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Abstract

Emissions of gaseous forms of nitrogen from soil, such as nitrous oxide (N20) and nitric oxide
(NO), have shown great impact on global warming and atmospheric chemistry. Although in
soil both nitrification and denitrification could cause N2O and NO emissions, most studies
demonstrated that denitrification is the dominant process responsible for the increase of
atmospheric N20, while nitrification produces mostly NO. The use of nitrification inhibitors
(NIs) has repeatedly been shown to reduce both N2O and NO emissions from agricultural soils;
nevertheless, the efficiency of the mitigation effect varies greatly. It is generally assumed that
nitrification inhibitors have no direct effect on denitrification. However, the indirect impact,
due to the reduced substrate (nitrate) delivery to microsites where denitrification occurs, may
have significant effects on denitrification product stoichiometry that may significantly lower
soil-borne N20 emissions. Soil-water status is considered to have a remarkable effect on the
relative fluxes of nitrogen gases. The effect and mechanism of NI on N20O, NO and N2 emission
under different soil water-filled pore space (WFPS) is still not well explored. In the present
study, we conducted a soil incubation experiment in an automated continuous-flow incubation
system under a He/O2 atmosphere. Ammonium sulfate was applied with and without NI
(DMPP) to a permanent UK grassland soil under three different soil moisture conditions (50,
65, and 80% WEFPS). With every treatment, glucose was applied to supply enough available
carbon for denitrification. Emissions of CO2, N2O, NO and N2 were investigated. Additionally,
isotopic signatures of soil-emitted N2O were analyzed. Generally, higher WFPS led to higher
N20 and NO emissions, while N2 emissions were only detected at high soil moisture condition
(80% WEFPS). Different processes were responsible for N2O and NO emission in different
phases of the incubation period. The application of DMPP did significantly reduce both N2O
and NO emissions at all three soil moisture conditions. Furthermore, DMPP application

increased N2 emissions and decreased the N2O/(N20O+N2) product ratio at 80% WEFPS.
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1. Introduction

Emissions of nitrogenous gases from agricultural soil, such as nitrous oxide (N20), nitric
oxide (NO) and dinitrogen (N2), represent a loss of N fertilizer and a reduction of plants N use
efficiency (Bouwman et al., 2013). Grasslands, which are the dominant global ecosystem and
cover 17% world surface, are also one of the main sources of N2O and NO emissions (Cardenas
et al., 2007; Stehfest and Bouwman, 2006). Both N2O and NO have great impact on global
environmental change and atmospheric chemistry. Nitrous oxide has a global warming
potential of about 300 times that of CO:z and is considered as the major cause of ozone layer
depletion in the 21 century (Bouwman et al., 2002; Ravishankara et al., 2009). Global
anthropogenic N2O emissions are estimated as approx. 6.5 Tg N yr ' in 2010 (IPCC, 2013), of
which soils are the largest source (Ciais et al., 2014). Although both nitrification and
denitrification could produce N20 in soil, recent studies suggested that denitrification is the
dominant process responsible for the increase in atmospheric N2O (Baggs, 2008). Denitrifying
activity could be exhibited by both bacteria and fungi. However, fungal denitrification
pathway, which recently has been found to be a major process in the nitrogen cycle, is not
capable of reducing N2O to N2 (Laughlin and Stevens, 2002; Shoun et al., 2012; Sutka et al.,
2008). Anthropogenic nitrogen oxide (NOx =NO+NOz) emissions were estimated as approx.
43 TgN yr'in 2010 globally (IPCC, 2013). The atmospheric lifetime of NOx is relatively short
(1-2 days), but as they are readily deposited on land and water surfaces (soil, plants, open
waters), they lead to eutrophication and acidification of ecosystems (Crutzen, 1979). A recent
study indicates that NO also plays an important role in haze formation of urban air pollution
(Guo et al., 2014). In soil, NO can be produced by both nitrification and denitrification, as NO
is not only a facultative by-product of the nitrification pathway, but also an obligatory
intermediate of the denitrification pathway (Skiba et al., 1997). Nevertheless, nitrification is

believed to be the main source of NO, as the diffusion of NO is restricted at high soil moisture
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contents and NO produced from denitrification is reduced to N2O before it escapes to the soil
surface (Davidson, 1992; Firestone and Davidson, 1989; Skiba et al., 1997). Yet some studies
showed that denitrification could also be a major source of NO emission from soils (Cardenas
et al., 1993; Loick et al., 2016; Pereira et al., 2010; Sanhueza et al., 1990).

