Chu, 2005; Ye et al., 2018).   
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Table 7. Number of animals with records, genotyped animals (in brackets) and descriptive 
statistics of total born (TB), number of born alive (NBA) and stillborn (SB) for pure lines and 
crossbred Iberian pigs. 

Traits 
Records 

 (genotyped animals) 
Mean SD1 Min2 Max3 CV4 

All lines and crosses 

TB 4714 (1017) 8.25 2.10 3.00 19.00 0.25 
NBA 4714 (1017) 7.98 2.04 3.00 18.00 0.26 
SB 4714 (1017) 0.27 0.69 0.00 8.00 2.59 

Entrepelado 

TB 1635 (333) 7.92 1.95 3.00 19.00 0.25 
NBA 1635 (333) 7.67 1.89 3.00 18.00 0.25 
SB 1635 (333) 0.24 0.67 0.00 7.00 2.73 

Retinto 

TB 1.575 (318) 8.27 2.07 3.00 17.00 0.25 
NBA 1575 (318) 7.97 1.99 3.00 15.00 0.25 
SB 1575 (318) 0.30 0.74 0.00 8.00 2.44 

Crosses 

TB 1504 (366) 8.58 2.23 3.00 19.00 0.25 
NBA 1504 (366) 8.34 2.18 3.00 15.00 0.26 
SB 1504 (366) 0.24 0.65 0.00 7.00 2.70 

1SD: standard deviation; 2Min: minimum; 3Max: maximum; 4CV: coefficient of variation. 

 

Population stratification was assessed by a principal component analysis using the 

genotypic information of 34496 SNPs. The two purebred lines were clearly separated based on 

the PCA results, while the reciprocal crosses occupied intermediate positions between them, 

following an expected pattern (Figure 4). Although the Iberian pig has barely been selected, 

demo-graphic fluctuations and scarce genetic flow among herds led to the development of these 

lines with phenotypic and genotypic differences (Fabuel et al., 2004; García-Casco et al., 2012). 

This result would also indicate that Illumina GGP Porcine HD Array 70K allows proper 

differentiation among genotypes in Iberian pig lines.  



39 
 
 

 

Figure 4. Population structure identified by principal component analysis of the genotyped 
animals. PC1: first principal component (percentage of variance explained); PC2: second principal component 

(percentage of variance explained); EE: Entrepelado line; RR: Retinto line; ER: Entrepelado x Retinto cross; RE: Retinto 
x Entrepelado cross.  

 

Basic statistics for ╖ and ═  elements were analyzed (Table 8 and Figure 5) before 

implementing ssGBLUP. Incompatibilities between ╖ and ═  could lead poor convergence rate 

or/and large reranking (Simeone et al., 2011; Misztal et al., 2013, Petrini et al., 2016). This can 

be due to problems with the pedigree (i.e. short or incomplete pedigrees, pedigree mistakes and 

heterogeneous base populations) or genotypes (i.e. incorrect assignment of genotype and poor 

quality of genotypes). In our study, the maximum difference between ╖ and ═  for the diagonal 

and off-diagonal elements was very small (-0.017) with a SD > 0,04 (Table 8). Besides, the 

distribution of diagonal and off-diagonal elements of ╖ approached to a normal distribution with 

a single peak (Figure 5a) and the correlation between ╖ and ═  showed a positive pattern 

(Figure 5b and Figure 5c). The same pattern was found when the genotypes were analyzed for 

each breed separately (see Figure 13 and Figure 14 in supplementary material). All these results 

revealed no mismatches between ╖ and ═  which  indicated absence of  problems with either 

genotypes or pedigree (Simeone et al., 2011). 
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Table 8. Descriptive statistics of diagonal and off-diagonal elements of Genomic matrix (G) and 
additive genetic relationship matrix for genotyped animals only (A22) for Entrepelado and Retinto 
lines. 

