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Abstract. Data analysis techniques can be applied to discover important relations among features. This is 

the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract 

knowledge from data via decision trees. The decision trees used by the original method were built using 

classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertain-

ty measures, called credal split criteria, differs significantly from the performance obtained using the clas-

sic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathe-

matical parametric model, and other one based on a non-parametric model. The performance of the meth-

od is analyzed using a case study of traffic accident data to identify patterns related to the severity of an 

accident. We found that a larger number of rules is generated, significantly supplementing the infor-

mation obtained using the classic split criteria.  

  

Keywords: imprecise probabilities; Imprecise Dirichlet model; Non-parametric Predictive Inference 
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1 Overview 

Data mining research is concerned with the development of techniques for knowledge extraction from 

data. The extraction can be done using association rules (ARs) or decision rules (DRs). DRs are interest-

ing and useful because they are easily understood. Since their appearance in Aggraval et al. (1993), many 

approaches have emerged for DRs extraction in the context of several real-life applications with the aim 

of using the rules to support decision making processes. 

 

In order to extract all the knowledge available in a particular dataset via a set of DRs, the Information 

Root Node Variation (IRNV) was presented in Abellán et al. (2013). The main feature of this method is 

that it varies the root node to build different decision trees (DTs). The set of DRs obtained depends heavi-

ly on the set of split criteria used to build the trees. It is important to use as many different split criteria as 

possible to build different tree structures, in order to find more (and different) DRs. The useful rules ex-

tracted by different DTs could be used by road safety analysts to establish specific performance indica-

tors. 

 

It has been shown that the performance of the new split criterion based on imprecise probabilities and 

uncertainty measures, called Imprecise Info-Gain and denoted by IIG (Abellán and Moral, 2003), differs 

from the classic split criteria (Matas and Abellán, 2014). In particular, this method uses the Imprecise 

Dirichlet model (IDM) (Walley, 1991) to represent information from data. With this model, we obtain a 

convex and closed set of probability distributions (called credal set) from the data. At this point it is nec-

essary to quantify the information or uncertainty contained in that type of set. The uncertainty can arise 

from different concepts (see Li and Yu (2016)), but in our case, where credal sets are obtained, the maxi-

mum entropy function emerges as the best measure (Abellán et al. (2006), Abellán and Bossé (2017)). 

This measure is applied in the Imprecise Info-Gain criterion. 

 

More recently, the Non-parametric Predictive Inference model (NPIM) has been presented as a similar 

model based on imprecise probabilities. It has been proposed by Coolen and Augustin (2005). It is im-

portant to remark that it represents a non-parametric alternative to the IDM. It is shown in Abellán et al. 

(2014) that these two mathematical models (IDM and NPIM) can be used in a split criterion procedure to 
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build DTs. They have a similar performance for classification tasks, but since their origin (sense) is dif-

ferent, the generated trees are different. Hence, these methods generally return different sets of DRs ex-

tracted from DTs built from the same dataset. 

 

Imprecision handling is a key part of the difference between the methods mentioned above and the 

classic split criteria. This study incorporates, as a logical consequence, several different split criteria 

based on imprecise probabilities into the IRNV method. The main aim of this extension is to increase the 

amount of information extracted from a dataset in order to find all the possible DRs. 

 

Road safety is currently one of the top priorities for the government. Identifying and detecting acci-

dent patterns can provide new insights about the causes of road accidents. This valuable information can 

help governments in the implementation of road safety actions. A system that could help to extract 

knowledge from the information available would be very useful. 

 

Accident patterns can be determined using data mining techniques such as Association Rules (ARs). 

In fact, ARs have been used in the road safety field to identify accident circumstances that frequently oc-

cur together (Geurts et al., 2003; Pande and Abdel-Aty., 2009; Montella et al., 2011; Montella et al., 

2012). Decision Rules (DRs) extracted to Decision Trees (DTs) are another way to identify patterns. De 

Oña et al. (2013a) and Abellán et al. (2013) used them to study the severity of accidents.  

 

Currently, DTs are widely applied in road safety research. One of the reasons for using DTs to analyze 

the severity of traffic accidents is that the structure of a DT facilitates the extraction of DRs. The IRNV 

method, based on a set of DTs, was applied on accident datasets in López et al. (2014), obtaining an inter-

esting set of informative DRs. In this paper we will show that the information obtained using the IRNV 

method on accident datasets can improve significantly with new split criteria based on imprecise proba-

bilities and uncertainty measures. 

 

This paper is organized as follows: Section 2 is devoted to the required background knowledge and the 

data used; Section 3 describes the extended IRNV method, considering all the split criteria used; Section 

4 explains and discusses a practical case study on data about traffic accidents, and comments the results 

obtained with the extended method. Finally, the last section sets out the conclusions. 

2 Background Knowledge 

2.1 SOME MODELS BASED ON IMPRECISE PROBABILITIES: CREDAL SETS AND 

REACHABLE PROBABILITY INTERVALS 

All the theories based on imprecise probabilities (IP) share some common characteristics (see Klir 

(2006)). One of them is that the information is fully described by a lower probability function P* on a 

finite set X (with P(X) its power set), or alternatively, by an upper probability function P*. These func-

tions are always regular monotone measures (Wang and Klir, 1992), and satisfy 
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In the various special theories of IP they have additional special properties. 

One of the most general models based on IP is the model of closed and convex sets K of probability dis-

tribution functions p on a finite set X (also known as credal sets). Here, functions P* and P* associated 

with K are determined for each A  P(X) by the formulas 
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Abellán and Klir (2005) shows a relation of generality among diverse mathematical models, based on 

imprecise probabilities (belief functions, probability intervals, capacities of diverse orders, etc), being the 



model based on credal sets one of the most general models. All of these models generalize the classic 

probability theory. One of them, based on reachable probability intervals which express a special type of 

credal set, is related to the models used in this work. 