Nitrification inhibitors (NIs) have been widely tested and studied for the purpose of
decreasing nitrate leaching and mitigating greenhouse gas (GHG) emissions. Nitrification
inhibitors are a group of chemical compounds that can reduce the bacterial oxidation of
ammonium (NH4") to nitrite (NO2") in the soil by inhibiting the activity of ammonia-oxidizing
bacteria, e.g., of the genus Nitrosomas, in the soil (Zerulla et al., 2001). Most of NIs inhibit the
first enzymatic step of nitrification, which is catalyzed by the enzyme ammonia
monooxygenase (AMO) (Subbarao et al., 2006). A large number of NIs are known, but only a
few of them, such as dicyandiamide (DCD) and 3, 4-Dimethylpyrazole phosphate (DMPP),
have been widely and commercially used (Ruser and Schulz, 2015). The addition of NIs has
been frequently reported to reduce both N2O and NO emissions from agricultural soils,
although their efficiency varies greatly in different environments (Pereira et al., 2010; Ruser
and Schulz, 2015). Interestingly, some authors reported that the use of the NI reduced N20O
emission more effectively under higher soil moisture level, which is more favoured by
denitrification (Di et al., 2014; Menendez et al., 2012). Although previous studies showed that
most NIs did not have a direct effect on denitrification (Bremner and Yeomans, 1986; Miiller
et al., 2002), other studies suggested that denitrification-derived N2O emission may also be
affected by NIs indirectly via altering the product stoichiometry of denitrification (Hatch et al.,
2005; Wu et al., 2017). As a key process of the global N cycle, denitrification leads to
significant N losses from agricultural systems by converting NO3™ and NO2™ into NO, N2O and
N2 (Bouwman et al., 2013). However, the product stoichiometry of denitrification, which is

usually studied as N20/(N20+N2) product ratio, is affected by factors such as soil NOj3
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concentration, water-filled pore space (WFPS), and soil available carbon (C) (Weier et al.,
1993). The effects of these factors on the product ratio are still not well understood, as the
direct and precise measurements of N2 production via denitrification in soils are challenging
due to the high N2 abundance in the atmosphere.

The difference between °N at the central (a position) and the terminal N atom (B position)
in the asymmetric N2O molecule ('°N site preference, SP) has been shown as useful indicators
of N20 production and consumption processes in soils (bacterial nitrification: 34-37%o,
bacterial denitrification: -10-0%o0) (Sutka et al., 2008, 2006; Toyoda et al., 2005). The
advantages of this isotopic technique are that it is a non-invasive, source-process tracking
method, enabling convenient low-cost gaseous sampling, which facilitates investigation of both
laboratory incubation and field-scale experiments (Decock and Six, 2013). The limitations of
this technique have also been demonstrated, e.g., the uncertainties of N2O source partitioning
due to the overlapping or unknown SP signature of various pathways (Baggs, 2008; Decock
and Six, 2013).

The first objective of this study was to examine the effectiveness of NI on mitigating N2O
and NO emissions at different soil moisture conditions in a UK grassland soil, as NIs have been
widely used in grazed grassland. Furthermore, as the soil has been studied for different N pools
that involved for nitrogenous gases emissions in our previous study, we further explored the
effect of different soil moisture conditions on the fluxes, relationship and sources of N2O, NO
and N2, in order to gain a better understanding of the different processes involved, thereby

helping to develop better management strategy to further limit N2O and NO emissions.

2. Material and methods

2.1 Soil
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The soil was collected from a permanent grassland in North Wyke, Devon, UK (50° 46' 10"
N, 3° 54' 05" E) to a depth of 15 cm in November 2013. The soil was classified as clayey
pelostagnogley soil (Clayden and Hollis, 1985) (44% clay, 40% silt, 15% sand) and contained
0.5% total N and 11.7% organic matter, with a pH of 5.6. Root and plant residues were removed

and the soil was sieved to <2 mm and stored at 4 ° C since 7 days before rewetting.