 G  A22   

Diagonal Elements N1 Mean SD2  N1 Mean SD2  Difference 

All lines and crosses 1114 1.01 0.10  1114 1.01 0.03  0.00 
Entrepelado 382 1.02 0.05  382 1.02 0.03  0.00 
Retinto 357 1.01 0.05  357 1.01 0.03  0.00 
          

Off-diagonal 
elements 

N1 Mean SD2  N1 Mean SD2  Difference 

All lines and crosses 1,239,882 0.034 0.12  1,239,882 0.039 0.05  -0.005 
Entrepelado 145,542 0.083 0.08  145,542 0.100 0.08  -0.017 
Retinto 127,092 0.048 0.07  127,092 0.052 0.06  -0.004 

1N: number of genotyped animals; 2SD: standard deviation. 

 

 
Figure 5. Histograms and plots for diagonal and off-diagonal elements in G (genomic relationship 
matrix) and A22 (numerator relationship matrix for genotyped animals) of all lines and crosses. 
a) Frequency distribution for G diagonal elements; b) A22 diagonal elements and G diagonal elements plot; c) A22 off-
diagonal elements and G off-diagonal elements plot. 

 

Table 9 shows the heritability and additive genetic correlations of TB, NBA and SB for EE 

and RR lines under the BLUP and ssGBLUP Bayesian multi trait models. Both methods GBLUP 

and ssGBLUP provided similar estimates for all traits and lines. The estimates of the heritability 

by using pedigree based (BLUP) and combined relationship matrices (ssGBLUP) were similar. It 

can probably be due to the resemblance between these matrices as argued by Misztal et al. 

(2013). The posterior mean of the heritability of EE line by both models BLUP and ssGBLUP for 

TB (0.09-0.09) and NBA (0.010-0.09) were clearly superior than those of RR line for TB (0.06-

0.06) and NBA (0.07-0.06). This scenario was expected based on the results of the estimated 

variance components (see Table 11 and Table 12 in supplementary material). EE line showed 

higher values for additive genetic variance component for the two methods and traits than RR 

line. For SB, no differences were found among lines and models. Moreover, previous analysis 

with SB as a categorical value showed similar results. The heritability estimates for LS obtained 
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in this study are in the range of those reported by García-Casco et al. (2012) and Fernández et 

al. (2008) for TB and NBA and by Corral et al. (2010) for SB in other Iberian pig lines. As expected, 

the additive genetic correlation between TB and NBA was high for all methods and lines 

(0.98±0.01 and 0.98±0.01 in EE and RR, respectively). Similar values of additive genetic 

correlation between both traits were reported by Radojkovic et al. (2012) in Swedish Landrace 

sows (0.938), by Zhang et al. (2016) in Landrace sows (0.93±0.04) and by García-Casco et al. 

(2012) in Iberian pigs (0.96±0.02). The posterior mean of additive genetic correlations between 

SB and TB were positive and moderate low for EE (0.16-0.18) and RR (0.21-0.28) lines, and 

between SB and NBA positive but close to zero (0.02-0.03 for EE and 0.07-0.11 for RR). It would 

indicate that although the correlation was low the genetic selection for TB could increase SB. 

However, the posterior standard deviations were higher and the highest posterior density 

intervals at 95% clearly included the zero value which made difficult to evaluate the effect of 

genetic selection for TB or NBA. Several studies in white pigs populations have also reported 

moderate-low or negative mean values for genetic correlations between SB and TB (Radojkovic 

et al., 2012; Zhang et al., 2016) and negative mean values for genetic correlations between SB 

and NBA  (Arango et al., 2005; Chu, 2005; Radojkovic et al., 2012; Zhang et al., 2016). 

 

Table 9. Main features of the posterior distribution of the heritability  
Ὤ  and additive genetic correlation (ra1,a2) of  total born (TB), number of born alive (NBA) and 

stillborn (SB) estimated for Entrepelado (EE) and Retinto (RR) lines with BLUP (Best Linear 
Unbiased Prediction) and ssGBLUP (Single Step Best Linear Unbiased Prediction) Bayesian multi 
trait models. 