 

 

2.1.1 Reachable set of probability intervals: Cases of the IDM and the A-NPIM 

In the theory of probability intervals, we have lower and upper probabilities P* and P* that are deter-

mined for all sets A  P(X) by intervals [l(x), u(x)] of probabilities on singletons (x  X). Here, l(x) 

= ]10[}){( , xP 
 and u(x) = ]10[})({* , xP  . Each given set of probability intervals I = 

{ )]()([ x, uxl x  X} associated with a credal set K(I) of probability distribution functions p is defined 

as follows: 
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A given set I of probability intervals may be such that some combinations of values taken from the in-

tervals do not correspond to any probability distribution function. This indicates that the intervals are un-

necessarily broad. To avoid this deficiency, the concept of reachability was introduced in the theory (De 

Campos et al., 1994).  

 

A given set I is called reachable (or feasible) if and only if for each x  X and every value v(x)  

[l(x), u(y)] there is a probability distribution function p for which p(x) = v(x). The reachability of any giv-

en set I can be easily checked: the set is reachable if and only if it passes the following tests: 
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If I is not reachable, it can be easily converted to the set I’ = {[l’(x), u’(y)]  x X} of reachable inter-

vals using the following formulas: 
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for all x  X. 

Given a reachable set I of probability intervals, the lower and upper probabilities are determined for 

each A  P(X) by the formulas 
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A specific model based on reachable probability intervals is the Imprecise Dirichlet model (IDM) of 

Walley (1992). The IDM was introduced to make inferences about the probability distribution of a cate-

gorical variable. Assume that Z is a finite variable and that we have a sample of size N of independent 

and identically distributed outcomes of Z. If we want to make inferences about the probabilities, hz = p(z), 

from which Z takes its values, a common Bayesian procedure consists in assuming an a priori Dirichlet 

distribution for the parameter vector (hx), and then taking the a posteriori expectation of the parameters 

given the sample. The final expression for the inference of the probabilities has the following expression: 
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where {tz} is a set of parameters, nz is the frequency of the set of values (Z=z) in the dataset, N the sam-

ple size and s a given hyperparameter. Walley does not give a definitive recommendation for s, but he 

advocates values between s=1 and s=2. Now, to obtain minimum and maximum values of probability, the 

values 0 and 1 are considered for tz. Therefore, the credal set associated via the IDM for a variable Z 

(with values belonging to {z1,…,zk}) obtained from a dataset, can be expressed as the following K set of 

probability distributions p on Z: 
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As we can see, the IDM for multinomial data is a parametric model which depends on a hyperparame-

ter representing prior knowledge. This model has been applied to various statistical problems (see Ber-

nard, 2005). As an alternative to the IDM, Coolen and Augustin (2005) presented the Nonparametric 

Predictive Inference model (NPIM), which differs from the IDM mainly in the sense that the NPIM 

learns from data in the absence of prior knowledge, and no unjustified assumptions are required. 

 

Like the IDM, the NPIM can be used in a similar way to represent information from data. It requires 

considering a set of strong constraints and returns a set of probabilities that is not an actual credal set (see 

Abellán et al. (2011)). This characteristic of the model can be a serious drawback if we want to apply 

information measures on this type of set. To avoid this issue, Abellán et al. (2011) presented an approxi-

mate model called A-NPIM that considers the convex hull of the set of probabilities obtained using the 

NPIM and returns a credal set, that it is also a specific model of reachable probability intervals. It has 

been proved that the exact NPIM and A-NPIM have a similar performance (see Abellán et al. (2013)).  

 

The above considerations suggest that A-NPIM is more appropriate for our aims. This model provides 

a set of probabilities that is a reachable set of probability intervals, similar to the set obtained using the 

IDM. Using A-NPIM, the set of probabilities obtained can be expressed in a way that it is similar to the 

set obtained via the IDM. It is denoted by K’ in this case, and has the following expression: 
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2.2 DECISION TREES AND SPLIT CRITERIA 

A DT is a structure that can be used in classification and regression tasks. If the class variable (i.e. the 

variable under study) has a finite set of possible values, the task is termed classification; otherwise, it is 

termed regression. In the present case the class variable is the severity of the accident, so classification 

trees are developed. 

 

Within a DT, each node represents an attribute variable or feature (a characteristic of each item in the 

dataset) and each branch represents one of the values or states of this variable. A tree leaf specifies the 

expected value of the class variable. A split criterion (the criterion for branching) associates to each node 

the most informative variable which has not been selected already in the path from the root to this node. If 

the information about the class variable does not improve or there are no features left, a leaf node is added 

with the most probable class value for the partition of the dataset associated to that node. Finally, a DT 

can be interpreted as a compact set of rules about the class variable. 

 

The split criterion is a key part of a procedure to build a DT. In the literature there are many works fo-

cused on the use of classic split criteria. The most used ones are the Information Gain (IG), the Infor-

mation Gain Ratio (IGR), and the Gini Index (GInf). IG and IGR were presented in Quinlan (1986) and 

Quinlan (1993), respectively; and GInf in Breiman et al. (1984). 