2.2 Automated soil incubation experiment

The incubation experiment was carried out at Rothamsted Research, North Wyke, UK, in a
denitrification incubation system using a He/O2 atmosphere (Cardenas et al., 2003; Loick et
al., 2016). Soils were packed into 12 stainless steel vessels of 140 mm diameter at a bulk density
of 0.8 g cm™, which is similar to previous studies (Loick et al., 2016; Meijide et al., 2010). The
atmospheric N2 was removed by flushing the soil core with a mixture of He:O2 (80:20) in order
to measure N2 fluxes. The experiment consisted of 6 treatments in total, i.e. soil amended with
mineral N fertilizer (ammonium sulfate) and glucose (AS), or NI (DMPP) mixed with
ammonium sulfate and glucose, at 50, 65, and 80% WFPS, respectively (AS50, DMPP50,
AS65, DMPP65, AS80, DMPP80). The incubation experiment was conducted in two
consecutive runs due to limited numbers of vessels. Prior to incubation, the soil was pre-
incubated for 7 days at the final WFPS to allow microbial activity to stabilize, taking the later
amendment into account. Ammonium sulfate was applied at a rate of 150 kg N ha™! and glucose
was applied at a rate providing 400 kg C ha'. DMPP was added at rate of 1.5 kg ha’'. The
amendment was dissolved in 50 ml water and added to each vessel. The temperature of the

incubation cabinet was set at 22 °C.

2.3 Measurement of trace gases
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For online trace gas concentration analysis of N2O and CO2, gas samples from each
incubation vessel were measured every two hours and quantified using a gas chromatograph
(Clarus 500, Perkin Elmer Instruments, Beaconsfield, UK), fitted with a flame ionization
detector (FID) and methanizer for the quantification of CO2, and an electron capture detector
(ECD) for N20. Nitric oxide (NO) emissions were quantified using a chemiluminescence
analyzer (Sievers NOA280I. GE Instruments, Colorado, USA). Dinitrogen (N2) emissions were
measured by using a gas chromatograph fitted with a helium ionization detector (VICI AG
International, Schenkon, Switzerland) and are presented as average fluxes per day. The flow

rate from each incubation vessel’s outlet was measured daily (Loick et al., 2016).

2.4 Isotopomer analysis

Gas samples for isotopic analysis were taken from each incubation vessel by attaching 120-
mL serum bottles to the outlets in flow-through mode (with an inlet and an outlet needle) for
approx. 1 hour during the incubation time. The N2O §'NI (i.e., the average §'°N over the
N20 molecule), 8'*Nq (i.e., 8'°N at the central position of the N2O molecule), and §'30 isotope
signatures were then determined by analysing m/z 44, 45, and 46 of intact N2O" molecular ions,
and m/z 30 and 31 of NO" fragment ions (Toyoda and Yoshida, 1999) on an isotope ratio mass
spectrometer (IsoPrime 100, Elementar Analysensysteme, Hanau, Germany). The §'°N at the
terminal position of the N2O molecule, 8'°Ng, was calculated according to §'°Ng = 2-§!>Nbulk
515N The details for correction and calibration are described in Heil et al. (2015). The isotope
effects during N2O reduction on N20 SP values have been calculated using a Rayleigh-type
model, assuming that isotope dynamics followed closed-system behaviour. The model can be

described as follows:

C
SPn20-r = SPN20-0 T 7 In (c_)

0
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In this equation, SPn,o0-r is the SP value of the remaining substrate (i.e. N2O), SPxn.0-0 is the
SP value of the initial substrate, #r is the net isotope effect (NIE) associated with N2O reduction,
and C and Co are the residual and the initial substrate concentration (i.e. C/Co expresses the
N20/(N20+N2) product ratio). In this study an NIE of -4%o. was used based on previously

reported average values (Lewicka-Szczebak et al., 2014).