  
 

BLUP  ssGBLUP 

  Mean1 SD2 HPD95%
3  Mean1 SD2 HPD95%

3 

Entrepelado 

Ὤ 

TBEE 0.09 0.02 0.05 – 0.14  0.09 0.02 0.04 – 0.13 
NBAEE 0.10 0.02 0.05 – 0.15  0.09 0.02 0.04 – 0.13 
SBEE 0.02 0.01 0.01 – 0.04  0.02 0.01 0.01 – 0.03 

ὶ ȟ  TBEE, NBAEE 0.98 0.01 0.97 – 0.99  0.98 0.01 0.97 – 0.99 
TBEE, SBEE 0.18 0.22 -0.41 – 0.51  0.16 0.23 -0.26 – 0.63 

NBAEE, SBEE 0.03 0,22 -0.39 – 0.46  0.02 0.24 -0.41 – 0.51 

Retinto 

Ὤ 
TBRR 0.06 0.02 0.03 – 0.10  0.06 0.02 0.03 – 0.10 

NBARR 0.07 0.02 0.03 – 0.10  0.06 0.02 0.02 – 0.09 
SBRR 0.02 0.01 0.01 – 0.03  0.02 0.01 0.01 – 0.04 

ὶ ȟ  TBRR, NBARR  0.98 0.01 0.96 – 0.99  0.98 0.01 0.95 – 0.99 
 TBRR, SBRR 0.21 0.23 -0.21 – 0.65  0.28 0.24 -0.17 – 0.71 
 NBARR, SBRR 0.07 0.25 -0.40 – 0.53  0.11 0.26 -0.37 – 0.60 

1Mean: posterior mean 2SD: posterior standard deviation; 3HDP95%: highest posterior density interval at 95%. 

 

Heritability and additive genetic correlations under BLUP and ssGBLUP Bayesian multi 

breed models for TB, NBA and SB are shown in Table 10. The posterior mean of the heritability 
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for all traits estimated with the multi breed models were similar to those with the multi trait 

analysis (see Table 9) in accordance with Lutaaya et al. (2001). In a CCPS context phenotypic data 

recorded in CB relatives are used for selection of PB (Wei & Van Der Werf, 1994). Thus, the 

selection is indirect and its accuracy depends on genetic correlation between PB and CB 

performance ὶ  (Wientjes & Calus, 2017). This ὶ  value is key in the success of CCPS and 

could reflect differences in genetic backgrounds (differences in allele frequencies and the non-

additive genetic effects between populations), environments or trait measurements. This study 

showed that  ὶ values for TB and NBA in Iberian pig populations were high (around 0.80) which 

means that the non-additive effects and the differences in allele frequencies between PB and 

CB lines were low (Duenk et al., 2020). It would suggest that the PB’s BV can be a good predictor 

of CB performance for TB and NBA and the benefits of using CB data would relay in the increase 

of data (Wei & Van Der Werf, 1994; Wientjes & Calus 2017). Similar results were obtained in 

recent studies of TB by Hidalgo et al. (2015) and by Lopes et al. (2017) for Large White purebred 

and Large White x Landrace populations (0.88±0.04 and 0.91±0.04). Conversely, the ὶ  for SB 

between RR and the reciprocal crosses was 0.41 (BLUP) and 0.61 (ssGBLUP) and for EE and the 

crosses was -0.68 (BLUP) and -0.47 (ssGBLUP). It would suggest high non-additives effects as well 

as high differences between line allele frequencies. Note that the environment between the 

farms was similar as well as the same method across farms was used to measure the SB trait. 

These results (ὶ < 0.8) would support the implementation of CCPS for SB since it represents an 

advantage of combined PB and CB selection over pure line selection (Wei & Van Der Werf, 1994; 

Dekkers, 2007; Wientjes & Calus 2017 ). The ὶ  lower than 0.8 have been reported in traits with 

very low heritability such as fertility which is related with the epistatic interactions (Wientjes & 

Calus 2017). However, not negative ὶ  correlations have been previously reported. Hence, 

further studies are needed to confirm this estimation. 
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Table 10. Main features of the posterior distribution of the heritability  
Ὤ  and additive genetic correlation (ra1,a2) of total born (TB), number of born alive (NBA) and 

stillborn (SB) estimated for Entrepelado (EE) and Retinto (RR) lines and crossbred animals (ER-
RE) with BLUP (Best Linear Unbiased Prediction) and ssGBLUP (Single Step Genomic Best Linear 
Unbiased Prediction) Bayesian multi breed models. 