 

The Imprecise Info Gain (IIG), presented in Abellán and Moral (2003), has a different performance 

when compared to the classic criteria (see Matas and Abellán, 2014). It is based on the use of imprecise 



probabilities and uncertainty measures. This criterion can be defined as follows: In a classification prob-

lem, let C be the class variable (the variable under study), {X1,…,Xm} the set of features, and X a feature; 

then  
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where K(C) and K(C|X=xi) are the convex sets of probability distributions obtained via the Imprecise 

Dirichlet Model for the C and (C|X=xi) variables respectively (for more information, see Abellán and 

Moral (2003)), and function H*(K(Z)) is the maximum Shannon’s entropy function of all the probability 

distributions that belong to set K. This measure is a well stablished measure of uncertainty on credal sets 

(Abellán et al., 2006). The H* value can be obtained using the algorithm described in Mantas and Abellán 

(2014). 

 

Also, using the maximum entropy as a measure of uncertainty, we can express a split criterion similar 

to the criterion used by the IDM as follows: 
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where K’(C) and K’(C|X=xi) are the convex sets of probability distributions obtained via the A-NPIM for 

the C and (C|X=xi) variables respectively. Here, the H* value can be obtained using the algorithm de-

scribed in Abellán et al. (2011). 

 

For simplicity, and to avoid confusion, we will refer to this new credal split criterion (IIG’) as NPIM. 

Since both criteria are obtained via credal sets, we can consider them as credal split criteria. 

 

2.3 DATA DESCRIPTION 

The data used in the case study shown here comes from the Directorate-General for Traffic (DGT). The 

study only consider accidents that occurred on two-lane rural highways in the province of Granada 

(Spain), as most accidents with injured people occur on these roads (74% of injury crashes (DGT, 

2011a)). 

 

The study period was seven years (2003-2009). A first check was performed to filter out unrealistic 

data. The accidents analyzed involved one vehicle and did not occur on intersections. The resulting data-

base contains 1,801 accidents. 
 

The class variable is the severity of the accidents (SEV). It was defined according to the level of injury 

for the worst injured occupant (following previous studies such as Chang and Wang (2006); De Oña et al. 

(2013); Kashani and Mohaymany (2011)). With the original classification of accidents by severity, there 

are 149 fatal, 723 serious and 929 minor. Since the different categories of the SEV variable are not bal-

anced and this issue affects the overall accuracy of the model (Kashani and Mohaymany (2011)), the class 

variable was re-coded in two levels: SI - accidents with slightly injured people (929); and KSI - accidents 

with killed or seriously injured people (872). 

 

Nineteen variables (see Table 1) were used for the class variable SEV in an attempt to identify the im-

portant patterns of an accident regarding its severity. The dataset includes variables describing the condi-

tions that contributed to the accident, such as roadway information (safety barriers, pavement width, lane 

width, shoulder type, paved shoulder, road markings, and sight distance), environmental information (at-

mospheric factors and lighting) and accident information (causes, day, hour, month, occupants). It also 

includes variables describing the injury severity of the accident (number of injuries and severity level of 

injuries).  

 

 



Table 1. Description of the variables in the dataset 

NUM. 

  SEVERITY 
VARIABLE/CODE VALUES/CODE TOTAL %SI %KSI 

  Fixed objects collision: CO 19 76.47 23.53 

1 Accident  

Collision with pedestrian: CP 152 33.33 66.67 
Other (collision with animals, etc.): OT 32 68.57 31.43 

 type: ACT Rollover (carriage without collision): RO 118 61.86 38.14 
  Run-off-road (with or without collision): ROR 1480 51.77 48.23 

2 Age: AGE 

≤ 20: ≤ 20 219 52.73 47.27 
[21-27]: [21-27] 492 50 50 
[28-60]: [28-60] 948 51.76 48.24 
 ≥ 61: ≥ 61 110 59.68 40.32 
Unknown: UN 32 27.59 72.41 

3 Atmospheric factors: ATF 

Good weather: GW 1540 50.58 49.42 
Heavy rain: HR 43 63.16 36.84 
Light rain: LR 161 58.75 41.25 
Other: O 57 51.06 48.94 

4 Safety barriers: BAR 
No: N 1740 48.3 54.7 
Yes: Y 61 53.6 46.4 

5 Cause: CAU 

Driver characteristics: DC 1471 48.99 51.01 
Combination of factors: COF 262 61.16 38.84 
Other: OT 29 72.73 27.27 
Road characteristics: RC 24 84 16 
Vehicle characteristics: VC 15 63.64 36.36 

6 Day: DAY 

Working day after weekend or public holiday: APH 131 57.62 42.38 
Working day before weekend or public holiday:  BPH 286 52.26 47.74 
On a weekend or public holiday: PH 532 50.36 49.64 
Regular working day: WD 852 51.05 48.95 

7 Lane width: LAW 

< 3,25 m: THI 503 46.87 53.13 
[3,25-3,75] m: MED 1264 53.2 46.8 
> 3,75 m: WID 34 58.54 41.46 

8 Lighting: LIG 

Daylight: DAY 958 55.49 44.51 
Dusk: DU 103 54.29 45.71 
Insufficient (night-time): IL 131 51.15 48.85 
Sufficient (night-time): SL 66 59.72 48.28 
No lighting (night-time): WL 543 43.1 56.9 

9 Month: MON 

Autumn: AUT 412 53.07 46.93 
Spring: SPR 440 53.64 46.36 
Summer: SUM 479 51.63 48.37 
Winter: WIN 470 47.92 52.08 

10 Number of injuries: NOI 
1 injury: [1] 1233 53.43 46.57 
> 1 injury: [>1] 568 47.35 52.65 

11 Occupants involved: OI 

1 occupant: [1] 1171 51.2 48.8 
2 occupants: [2] 374 51.48 48.52 
> 2 occupants: [>2] 256 53.71 46.29 