2.5 Analyses of soil

Soil samples were taken at the beginning and end of each incubation to determine the NH4"
and total oxidised N (TON= NO3+NO2") contents. It is assumed that total oxidised N is nearly
exclusively made of NO3", as NO2™ contents in the soil samples are negligibly small (Burns et
al., 1996). The soil samples were extracted with 2 M KCI by shaking for 1 h. The extracts were
then filtered through Whatman 602 filter paper (Searle, 1984). The concentrations of NHa4" and
NOs™ in soil extracts were measured colorimetrically using a Skalar SANLPLUS Analyser

(Skalar Analytical B.V., Breda, Netherlands).

2.6 Calculations and statistical analysis

The total gas emissions were calculated by linear interpolation between measured fluxes.
Emission rates are expressed as arithmetic means of the four replicates. Tukey’s HSD post-hoc
tests were used to reveal significant pairwise differences among treatments. Statistical analyses

were done using R, with P < 0.05 used as the criterion for statistical significance.

3. Results

3.1 Gas fluxes
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The incubation period was characterized by three phases with different nitrogen gas
emission patterns (Figs. 1, 2 and 3): phase I (0-5 days) with a sharp and high N2O emission
peak, but low or no NO and N2 emissions; phase II (5-20 days) with low or no N20 and NO,
but relatively high N2 emissions; and phase III (20-43 days) with slowly decreasing N2
emission and slowly increasing N2O and NO emissions.

Nitrous oxide emissions were consistently low at 50% WPFES during all three phases in both
AS and DMPP treatments (Fig. 1). Maximum average fluxes of 12.0+1.3 and 7.2+0.1 g N ha'!
day! were observed at the end of phase III in AS and DMPP treatments at 50% WFPS,
respectively. At 65% and 80% WFPS, the first N2O emissions peaks both occurred in phase |
about 1.5 days after amendment application. At 80% WFPS the peak was approx. 10-fold larger
than at 65% WEFPS. The fluxes decreased drastically after the peak and showed constant low
emissions rates of approx. 10-15 g N ha™! day! till the end of phase II. The fluxes then started
to increase gradually and peaked at the end of phase III. The second N2O peak at 65% WFPS
was significantly larger than the first peak, while at 80% WFPS it was much lower than the
first one but lasted much longer. During the observation period the total N2O emissions
increased with increasing WFPS, while DMPP significantly reduced total N2O emissions
compared with the AS treatments at all three different soil moisture levels.

Fluxes of NO were much lower than those of N2O (Fig. 2), and total NO emissions were
about 8% of total N2O emissions. NO fluxes showed a gradually increasing trend in all
treatments during the 43 days incubation period. They were very low during phase I in all
treatments, then started to rise after phase I, with higher NO fluxes in the AS treatments
compared to the DMPP treatments (Fig. 2). In all treatments, NO emissions peaked closed to
the end of phase III. Larger average NO emissions were observed in treatments with higher
soil moisture. The application of DMPP significantly reduced NO emissions compared with

the AS treatments at all three soil moisture conditions.

10



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Gaseous nitrogen (N2) production occurred only at 80% WFPS, where higher N2 fluxes
were observed in the DMPP treatment than in the mineral-N only treatment (Fig. 3). In phase
I, the first N2 fluxes peaked at similar time to N2O and then decreased until about day 4. In
phase II the N2 fluxes rose again and showed another peak with a maximum at day 12 and then
started to decrease and stayed low till the end of the incubation. The cumulative N2 emissions
were 16.4% higher (albeit not statistically significant) in the DMPP treatment compared with
the AS treatment.

Carbon dioxide emissions peaked at about 1-1.5 days after amendment application and
decreased immediately to about 10 kg C ha'! day™! after 5 days and stayed low for the rest of

the incubation for all treatments (Fig. S1).

3.2 NH4" and NO3™ concentrations in soil

Table 1 shows the concentrations of ammonium (NH4") and nitrate (NO3") in the soil before
and after the incubation. The initial soil NH4" and NOs™ content was 4.2+0.03 and 182.84+2.3
mg N kg™ dry soil, respectively. At the end of the incubation, NO3™ concentrations at 65%
WEPS and 80% WFPS in AS and DMPP treatments were significantly higher than the initial
NOs™ concentration, while no significant difference was found between those at 50% WFPS
and the initial NO3™ concentration. The NO3™ concentrations at all three soil moisture levels
were significantly lower in DMPP treatments compared to those without inhibitor. Ammonium
contents at the end of the incubation were larger than at the beginning in all treatments, and
they were larger by 22, 89 and 108% in DMPP treatments compared to the AS treatments at

50, 65, 80% WEFPS, respectively (although not statistically significant at 50 and 65% WEFPS).