  
 

BLUP  ssGBLUP 

  Mean1 SD2 HPD95%
3  Mean1 SD2 HPD95%

3 

Ὤ 

TBEE 0.09 0.01 0.06 – 0.12  0.08 0.01 0.05 -0.10 
TBRR 0.05 0.01 0.02 – 0.07  0.05 0.01 0.03 – 0.08 

TBER-RE 0.1 0.01 0.06 – 0.12  0.09 0.01 0.06 – 0.11 

ὶ ȟ  
TBEE, TBRR 0.68 0.23 0.24 – 0.95  0.32 0.20 0.05 – 0.75 

TBEE, TBER-RE 0.91 0.06 0.78 – 0.99  0.70 0.08 0.54 – 0.82 
TBRR, TBER-RE 0.90 0.06 0.77 – 0.98  0.80 0.10 0.62 – 0.94 

         

Ὤ 
NBAEE 0.09 0.01 0.06 – 0.12  0.08 0.02 0.05 – 0.12 
NBARR 0.05 0.01 0.02 – 0.08  0.05 0.01 0.03 – 0.07 

NBAER-RE 0.09 0.01 0.06 – 0.12  0.08 0.01 0.05 – 0.11 

ὶ ȟ  
NBAEE, NBARR 0.78 0.18 0.39 – 0.97  0.39 0.20 0.06 – 0.78 

NBAEE, NBAER-RE 0.94 0.04 0.86 – 0.99  0.69 0.10 0.28 – 0.83 
NBARR, NBAER-RE 0.92 0.06 0.78 – 0.98  0.83 0.08 0.67 – 0.95 

         

Ὤ 

SBEE 0.02 0.007 0.008 – 0.035  0.02 0.004 0.009 – 0.025 
SBRR 0.02 0.007 0.011 – 0.034  0.02 0.007 0.012 – 0.038 

SBER-RE 0.02 0.005 0.012 – 0.033  0.03 0.007 0.017 – 0.047 

ὶ ȟ  
SBEE, SBRR -0.78 0.11 -0.97 – -0.58  -0.68 0.14 -0.91 – -0.38 

SBEE, SBER-RE -0.68 0.18 -0.91 – -0.31  -0.47 0.13 -0.78 – -0.27 
SBRR, SBER-RE 0.41 0.23 -0.019 – 0.75  0.61 0.10 0.40 – 0.83 

1Mean: posterior mean 2SD: posterior standard deviation; 3HDP95%: highest posterior density interval at 95%. 

 

Results of the CV for predictive ability measured as the (standardized) Pearson’s 

correlation between corrected phenotype and (G)EBV and as the RMSE for each model and 

method are shown on Figure 6 and Figure 7 and in Figure 8 and Figure 9, respectively. Results in 

terms of accuracy measured as Pearson’s correlations are in agreement with those found in 

other studies in pigs (Hidalgo et al., 2015; Song et al., 2017; Lopez et al., 2017). If we compare 

between traits, the standardized Pearson’s correlations showed higher predictive ability 

(accuracy) for SB (from 0.49 to 0.71) followed by TB (from 0.41 to 0.58) and NBA (from 0.38 to 

0.58) (Figure 6 and Figure 7). The Pearson’s correlation estimates had a small standard error 

(0.01-0.02) which allowed the comparison between the means. Regarding lines, a pattern was 

found among models for EE. In all cases, SB shows the highest accuracy value followed by TB 

and NBA, which showed a small difference between them (0.06 as maximum). In this breed, 

multi trait models and especially ssGBLUP exhibited a better prediction ability for the three 

traits. However, due to the small differences in accuracy between models is not clear that this 

model leads an important reranking of the candidates of selection. This study also shows that 

including CB data in the genetic evaluations had different effects on the predictive ability 

according PB line. For EE line, the inclusion of CB data did not show any advantage whereas for 
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RR line Pearson’s correlations were higher for all traits by both BLUP and ssGBLUP multi breed 

models (Figure 7). For this breed, the three traits showed the same predictive ability by using 

BLUP Multi breed models (0.58). The inclusion of genomic data allowed to get the highest 

predictive ability for SB (0.64) whereas TB and NBA remain a bit lower (0.54). Multi trait models 

followed the same pattern as was described for EE but with lower values. The advantage of using 

CB data for RR line compared to EE was consistent with ὶ  values (see Table 10). The RR-ER ὶ  

values were higher than the EE-ER ὶ  values for all traits but NBA. In summary, CV results based 

on the accuracy of GEBV shows that multi trait models and specially ssGBLUP are more 

appropriate for EE whereas multi breed models are for RR.  