12 Paved shoulder: SHT 

No: N 309 49.35 50.65 
Non-existent or impassable: NE 580 50.89 49.11 
Yes: Y 912 52.74 47.26 

13 Pavement width: PAW 

[6-7] m: MED 530 53.19 46.81 
< 6 m: THI 282 45.56 54.44 
> 7 m: WID 989 52.27 47.73 

14 
Pavement markings: 

ROM 

Does not exist or was deleted: DME 168 52.35 47.65 
Separate margins of roadway: DMR 180 48.31 51.69 
Separate lanes and define road margins: SLD 1368 52.23 47.77 
Separate lanes only: SLO 85 46.59 53.41 

15 Gender: SEX 

Female: F 286 62.18 37.82 
Male: M 1513 49.61 50.39 
Unknown: UN 2 75 25 

16 Shoulder type: SHW 

< 1.5 m: THI 699 52.54 47.46 
[1.5-2.5] m: MED 898 50.28 49.72 
Non-existent or impassable: NE 204 50.57 49.43 

17 Sight distance: SID 

Atmospheric: ATM 30 67.5 32.5 
Building: BU 6 36.36 63.64 
Other: OT 12 50 50 
Topography: TOP 420 49.39 50.61 
Vegetation: VEG 13 50 50 
Without restriction: WR 1320 51.94 48.06 

18 Time: TIM 

[00:00-05:59]: [0-6) 340 48.06 51.94 
[06:00-11:59]: [6-12) 380 58.73 41.27 
[12:00-17:59]: [12-18) 591 52.77 47.23 
[18:00-23:59]: [18-24) 490 47.22 52.78 

19 Vehicle type: VEH 

Cars: CAR 1287 47.1 52.9 
Trucks: TRU 78 53.8 46.2 
Motorbikes and motorcycles: MOT 385 35.6 64.4 
Other: OT 51 50.6 49.4 

 

 

The choice of the variables and their categorization were mainly guided by previous studies (see 

Chang and Wang, 2006; De Oña et al., 2011; Montella et al., 2011). Eleven variables (BAR, CAU, DAY, 

LAW, LIG, PAS, PAW, ROM, SEX, SHT, SID) were taken directly from the original dataset (provided 

by DGT). Seven variables (ATF, TIM, DAY, OI, NOI, ACT, VEH) were re-coded in a reduced number 



of categories for ease of use. And the continuous variable AGE was transformed into a categorical varia-

ble in order to identify the relevant age group of the driver. 

 

2.4 DECISION RULES AND PARAMETERS FOR THE ACCIDENTS DATASET 

A Decision Rule (DR) can be seen as the result of the data mining process. An analyst could use DRs to 

make decisions or as an aid for decision-making. These rules can be obtained through different approach-

es (Sikora and Wróbel, 2014); such as those derived from rough set theory (Guo and Chankong, 2002); 

relational concept analysis (Dolques et al., 2016) or decision trees (Alkhalid et al., 2013), since they can 

be linearized automatically into DRs. 

 

A DR has a logical-conditional structure of the type “IF (A) → THEN (B)”, where A is the antecedent of 

the rule (in our case, a set of states of several attribute variables); and B is the consequent (in our case, a 

single state of the class variable).  

 

The extraction of DRs from a DT is an easy procedure. Each rule starts at the root node, and each vari-

able that intervenes in tree division is a part of the rule antecedent, which ends in leaf nodes as the conse-

quent (associated with the state resulting from the leaf node). The resulting state is the status of the class 

variable that shows the highest number of cases in the leaf node being analyzed. 

 

A priori, one rule is extracted from each terminal node of the tree. Later, in order to extract significant 

rules, specific parameters and thresholds are used (Abellán et al., 2013; De Oña et al., 2013a): 

─ Support (S) is the percentage of the dataset where “A & B” appear. Minimum threshold is S≥ 0.6%. 

─ Population (Po) is the percentage of the dataset where “A” appears. Minimum threshold is Po≥1%. 

─ Probability (P) is the percentage of cases in which the rule is accurate (i.e. P=S/Po expressed as per-

centage). Minimum threshold is P≥60%. 

 

The Po, P, and S thresholds for the parameters are usually selected depending on the nature of the data 

(balanced or unbalanced), significant interest in fatal crashes (rare events), and sample size (small or large 

datasets). The thresholds have been established following previous studies (De Oña et al., 2013; López et 

al., 2014; Montella et al., 2012). 

 

In the literature about association rules we can find that the Lift (L) parameter is extensively used. Lift 

relates the frequency of concurrence of the antecedent and the consequent to the expected frequency of 

concurrence under the assumption of conditional independence. If L<1, this indicates negative interde-

pendence between antecedent and consequent; L=1 indicates independence; and L>1 indicates positive 

interdependence (i.e., the number of times that the sets of items occur together is greater than it would be 

if the antecedent and consequent were independent of each other). The higher the lift, the greater the 

strength of the association rule. We found that this parameter is very interesting for our purposes. Hence, 

in this paper Lift is also used, taking into account previous studies (López et al., 2014; Montella et al., 

2012), and the minimum threshold established is L≥1.5. 

 

 

3 The IRNV extended method 

The procedure described in Abellán and Moral (2003) to build DTs can be explained as follows: Each 

node No in a DT produces a partition D of the dataset (for the root node, the entire dataset is considered). 

Also, each node No has an associated list “Г” of feature labels (features which are not present in the path 

from the root node to No). A recursive and simple procedure to build a DT can be expressed by the algo-

rithm shown in Figure 1. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each Exit state in the above procedure corresponds to a leaf node. Here, the most probable value of the 

class variable (associated with the corresponding partition) is selected. 