3.3 Isotopic signatures of soil-emitted N2O

11
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The SP values ranged from -6.4 to 41.0%o in all treatments during the incubation period
(Table 2). At day 0, the N2O SP values were lower in the higher WFPS treatments, indicating
a higher bacterial denitrification proportion of N2O at these soil moisture levels. However, at
80% WPFS, where the highest N2O peak occurred on day 1, the SP values were 24.4%o0 and
35.4%0 in AS and DMPP treatments, respectively, indicating that other major sources
(nitrification or fungal denitrification) were involved in the N2O production. During phase 11
and phase II1, the SP values at all treatments were relatively stable, ranging from 27.9 to 41.0%o

at 50% WEFPS, from 26.7 to 32.9%o at 65% WFPS, and from 19.3 to 27.7%. at 80% WEFPS.

4. Discussion

4.1 Tracing N20, N2 and NO emissions pathways under different WFPS conditions

Soil moisture is a key factor that determines N cycle in soils (Galloway et al., 2004). Several
studies found that soil N mineralization rate increased with increasing soil moisture (Bengtson
et al., 2005; Zaman and Chang, 2004), while N immobilization was less sensitive to soil
moisture (Booth et al., 2005). Nevertheless, compared to N mineralization and immobilization,
nitrification rate is more sensitive to moisture, and is believed to increase with increasing soil
moisture to a certain content and decline when moisture is above it (Manzoni et al., 2012). It
is generally accepted that under oxic conditions nitrification is the main process for N2O
production, while denitrification dominates N2O production under anoxic conditions. In our
study higher soil moisture levels led to higher N2O emissions, which is in agreement with an
earlier study by Davidson et al. (2000), who demonstrated that the highest N2O fluxes should
be expected when denitrification dominates at 60-90% WFPS. We assume that the much higher
N20 emissions at 80% WFPS compared with lower soil moisture treatments in phase I were

due to enhanced denitrification, which was triggered by the addition of glucose, oxygen
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depletion, and the soil residual NOs3™ (Fig. 1). This is supported by the initial peaks of N2
emissions at 80% WEPS in both AS and DMPP treatments, and the absence of N> emission in
the lower soil moisture treatments (Fig. 3). Furthermore, the smaller SP values observed on
day 0 (Table 2) at higher soil moisture also indicated that a larger proportion of N2O was
initially derived from bacterial denitrification (Sutka et al., 2006). Although the smaller SP
values might also be interpreted as nitrifier denitrification, it is unlikely the case for our study
due to the high available C and high soil moisture condition in phase I (Kool et al. 2011). It
should be noted that in our experiment the nitrate concentration in the initial soil was quite
high, probably due to the mineralization during pre-incubation. The high nitrate content may
have affected the N2/N2O ratio towards higher N2O portions in phase I (Senbayram et al., 2012).
Therefore, the results of the same experiment using a soil with lower nitrate content might be
quite different.

According to the SP values (Table 2), the major source of the N2O peak in phase I at WFPS
80% could have been either nitrification or fungal denitrification, as the overlapping SP
signature between the processes makes it impossible to distinguish these two N2O production
pathways (Sutka et al., 2008). However, the fact that the NI showed no effect on the first N2O
emissions peak suggested that the source was unlikely nitrification (Fig. 1). Much larger N2
emissions occurred at 80% WFPS in phase II, which is in line with Davidson et al. (2000), who
suggested N2 will become the main end product of denitrification when soil moisture is above
80% WEFPS. It has been found that nitrate can inhibit N2O reduction to N2 and the reduction
process only occurs when nitrate content in soil is low (Cleemput, 1998; Senbayram et al.,
2012). Therefore, in phase II the observed much larger N2 emissions at WPFS 80% indicated
the soil NO3™ content may have fallen below a threshold value at the denitrifying microsites
(Fig. 3). At this high soil moisture level, and in combination with the abundant available C and

low NOs™ concentration, this would lead to a low N20/(N20+N2) product stoichiometry of

13



291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

denitrification (Senbayram et al., 2012). The N2O reduction process was likely conducted by
bacterial denitrification, as most of the fungal denitrification systems seem to lack N2O
reductase, leaving N2O as the final product (Shoun et al., 2012). The large decrease of N2 fluxes
after phase II can be explained by the depleted available C as shown by the smaller CO2
emissions compared to phase 1.