 

 

 

Figure 6. Mean of the accuracy and standardized accuracy for the 10 replicates of the 5-fold 
cross validation of Entrepelado line for each model and trait by BLUP and ssGBLUP methods. Best 
Linear Unbiased Prediction; ssGBLUP: single step Genomic Best Linear Unbiased Prediction; MT: multi trait model; 
MB: multi breed model; TB: total piglets; NBA: number of born alive; SB: stillborn.  
 
 

 

Figure 7. Mean of the accuracy and standardized accuracy for the 10 replicates of the 5-fold 
cross validation of Retinto line for each model and trait by BLUP and ssGBLUP methods. Best 
Linear Unbiased Prediction; ssGBLUP: single step Genomic Best Linear Unbiased Prediction; MT: multi trait model; 
MB: multi breed model; TB: total piglets; NBA: number of born alive; SB: stillborn.  

 

In terms of RMSE, there were no great differences between PB lines for LS traits when 

BLUP and ssGBLUP multi trait analysis were performed, but in general a little advantage of 

models including genomic information was found (Figure 8 and Figure 9). RMSE for EE were 
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lower than for RR. For EE, RMSE values range from 0.58 to 1.55 (Figure 8), whereas for RR values 

ranged from 0.61 to 1.87 (Figure 9). In line with the accuracy results, these values support the 

idea that multi trait models are more suitable for EE line. Surprisingly, multi breed models 

showed higher RMSE values in comparison with multi trait models for RR and specially for TB in 

ssGBLUP. The inclusion of genomic data may allow a slight reduction in bias in the prediction of 

(G)EBV except for NBA in EE (Figure 8) and for SB in RR (Figure 9) under MB models. The highest 

difference of RMSE between BLUP and ssGBLUP methods was found for TB when CB data was 

included in the RR genetic evaluation (1.87 and 1.81, respectively). This outperformance of 

ssGBLUP over BLUP could be mainly a result of a better estimation of relationships among 

individuals by markers (Tusell et al., 2013; Hidalgo et al., 2015).  

 

 

Figure 8. Root mean squared error (RMSE) between the corrected phenotypes and the 
estimated breeding values of the 10 replicates of the 5-fold cross validation sets of Entrepelado 
for each model by Best Linear Unbiased Prediction (BLUP) and single step Genomic Best Linear 
Unbiased Prediction (ssGBLUP) methods. TB: total born; NBA: number of born alive; SB: stillborn; MT: multi 

trait model; MB: multi breed model. 

 

 

Figure 9. Root mean squared error (RMSE) between the corrected phenotypes and the 
estimated breeding values of the 10 replicates of the 5-fold cross validation sets of Retinto line 
for each model by Best Linear Unbiased Prediction (BLUP) and single step Genomic Best Linear 
Unbiased Prediction ssGBLUP) methods. TB: total born; NBA: number of born alive; SB: stillborn; MT: multi 

trait model; MB: multi breed model. 
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4. Conclusions.  

¶ The heritability estimates of TB and NBA for EE were higher than for RR in both multi trait 

and multi breed models by BLUP and ssGBLUP methods. No differences were found for SB. 

 

¶ Genetic correlations between CB and PB (ὶ  values) were higher than 0.8 for TB and NBA 

and lower than 0.7 and even negative for SB, indicating not relevant differences in genetic 

backgrounds as well as low ὋὼὉ for TB and NBA whereas these seems to be relevant for SB.  

 

¶ Multi trait models are more suitable for EE line in terms of predictive ability of LS traits 

whereas multi breed models are for RR line. Therefore, within line selection would 

represent the best choice for EE line whilst accounting on CB data may be useful for RR line.  