 

The Information Root Node Variation (IRNV) method used to extract DRs is based on the use of the 

different trees obtained through root node variation. In this method, if there are m features, and RXi is the 

feature that occupies position i by an importance order (gain of information via a split criterion), then RX i 

is used as the root to build DTi (i=1,…,m). We use the simple method for building trees as explained 

above. However, the root node is now selected directly for each tree (the rest of the build procedure re-

mains the same). Thus, we obtain m trees and m rule sets, DTi and RSi (i=1,…,m), respectively. Each RSi 

is checked using the test set to obtain the final rule set. The entire procedure is carried out using the GInf 

and IGR criteria. 

 

The process followed by this method can be explained via the following scheme: 

1. Select a split criterion (SC) to build trees. 

2. Build DTi using RXi as the root node, and SC ( i=1,…,m). 

3. Extract RSi from each DTi. 

4. Check RSi using the corresponding TEST set  Selection of rules from RSi. 

5. Extract the final rule set obtained using the SC. 

6. Change the SC and go back to step 2.  

7. Join the final rule sets using all the SCs. 

In the original IRNV method, the classic split criteria GInf and IGR were used as SCs (Abellán et al., 

2013). In this work, the imprecise split criteria IIG and NPIM have been incorporated into the IRNV 

method.  

 

In Figure 2 we can see a scheme about the procedure used by the IRNV method to the extraction of 

DRs via a split criterion. For each feature it is built a DT using it as root node. The rest of process to build 

the tree is similar to the one presented in Figure 1. Hence, for each feature we have a tree, which give us a 

Rule Set (RS). All the RSs obtained from all the DTs are validated in the test set. Only the DRs that sur-

pass the values of the thresholds (in the training set and in the test set) are considered in the Final Rule Set 

for a split criterion. If we repeat this procedure for each split criterion, we have the total set of DRs ob-

tained by the IRNV method. 

 

 

 

 

Procedure Build Tree (No, Г) 

1. If Г =Φ, then Exit 

2. Let D be the partition associated with node No 

3. Compute the value of the maximum gain of information for a feature on 

D (using a split criterion: SC) 

δ= max SC(C,X) 

4. If δ is lower than or equal to 0 then Exit 

5. Else 

6. Let Xt be the variable for which the maximum δ is attained 

7. Remove Xt  from Г 

8. Assign Xt  to node No 

9. For each possible value xt  of  Xt 

10. Add a node Nt 

11. Make Nt  a child of No 

12.  Call BuildTree (Nt , Г ) 

 

 

 

 

 

Fig. 1. Algorithm to build a DT. 



 
 

 

Fig. 2. Procedure to obtain validated DRs for each split criterion 

 

4 Experiments and Results 

Due to the large number of patterns considered, DTs have a very high risk of Type-1 errors, that is, of 

finding patterns that appear due to chance alone, to satisfy constraints on the sample data (Webb, 2007). 

To reduce this error, and following other authors (Chang and Chien, 2013; De Oña et al., 2013a; Kashani 

and Mohaymany, 2011; Montella et al., 2011), the rules extracted on the training set with the minimum 

threshold values of the parameters are validated using the test set. Following previous studies (Chang and 

Wang, 2006; Kashani and Mohaymany, 2011), the dataset was randomly split into two different sets: A 

training set used to build the models, and a test set used to evaluate the rules obtained. The training set 

contains 70% of the data (1,260 accidents, with the following severity distribution: 51.3%-KSI and 

48.7%-SI) and the test set contains the remaining 30%. Figure 2 we can also see that the final set of rules 

obtained must be validated to be considered in the Final set of rules. 

 

Next, the IRNV method is applied using the training set. The different DTs obtained by root node vari-

ation were built using the Weka platform (Witten and Frank, 2005). The procedures for building the DTs 

based on Imprecise Info-Gain and the root node variation procedure were implemented using the method 

proposed in Abellán and Masegosa (2010). DTs were built with four levels of proof; previous studies 

such as Montella et al. (2012), and Abellán et al. (2013), use the same number of levels. This number of 

levels allows safety analysts to find useful and understandable rules. 

 

Applying the IRNV method, different DTs are built by varying the root node. The first one (DT1) is 

the DT obtained when the IRNV method is not applied. This DT is built using the variable accident type 

(ACT) as the root node. Because the number of variables in the dataset is 19 (including ACT variable), 18 

new trees are constructed. DTs are created using each of the remaining variables as the root node. 

 

Table 2 provides the different DTs built using the different root nodes, as well as the number of rules 

obtained in each DT. The IRNV method was applied using the imprecise split criteria IIG and NPIM. 

 

The main results are the following: 

 

- The root node in DT1 is the ACT variable (using the IIG or NPIM criterion). This variable is also the 

root node when the classic split criteria (GInf and IIG) are used (see Abellán et al., 2014). In this tree 

(DT1), 12 rules can be extracted from the training set (see Table 2).  

 



- 278 and 281 rules are obtained using IIG and NPIM respectively. In addition, for both algorithms 

TIM is the variable that generates the highest number of rules when used as the root node (24 and 28 

rules respectively in Table 2).  

 

- When the rules are validated using the test set, the number of rules decreases. When the IIG criterion 

is used, valid decision rules (DRs) can be obtained from all the generated trees. In contrast, when using 

the NPIM criterion, DT19 (root node: the paved shoulder variable) does not generate any valid DRs (in 

other words, rules that verify the minimum thresholds set for the S, Po, P, and Lift parameters). 