An increasing trend of N2O fluxes was observed in every treatment in phase III (Fig. 1).
This increase is probably due to the slowly growing nitrifying bacteria, as the grassland soil
used in the current study has not been fertilized for over 20 years. A similar delay in N2O
emission after fertilization was observed by Briimmer et al. (2008) for a previously unfertilized
agricultural soil in Burkina Faso after adding ammonium nitrate to the soil. In fact, at the end
of phase III, emissions had still not gone down to background levels. Nevertheless, the
emissions were smaller, slower and of longer duration compared to the first peak. The
incubation was therefore stopped as the system seemed to have reached steady state. This may
affect the estimation of the NI’s reduction potential, but should have no significant effect on
our final conclusion.

In our study the high average N2O SP values observed at all three soil moisture conditions
during phase III indicated that N2O emissions mainly originated from nitrification or fungal
denitrification (Table 2). It could be assumed that the larger N2O emissions observed at high
soil moisture condition were possibly produced through denitrification (Bollmann and Conrad,
1998). However, in our study the lower NH4" at the end of the experiment with rising soil
moisture content indicated nitrification was likely also enhanced by higher soil moisture (Table
1). Although the high soil moisture is generally believed to favor denitrification, it could also
accelerate nitrification if the conditions are still oxic, which might occur through diffusion of
atmospheric oxygen from the headspace in our study (Cheng et al., 2014; Chen et al., 2015;

Loick et al., 2016). Furthermore, the fact that the NI significantly decreased N2O emission in
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this phase at all three soil moisture conditions would indicate that nitrification is an important
process in regulating N2O emissions. The marginal N2 fluxes and the smaller SP values
observed at WFPS 80% during phase III indicate that very likely bacterial denitrification was
also involved. Thus, we conclude that both nitrification and denitrification were responsible
for the observed larger N2O emissions at 80% WFPS soil moisture condition.

It was suggested that the highest NO fluxes should be expected at 30-60% WFPS, when
nitrification dominates, as the NO can diffuse out of the soil before it is consumed, whereas at
high soil moisture, when gas diffusion is lower, NO emission should be low, as it is reduced to
N20 before escaping the soil (Bollmann and Conrad, 1998; Davidson et al., 2000; Skiba et al.,
1997). In the present study, however, the NO emissions significantly increased with increasing
WEPS from 50% to 80%, which therefore suggests that the larger amounts of NO at 80% WFPS
are probably produced through denitrification (Fig. 2). Although many studies did suggest that
emitted NO is mainly produced by nitrification (Scheer et al., 2008; Skiba et al., 1997, 1993),
several studies have challenged this assumption and found denitrification could also be a major
source of NO emission from soils (Cardenas et al., 1993; Loick et al., 2016; Pereira et al., 2010;
Sanhueza et al., 1990). To distinguish the relative contributions of nitrification and
denitrification to NO and N20 production, the N2O/NO emission ratio has been proposed as a
useful indicator. When the N2O/NO emission ratio is <1, soil conditions are favourable for
nitrification, whereas emission ratios >10 are associated with denitrification and restricted
aeration (Lipschultz et al., 1981; Skiba et al., 1993). During the first phase of our incubation
experiment, the average N2O/NO ratios in AS treatments were 70, 151, and 383 at 50, 65, 80%
WEFPS, respectively. This clearly reinforced our assumption that N-fluxes were mainly
associated with denitrification in phase I, when increasing soil moisture increased the
contribution of denitrification. In phase II and III, when NO emissions increased sharply, the

average N2O/NO ratios were 18, 22, and 7 at 50, 65, 80% WFPS, respectively. The significantly
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lower ratios at 80% WFPS confirm our hypothesis that the higher NO emissions at 80% WFPS
might be caused by a higher nitrification rate, as mentioned previously, although both
nitrification and denitrification were likely involved. Similarly, Cheng et al. (2014) reported
NO and N20 emissions of a forest soil that were favoured at high soil moisture (up to 90%
WHC), whereas both NO and N20 emissions showed a positive relationship with gross
nitrification rates, indicating that nitrification was likely the dominant process. Furthermore,
the significant mitigation effect of NI on NO emissions at all three soil moisture conditions

also suggests the importance of nitrification as an important pathway in our study.