 

¶ The inclusion of genomic data increased the accuracy on (G)EBVs, specially for TB in EE and 

for SB in RR line and also reduced the (G)EBVs bias except for NBA in EE and SB in RR under 

MB models. This support the positive impact of including genomic information in the 

genetic evaluations. 

 

¶ Although the models have provided differences in the predictive ability of BV for LS traits, 

these seems to be not enough for relevant changes on the response to selection. 
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6. Supplementary material.  

Figure 10. Distribution for litter size records in Iberian pig population before quality control. TB: 

total born; NBA: number of born alive; SB: stillborn. 

  
  

 

Figure 11. Percentage of variance explained by each principal component. PC: principal components 

of Iberian pig population under study (n=1114) obtained by principal component analysis. 
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Figure 12. Cumulative explained variance by each principal component. PC: principal components of 

Iberian pig population under study (n=1114) obtained by principal component analysis.  
 

 

Figure 13. Histograms and plots for diagonal and off-diagonal elements in G (genomic 
relationship matrix) and A22 (numerator relationship matrix for genotyped animals) for 
Entrepelado line population. a) Frequency distribution for G diagonal elements; b) A22 diagonal elements and 
G diagonal elements plot; c) A22 off-diagonal elements and G off-diagonal elements plot. 

 

 

Figure 14. Histograms and plots for diagonal and off-diagonal elements in G (genomic 
relationship matrix) and A22 (numerator relationship matrix for genotyped animals) for Retinto 
line population. a) Frequency distribution for G diagonal elements; b) A22 diagonal elements and G diagonal 

elements plot; c) A22 off-diagonal elements and G off-diagonal elements plot. 
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Table 11. Variance components estimation of total born (TB), number of born alive (NBA) and 
stillborn (SB) with BLUP (Best Linear Unbiased Prediction) Bayesian multi trait models for 
Entrepelado (EE) and Retinto (RR) lines. 
 
 

„1 
 

„2  
„3 

Variance Mean4 SD5 HPD95%
6

  Mean4 SD5 HPD95%
6  Mean4 SD5 HPD95%

6 

TBEE 0.35 0.09 0.18 – 0.52  0.74 0.07 0.59 – 0.88  2.57 0.04 2.47 – 2.65 
NBAEE 0.36 0.09 0.19 – 0.55  0.68 0.07 0.54 – 0.82  2.49 0.04 2.41 – 2.58 
SBEE 0.01 0.003 0.003 – 0.016  0.008 0.003 0.0026 – 0.014  0.39 0.007 0.38 – 0.41 

            
TBRR 0.25 0.08 0.11 – 0.40  0.74 0.08 0.60 – 0.89  3.09 0.06 2.98 – 3.20 

NBARR 0.26 0.08 0.11 – 0.42  0.67 0.07 0.54 – 0.81  2.94 0.05 2.84 – 3.04 
SBRR 0.01 0.004 0.004 – 0.020  0.01 0.005 0.005 – 0.024  0.49 0.009 0.48 – 0.51 

1„ : additive genetic variance; 2„: permanent environmental variance; 3„: residual variance; 4Mean: posterior 

mean; 5SD: posterior standard deviation; 6HPD95%: highest posterior density interval at 95%. 

 

Table 12.  Variance components estimation of total born (TB), number of born alive (NBA), 
stillborn (SB) with ssGBLUP (Single Step Genomic Best Linear Unbiased Prediction) Bayesian 
multi trait models for Entrepelado (EE) and Retinto (RR) lines. 

 
 

„1  „2  „3 

Variance Mean4 SD5 HPD95%
6

  Mean4 SD5 HPD95%
6  Mean4 SD5 HPD95%

6 

TBEE 0.33 0.09 0.17 – 0.51  0.74 0.07 0.60 – 0.87  2.57 0.04 2.49 – 2.66 
NBAEE 0.33 0.09 0.15 – 0.50  0.71 0.08 0.55 – 0.86  2.49 0.04 2.41 – 2.58 
SBEE 0.009 0.003 0.003 – 0.014  0.009 0.003 0.002 – 0.015  0.39 0.007 0.38 – 0.41 