 

- Using the IIG criterion, DT13 (root node: LAW variable) generates the highest number of valid rules 

(5). With the IGR criterion, DT11 (root node: DAY variable) generates the highest number of valid 

rules (6). In both cases, the number of validated rules exceeds the number of validated rules in DT1 

(DT built when IRNV method is not applied), which only validates 3 rules using IIG and 4 rules using 

NPIM.  

Table 2. Number of rules obtained with IRNV using the imprecise split criteria 

DTS 

IRNV: IIG IRNV: NPIM 
R.N R.T. V.R. R.N. R.T. V.R. 

DT1 ACT 12 3 ACT 12 4 
DT2 LIG 19 1 SEX 15 3 

DT3 SEX 13 2 LIG 18 1 
DT4 CAU 15 1 CAU 17 2 

DT5 VEH 6 3 VEH 6 - 

DT6 ATF 9 1 ATF 14 3 
DT7 PAW 14 1 PAW 15 2 

DT8 TIM 24 4 TIM 28 4 
DT9 AGE 16 3 NOI 16 3 

DT10 NOI 13 3 AGE 19 3 
DT11 DAY 17 4 DAY 18 6 

DT12 SID 20 3 SID 18 3 

DT13 LAW 14 5 LAW 10 4 
DT14 MON 18 2 MON 19 3 

DT15 OI 19 2 OI 18 2 
DT16 ROM 13 3 SHW 11 3 

DT17 SHW 16 3 ROM 16 3 

DT18 BAR 9 2 BAR 11 2 
DT19 SHT 11 4 SHT - - 

TOTAL   278 50   281 51 

R.N. Root node; R.T. Rules from the Training set; V. R. Validated Rules 
 

In Abellán et al. (2013), the IRNV method was applied with two different classic split criteria: GInf 

(based on the Gini Index) and IGR (Info Gain Ratio). Comparing the use of classic split criteria (Abellán 

et al., 2013) and imprecise split criteria (this paper) in the IRNV method, the following results are ob-

tained regarding the number of generated rules:  

 

- The IRNV method produced 227 rules using the GInf criterion and 174 rules using the IGR criterion 

(for the training set in both cases). Using imprecise criteria, a larger set of rules is obtained: 278 rules 

using IIG and 281 rules using NPIM (for the training set; see Table 2). 

 

- Analyzing the results for the test set with classic criteria, 78 rules were validated rules using Ginf, 

and 81 rules using IGR, as can be seen in Abellán et al., 2013. In this paper the Lift parameter was not 

used for the validation procedure. If this parameter is used, the number of validated rules decreases to 

30 (GInf) and 23 (IGR). Nevertheless, the imprecise criteria generate a larger number of validated 

rules in the test set, 50 using IIG and 51 using NPIM. 

 

The key results for parameters in the significant rules are the following:  

 

- Rules extracted using the classic and imprecise split criteria present probability ranges between 

60% and 100%.  



 

- The rules with the highest support (4.92%) value are obtained for the imprecise split criteria. Re-

garding the population parameter, the larger values are also obtained for the imprecise split criteria 

(with a value of 6.35% for IIG and NPIM). Finally, the rules with the highest Lift (2.1) value are 

obtained using the imprecise split criterion IIG and the classic split criterion GInf.  

 

- Regarding the mean values for each parameter (Table 3), the imprecise split criteria achieve the 

highest values for all parameters. In particular, IIG obtains the larger population value (2.04%, 

very similar to the value obtained using NPIM, 2.02%) and the larger support value (1.73%, again, 

very similar to the value obtained with NPIM, 1.72%). The NPIM split criterion generates the 

larger probability value (a mean of 87.2%) and the larger Lift (1.75).  

 

Table 3. Mean parameter values for the different split criteria  

Validated Rules  Po(%) S(%) P(%) Lift 

IIG: 51 2.04 1.73 86.37 1.72 

NPIM: 50 2.02 1.72 87.16 1.75 

Ginf: 30 1.81 1.53 86.09 1.71 

IGR: 23 1.97 1.63 84.38 1.70 

 

 

Table 4 shows the number of rules shared between the different split criteria. The number of rules ac-

cording to the severity of the accident (SI or KSI) is also indicated. NPIM and IIG are the split criteria 

that share the greatest number of rules (36 rules in Table 4). The number of rules identified using IIG that 

are also identified using GInf is lower (13 rules), and with IGR only 6 rules are shared. The number of 

rules identified using NPIM that are also identified with the classic split criteria is 12, and 1 for GInf and 

IGR respectively. 

Table 4. Number of rules shared by the different split criteria  

Validated Rules 

Split Criteria 
Imprecise Classic 

IIG NPIM GInf IGR 
IIG: 50 (22 SI/28 KSI) - 36 (17 SI/19 KSI) 12 (6 SI/ 6 KSI) 6 (5 SI/1KSI) 
NPIM: 51 (27 SI/24 KSI) - - 13 (8 SI/ 5 KSI) 1 (1 SI /0 KSI) 
GInf: 30 (12 SI/18 KSI) - - - 3 (2 SI/1 KSI) 
IGR: 23 15 SI/8 KSI) - - - - 

 

So, using these new split criteria in the IRNV method, new and interesting information has been ob-

tained from the same dataset. 

 

Regarding the variables identified using the different split criteria, more variables were identified in 

the rules using NPIM and IIG than using only the GInf or IGR criteria. For example, the following new 

variable statuses in the rules are identified when imprecise split criteria are used: ROM=SLO (this status 

appears when the IIG criterion is applied); ROM=DMR (appears with IIG and NPIM). 