4.2 Effect of NI on N20O, NO and N2 emissions

Nitrification inhibitor application significantly reduced total N2O emissions during
observation period at all three soil moisture conditions. This agrees with recent review and
meta-analysis studies which suggested that NIs are highly effective for reducing N2O emissions
at various soil conditions (Gilsanz et al., 2016; Qiao et al., 2015; Ruser and Schulz, 2015). In
our study, the NI showed no significant effect on N2O and N2 emission in phase I, in line with
previous reports which showed that NIs did not have a direct effect on denitrification (Bremner
and Yeomans, 1986; Miiller et al., 2002). However, the N20O/(N2+N20) product ratios in the
NI treatments were much smaller than the ratios in the AS treatments (Fig. 3). We assume this
is because the use of NI limited the NOs™ supply to the soil microsites, the lower NO3
concentration and available C would therefore decrease the N2O/(N2+N20) ratio due to the
competitive effect of NOs™ and N20O as terminal electron acceptors during denitrification
(Senbayram et al., 2012 ; Wu et al., 2017).

The assumption that NIs could reduce N2O emission under denitrification conditions by
decreasing the N2O/(N2+N20) ratio has been brought forward by several authors, but has still

not been directly proven (Ruser and Schulz, 2015; Wu et al., 2017). Hatch et al. (2005) found
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that two slurry treatments with NIs (DCD and DMPP) could significantly increase N2 emissions
and reduce N20O/(N2+N20) ratios compared with slurry-only treatment. However, the results
were observed in an incubation experiment conducted under anoxic conditions (100% helium
atmosphere). In the present study, although the soil moisture was high, the atmosphere of the
soil surface was kept oxic (20% oxygen and 80% helium), which is more comparable with the
field condition. To the best of our knowledge, our study is the first one showing that NI could
promote N2 emissions under oxic conditions.

Most studies investigating the use of Nls did not consider the mitigation effect on NO
emissions, which can be significant after fertilization (Pereira et al., 2015). Several recent
studies reported a wide range of NO mitigation effects ranging from 35 to 80% when the NI
was applied with mineral fertilizer N or slurry (Akiyama et al., 2010; Pereira et al., 2015, 2010
). In our study, application of the NI significantly reduced NO emissions at all three soil
moisture conditions, which is likely due to the inhibition effect of NI on nitrification process,
indicating that the overlooked mitigation effect of NI on NO emissions should be taken into

account when evaluating NI’s mitigation effect on GHG emissions.

In this study the effect of NI on NHj3 volatilization was not evaluated, nevertheless, it should
be noted that the beneficial effect of NI application in decreasing N2O and NO emissions might
be overestimated by the potentially increased NH3 volatilization, especially when applied with

ammonium-based fertilizer (Kim et al., 2012; Lam et al., 2017).

5. Conclusions

The combination of the measurement of N20, NO and N2 fluxes and N20 isotopomer
analysis provided insight into the different pathways involved in the production of nitrogen
gases in soil at different soil moisture conditions. Our study showed that higher soil moisture

in a grassland soil was associated with higher N2O, NO and N2z emissions, and those different
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processes were responsible for N2O and NO emissions in three phases of the incubation period.
To the best of our knowledge, our study is the first showing that NI could indirectly affect the
product stoichiometry of denitrification under oxic conditions. The fact that the NI significantly
reduced both N2O and NO emissions at all three soil moisture conditions suggests that NIs
could be used as an effective approach to mitigate GHGs emissions at various soil moisture

conditions.
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Figures and Tables

Figure 1. Fluxes of N20 of soil with only mineral-N at 50% WFPS (AS-50), or mineral-N+
nitrification inhibitor at 50% WFPS (DMPP-50), or only mineral-N at 65% WFPS (AS-65), or
mineral-N-+nitrification inhibitor at 65% WFPS (DMPP-65), or only mineral-N at 80% WFPS
(AS-80)), or mineral-N+nitrification inhibitor at 80% WFPS (DMPP-80), during the 43 days
of the incubation experiment. Error bars show the standard error of the mean of each treatment

(n=73).