            
TBRR 0.27 0.08 0.12 -0.44  0.75 0.08 0.61 – 0.91  3.10 0.05 2.99 – 3.21 

NBARR 0.22 0.07 0.08 – 0.36  0.70 0.07 0.56 – 0.83  2.94 0.05 2.83 – 3.04 
SBRR 0.01 0.005 0.004 – 0.021  0.01 0.005 0.004 – 0.023  0.49 0.009 0.48 – 0.51 

1„ : additive genetic variance; 2„: permanent environmental variance; 3„: residual variance; 4Mean: posterior 

mean; 5SD: posterior standard deviation; 6HPD95%: highest posterior density interval at 95%. 

 
 
Table 13.  Variance components estimation for number of total born (TB), number of born alive 
(NBA), stillborn (SB) with BLUP (Best Linear Unbiased Prediction) Bayesian multi breed models 
for Entrepelado (EE) and Retinto (RR) lines and crossbred animals (ER-RE). 
 
 

„1  „2  „3 

Variance Mean4 SD5 HPD95%
6

  Mean SD HPD95%  Mean SD HPD95% 

TBEE 0.31 0.06 0.20 – 0.42  0.26 0.05 0.16 – 0.36  2.94 0.06 2.84 – 3.04 
TBRR 0.19 0.05 0.11 – 0.31  0.18 0.04 0.09 – 0.26  3.56 0.07 3.42 – 3.70 

TBER - RE 0.46 0.07 0.30 – 0.58  0.17 0.06 0.07 – 0.27  4.06 0.08 3.92 – 4.21 
            

NBAEE 0.31 0.05 0.21 – 0.42  0.23 0.05 0.15 – 0.33  2.84 0.05 2.76 – 2.95 
NBARR 0.18 0.05 0.09 – 0.28  0.17 0.04 0.09 – 0.26  3.36 0.07 3.25 – 3.50 

NBAER-RE 0.43 0.06 0.29 – 0.54  0.15 0.05 0.06 – 0.25  3.92 0.07 3.76 – 4.05 
            

SBEE 0.009 0.003 0.004 – 0.014  0.003 0.001 0.002 – 0.006  0.38 0.007 0.36 – 0.39 
SBRR 0.010 0.003 0.0002 – 0.008  0.007 0.002 0.004 – 0.012  0.47 0.008 0.45 – 0.48 

SBER-RE 0.008 0.002 0.004 – 0.13  0.014 0.004 0.008 – 0.022  0.37 0.007 0.36 – 0.38 
1„ : additive genetic variance; 2„: permanent environmental variance; 3„: residual variance; 4Mean: posterior 

mean; 5SD: posterior standard deviation; 6HPD95%: highest posterior density interval at 95%. 
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Table 14.  Variance components estimation for number of total born (TB), number of born alive 
(NBA), stillborn (SB) with ssGBLUP (Single Step Best Linear Unbiased Prediction) Bayesian multi 
breed models for Entrepelado (EE) and Retinto (RR) lines and crossbred animals (ER-RE). 
 
 

„   „   „  

Variance Mean4 SD5 HPD95%
6

  Mean SD HPD95%  Mean SD HPD95% 

TBEE 0.27 0.04 0.20 – 0.36  0.28 0.04 0.21 – 0.35  2.93 0.06 2.83 – 3.04 
TBRR 0.21 0.06 0.12 – 0.30  0.17 0.02 0.13 – 0.23  3.54 0.07 3.40 – 3.66 

TBER-RE 0.41 0.07 0.28 – 0.56  0.27 0.09 0.11 – 0.42  4.03 0.08 3.88 – 4.18 
            

NBAEE 0.28 0.04 0.21 – 0.35  0.26 0.03 0.19 – 0.31  2.83 0.05 2.74 – 2.95 
NBARR 0.17 0.03 0.09 – 0.23  0.21 0.03 0.16 – 0.26  3.34 0.07 3.20 – 3.46 

NBAER-RE 0.38 0.07 0.26 – 0.53  0.25 0.09 0.11 – 0.39  3.90 0.08 3.73 – 4.03 
            

SBEE 0.006 0.001 0.003 – 0.008  0.006 0.002 0.003 – 0.010  0.38 0.006 0.37 – 0.39 
SBRR 0.011 0.003 0.005 – 0.017  0.008 0.003 0.003 – 0.013  0.47 0.007 0.45 – 0.48 