4.1 SAFETY RULES DESCRIPTION 

 

KSI accidents are rare events and they are the most important with regard to road safety. For this reason, 

only severe and mortal accidents (KSI rules) are considered in the safety analysis. Therefore, 28 KSI rules 

obtained using the IIG criterion (of the 50 KSI/SI rules) and 24 rules obtained using the NPIM criterion 

(of the 51 KSI/SI rules) are analyzed.  

 

 

 

 

 



Table 5. KSI rules using imprecise criteria. 

Num 
Split 

criterion 
Antecedent of the rules Po(%) S(%) P(%) Lift 

1 IIG-NPIM ACT=ROR ; VEH=MOT ; SHT=Y ; OI=[1] 5,56 4,37 78,57 1,53 
2 IIG-NPIM ACT=ROR ; VEH=MOT ; SHT=Y ; NOI=[1] 5,56 4,37 78,57 1,53 
3 IIG-NPIM ACT=ROR ; VEH=MOT ; SHT=Y ; LIG=WL 2,30 2,06 89,66 1,75 
4 IIG-NPIM ACT=ROR ; VEH=MOT ; LIG=WL ; SHW=THI 1,83 1,59 86,96 1,70 
5 IIG-NPIM ACT=ROR ; VEH=MOT ; LIG=WL ; LAW=MED 2,30 2,06 89,66 1,75 
             

6 IIG-NPIM ACT=CP ; VEH=CAR ; LAW=MED ; SHT=Y 3,65 3,17 86,96 1,70 
7 IIG ACT=CP ; VEH=CAR ; LAW=MED ; MON=WIN 1,51 1,27 84,21 1,64 
8 IIG-NPIM ACT=CP ; VEH=CAR ; MON=AUT ; NOI=[1] 1,59 1,59 100,00 1,95 
9 IIG-NPIM ACT=CP ; VEH=CAR ; MON=AUT ; OI=[1] 1,59 1,59 100,00 1,95 

10 IIG ACT=CP ; VEH=CAR ; MON=WIN ; ROM=SLD 1,75 1,35 77,27 1,51 
11 NPIM ACT=CP ; VEH=CAR ; SEX=M ; SHT=N 1,03 0,87 84,62 1,65 
12 IIG-NPIM ACT=CP ; VEH=CAR ; ROM=SLD ; SHW=THI 3,02 2,62 86,84 1,69 
13 IIG ACT=CP ; VEH=CAR ; MON=AUT ;  1,59 1,59 100,00 1,95 
14 IIG-NPIM ACT=CP ; SHT=Y ; ATF=GW ; DAY=WD 2,78 2,38 85,71 1,67 
15 IIG ACT=CP ; SHT=Y ; AGE=(20-27] ;  1,03 0,95 92,31 1,80 

             
16 IIG-NPIM LIG=WL ; ATF=GW ; DAY=PH ; SID=TOP 2,22 2,06 92,86 1,81 
17 NPIM LIG=WL ; ATF=GW ; SEX=F ; ROM=SLD 1,51 1,27 84,21 1,64 
18 IIG LIG=WL ; ATF=GW ; SEX=F ; SHT=Y 1,51 1,27 84,21 1,64 
19 IIG-NPIM LIG=WL ; TIM=(18-24] ; PAW=WID ; MON=WIN 2,54 2,22 87,50 1,71 
20 IIG-NPIM LIG=WL ; TIM=(18-24] ; SHT=NE ; PAW=THI 1,27 1,19 93,75 1,83 
21 IIG-NPIM LIG=WL ; TIM=[0-6] ; SID=WR ; DAY=BPH 1,19 1,11 93,33 1,82 
22 IIG LIG=WL ; LAW=THI ; SEX=M ; MON=WIN 3,49 2,70 77,27 1,51 
23 IIG-NPIM LIG=WL ; LAW=THI ; SEX=M ; SID=WR 6,35 4,92 77,50 1,51 
24 IIG-NPIM LIG=DAY ; LAW=THI ; SEX=M ; AGE=<=20 1,59 1,35 85,00 1,66 

             
25 NPIM SID=TOP ; SHW=MED ;  ; ACT=ROR 1,98 1,75 88,00 1,72 
26 NPIM SID=TOP ; LAW=MED ; AGE=<=20 ; SEX=M 1,27 1,27 100,00 1,95 
27 IIG-NPIM SID=TOP ; MON=WIN ; AGE=(20-27] ; CAU=DC 1,98 1,75 88,00 1,72 

             
28 IIG SHT=NE ; TIM=(18-24] ; CAU=COF ; PAW=MED 1,03 0,79 76,92 1,50 
29 IIG SHT=NE ; TIM=(12-18] ; DAY=WD ; SEX=M 3,10 2,54 82,05 1,60 
30 NPIM NOI=[>1] ; ATF=GW ; PAW=WID ; SHT=NE 1,83 1,67 91,30 1,78 
31 IIG ACT=ROR ; VEH=CAR ; PAW=MED ; ROM=SLO 2,06 1,59 76,92 1,50 
32 IIG-NPIM CAU=DC ; DAY=WD ; MON=SPR ; VEH=MOT 2,78 2,14 77,14 1,50 
33 IIG-NPIM LAW=THI ; MON=SUM ; ROM=DMR ; SEX=M 1,51 1,27 84,21 1,64 

Note: Rules shared with GInf; Rules shared with IGR. 