Figure 2. Fluxes of NO of soil with only mineral-N at 50% WFPS (AS-50), or mineral-N+
nitrification inhibitor at 50% WFPS (DMPP-50), or only mineral-N at 65% WFPS (AS-65), or
mineral-N-+nitrification inhibitor at 65% WFPS (DMPP-65), or only mineral-N at 80% WFPS
(AS-80), or mineral-N+nitrification inhibitor at 80% WFPS (DMPP-80), during the 43 days of
the incubation experiment. Error bars show the standard error of the mean of each treatment (n

= 3).

Figure 3. Fluxes of N20O, NO and N: of soil with only mineral-N at 80% WFPS (AS-80), or
mineral-N+ nitrification inhibitor at 80% WFPS (DMPP-80) during the 43 days of the
incubation experiment. Error bars show the standard error of the mean of each treatment (n =

3).
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Table 1 Nitrate (NO3") and ammonium (NHa4") at the end of the experiment of soil with only
mineral-N at 50% WFPS (AS-50), or mineral-N+nitrification inhibitor at 50% WFPS (DMPP-
50), or only mineral-N at 65% WFPS (AS-65), or mineral-N+nitrification inhibitor at 65%
WEFPS (DMPP-65), or only mineral-N at 80% WFPS (AS-80), or mineral-N+nitrification
inhibitor at 80% WFPS (DMPP-80), during the 43 days of the incubation experiment. Means
denoted by a different letter in the same column differ significantly according to the Tukey’s
HSD post-hoc tests at alfa=0.05. The capital letters indicate comparison among different soil

moisture levels, while the small letters indicate comparison between treatments with or without

NI at the same soil moisture level.

Parameter NOs NH4"

(mg N kg'! dry soil) (mg N kg'! dry soil)
Initial 182.842.3 4.18+0.03
AS-50 222.0+10.1 A2 249.7+63.3 A2
DMPP-50 167.74£2.5 Ab 305.0+35.4 42
AS-65 420.5+21.2 B= 87.5+56.1 B2
DMPP-65 332.4+16.7 B 165.4+65.9 Ba
AS-80 383.3+3.0 B2 64.0+11.2 B2
DMPP-80 277.9+10.4 B 139.2. £14.2 B®

24



637  Table 2 Site preference (SP) values (%o) of N2O of soil with only mineral-N at 50% WFPS
638  (AS-50), or mineral-N+ nitrification inhibitor at 50% WFPS (DMPP-50), or only mineral-N at
639  65% WFPS (AS-65), or mineral-N-+nitrification inhibitor at 65% WFPS (DMPP-65), or only
640  mineral-N at 80% WFPS (AS-80)), or mineral-N+nitrification inhibitor at 80% WFPS (DMPP-
641  80), during the 43 days of the incubation experiment. Symbol “-” represents SP values that
642  were not measured at that day, while “*” indicates missing or out of range values due to
643  analytical reasons; the standard error was not given if the replicates were less than three.
644
Phase I Phase 11 Phase III
Date Day 0 Day 1 Day 3 Day 13 Day 20 Day25 Day 30 Day 34 Day 43
AS-50 20.7+£8.4 - - - 38.243.8 | 31.6+£0.7  30.3+0.7 - 27.9+0.2
DMPP-50 * - - - * 41.0 38.0 - *
AS-65 11.3+6.0 - - - * 32.5¢1.0 28.7+1.0 - 30.9+0.8
DMPP-65 * - - - * 329 26.7 - 28.4
AS-80 2.3+0.7 244437 26.5+4.2 | 23.8+£2.6 - - - 27.7£0.9  26.2£2.0
DMPP-80 -6.4 354427  31.7£6.8 19.3+0.5 - - - 26.9+1.2  24.7+1.5
645
646
647
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