SBER-RE 0.011 0.003 0.006 – 0.019  0.009 0.004 0.003 – 0.016  0.37 0.007 0.36 – 0.38 
1„ : additive genetic variance; 2„: permanent environmental variance; 3„: residual variance; 4Mean: posterior 

mean; 5SD: posterior standard deviation; 6HPD95%: highest posterior density interval at 95%. 
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Table 15. Estimates for heritability (standard deviation) in different Iberian pig populations by different authors applying different models. 

Trait Population Estimates (SD1) Model Author(s) 

TB2 

RE11, RC12, BHC13 and 
BHP14 

0.07 (0.02) Repeatability animal model García-Casco et al., (2012) 

Entrepelado 0.140 (0.022) Multiple population repeatability model Noguera et al. (2019) 
Retinto 0.009 (0.017) Multiple population repeatability model Noguera et al. (2019) 

Torbiscal 0.086 (0.022) Multiple population repeatability model Noguera et al. (2019) 
     

TB<2
3 RE, RC, BHC and BHP 0.07 (0.02) Multi trait animal model García-Casco et al. (2012) 

     
TB>3

4 RE, RC, BHC and BHP 0.10 (0.02) Multi trait animal model García-Casco et al. (2012) 
     
     

NBA5 
 

RE, RC, BHC and BHP 0.06 (0.02) Repeatability animal model García-Casco et al. (2012) 
Torbiscal 0.07 (0.01) Repeatability animal model Fernández et al. (2008) 

Entrepelado 0.131 (0.022) Multiple population repeatability model Noguera et al. (2019) 
Retinto 0.084 (0.017) Multiple population repeatability model Noguera et al. (2019) 

Torbiscal 0.078 (0.021) Multiple population repeatability model Noguera et al. (2019) 
 0.06 (0.02) Bivariate animal model Muñoz et al. ( 2018) 

Retinto 0.07 (0.07) Single trait Animal model Corral et al. (2010) 
Torbiscal 0.06 (0.025) Single trait animal model Rodriguez et al. (1994) 
Torbiscal 0.06 (0.025) Animal model with maternal effects Rodriguez et al. (1994) 

     
NBA1

6 Torbiscal 0.13 (0.02) Repeatability animal model Fernández et al. (2008) 
      

NBA2
6 Torbiscal 0.09 (0.02) Repeatability animal model Fernández et al. (2008) 

     
NBA3

6 Torbiscal 0.10 (0.02) Repeatability animal model Fernández et al. (2008) 
     

NBA4
6 Torbiscal 0.06 (0.02) Repeatability animal model Fernández et al. (2008) 
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NBA5

6 Torbiscal 0.11 (0.03) Repeatability animal model Fernández et al. (2008) 
     

NBA>5
7 Torbiscal 0.09 (0.01) Repeatability animal model Fernández et al. (2008) 

     
NBA<2

8 RE, RC, BHC and BHP 0.06 (0.02) Multi trait animal model García-Casco et al. (2012) 
     

NBA>3
9 RE, RC, BHC and BHP 0.11 (0.02) Multi trait animal model García-Casco et al. (2012) 

     
SB10 Retinto 0.02 (0.05) Single trait animal model Corral et al. (2010) 

1SD: standard deviation; 2TB: total born; 3TB<2: total born at first and second parities; 4TB>3: total born at third and subsequent parities; 5NBA: number of born alive; 6NBA1-2-3-4-5 : number of born 
alive at first, second, third, fourth and fifth parity, respectively; 7NBA>5: number of born alive at fifth and subsequent parities; 8NBA<2: number of born alive at first and second parities; 9NBA>3: 
number of born alive at third and subsequent parities; 10SB: stillborn; 11RE: Portuguese Red Ervideira strain;  12RC: Portuguese Red Caldeira strain; 13BHC: Black Hairless Campanar strain; 14BHP: 
Black Hairless Puebla strain.  

 

 

 

 

 