 

Table 5 shows the KSI rules obtained using only the IIG criterion (IIG code in the second column), the 

rules obtained using only the NPIM criterion (NPIM code in the second column), and the rules obtained 

simultaneously with both split criteria (IIG-NPIM code in the second column). Most of the rules identi-

fied using NPIM are also identified using IIG. The analysis of shared rules using the imprecise or classic 

criteria shows that only one rule is identified using the IGR split criterion (shown in italics and greyed out 

in Table 5) is also identified using the imprecise criteria IIG and NPIM, and 7 rules identified using the 

GInf criterion (in bold in Table 5) are also identified using IIG and NPIM. These results show that the 

NPIM and IIG split criteria are similar; however, these new split criteria implemented in the IRNV meth-

od provide new and interesting information from the same dataset. 

 

In Table 5, the rules have been grouped in five sets to show their common patterns. In the first group the 

common pattern was run-off-road accidents involving motorcycles; in the second group, the common 

pattern was the collision with a pedestrian; in the third group, lighting condition equal to night time with 

no illumination; in the fourth group, accidents in which the visibility was restrained by topography; and 

the fifth group shows miscellaneous patterns. 

 

According to Table 5, important road safety patterns are simultaneously identified by the classic and im-

precise criteria (bold rules in Table 5). Rule 1 (shared by the imprecise criteria and the classic GInf crite-

rion) shows that run-off-road accidents involving motorcycles usually occur on roads with paved shoul-

der. Rules 2 and 3 (identified only by the imprecise criteria) show a similar pattern. In this pattern, the 

driver perceives a wider road and increases speed, thus increasing the probability of having an accident. 

Another pattern of run-off-road accidents involving a motorcycle is identified by classic and imprecise 

criteria (rule 4 in Table 5). This pattern occurs when the luminosity is insufficient and the shoulder is nar-



row. It has been pointed out that the number of accidents involving motorcycles at night could be reduced 

by wearing retro-reflective material on the clothes and helmets (López et al., 2014). 

 

Classic and imprecise criteria also identify pedestrian accidents in which the vehicle involved is a car. In 

particular, some patterns are related to bad weather during autumn (rules 8, 9 and 13) or winter (rules 7 

and 10). In addition, rule 11 identifies pedestrian accidents involving a car driven by a man on roads 

without paved shoulder. These results are in agreement with López et al. (2014). Imprecise criteria have 

shown pedestrian accidents involving a car where the shoulder type variable has an impact. These pat-

terns suggest that providing protection for pedestrians in rural environments would be an effective safety 

countermeasure. 

 

Many of the identified patterns involve lighting conditions. They indicate that accidents occur with no 

light or with insufficient light, and with good weather conditions (rules 16, 17, and 18). Lighting condi-

tions have been also identified as a variable with an impact on the severity (Gray et al., 2008; Helai et al., 

2008). Rules 17 and 18 associate accidents with lighting conditions and women. This fact has already 

been identified in other studies (De Oña et al., 2011). This lack of light is identified in logical slots, be-

tween 18 and 24 hours and between 0 and 6 hours (rules 19, 20, and 21). Two additional patterns are re-

lated to insufficient light: narrow lane and male drivers (rules 22 and 23). 

 

In addition, the imprecise criteria add new and interesting patterns that had not been identified using the 

classic criteria. These patterns are related to sight distance restrained by topography and young drivers 

(rules 26 and 27) or have run-off-road as accident type (rule 25). Young people aged between 20 and 27 

are involved in pedestrian accidents in roads with narrow shoulder width (rule 15). Teenage drivers may 

be differentially vulnerable to crashes on rural roads because of their inexperience and lack of maturity 

compared with older and more experienced drivers (Mayhew et al., 2003; McCartt et al., 2009; Peek-Asa 

et al., 2010). From a safety perspective, the vertical signal (when sight distance is restrained by topogra-

phy) should be improved. 

 

The patterns identified using the new split criteria (IIG and NPIM) show the current safety problems of 

the road analyzed. In fact, some of them have been pointed out as a priority in the Spanish Road Safety 

Strategy 2011-2020 (DGT, 2011).  

 

 

 

Conclusions  
 

This paper presents an extension of a method called IRNV that uses Decision Trees (DTs) to obtain 

Decision Rules (DRs). The original IRNV method was used with classic split criteria, such as GInf (based 

on the Gini Index) and IGR (the Info-Gain Ratio). Two new split criteria based on imprecise probabilities 

have been implemented in the IRNV method: one based on a parametric mathematical model, called IIG; 

and another one based on a non-parametric mathematical model, called NPIM. Both use a different treat-

ment of the data and build different DTs to represent different sets of DRs. These new split criteria repre-

sent an interesting addition to the classic criteria when all of them are applied in the IRNV method. 

 

The extended IRNV method has been applied on data about traffic accidents. A greater number of 

rules are obtained using the new imprecise split criteria (IIG and NPIM) implemented in the IRNV proce-

dure. The IIG and the NPIM criteria generate 278 and 281 rules respectively, compared to 227 rules using 

GInf and 174 using IGR. Also, with the imprecise criteria a greater number of rules were validated (50 

and 51 respectively), compared to 30 and 23 using GInf and IGR respectively. Regarding safety, more 

knowledge was obtained about the road analyzed. In addition, the rules obtained using the imprecise crite-

ria achieve the highest parameters values for population and support using IIG, and for probability and 

Lift using NPIM. 

 

The imprecise criteria represent an increment in the knowledge extraction for the IRNV method. In the 

case study carried out about accident analysis, they add new and interesting patterns of accidents with 

people killed or seriously injured that had not been identified using the classic criteria. Patterns are related 

to sight distance restrained by topography, involving young drivers, or having run-off-road as accident 

type. Theses pattern remark the need for studying the conditions in the environment of two-lane rural 

highways (i.e. vertical or horizontal signs).  
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