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Chapter 1

Introduction

1.1 Motivation

The key role played by differential equations is mainly justified by their wide range of
applications in many scientific fields including Physics, Chemistry, Engineering, Biology,
Epidemiology, Economics, etc. In practice, model inputs (coefficients, source terms and
initial/boundary conditions) appearing in the formulation of differential equations often
need to be set from sampling, experimental measurements or metadata excerpted from
the extant literature. This approach entails that model inputs involve uncertainties and
then they must be treated as random variables or stochastic processes rather than de-
terministic constants or functions, respectively. This approach leads to formulate RDEs
and SDEs in mathematical modeling (see [1, 2, 3]). Apart from studying relevant theo-
retical questions, like existence and uniqueness conditions to IVPs, as well as to devise
methods for computing their solutions, say X(t) = X(t)(ω) (ω ∈ Ω, being (Ω,F ,P) a
complete probability space), in the setting of both RDEs and SDEs a primary objective
is to determine the main statistical functions of the solution stochastic process. The most
important information in this latter regard includes determining the mean (E[X(t)]) and
the variance (V[X(t)]), since they provide the average and the variability of the solution,
and moreover, they allow to construct pointwise and probabilistic predictions. However, a
more complete goal consists of computing the first probability density function (1-PDF),
say f(t, x), since from this deterministic function one can calculate the one-dimensional
moments of arbitrary order

µk = E[(X(t))k] =

∫ +∞

−∞
xkf(t, x) dx, k = 1, 2, . . . , (1.1)

provided they exist. Observe that, in particular, E[X(t)] = µ1 and V[X(t)] = µ2 − µ2
1.

Besides, the computation of the 1-PDF enables the calculation that at any specific time
instant, say t̂, the solution lies within a specific interval of interest, say [a, b], via its direct
integration

P[{ω ∈ Ω : a ≤ X(t̂)(ω) ≤ b}] =

∫ b

a
f(t̂, x) dx.
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This project is organized as follows. In Chapter 2, we revisit the classical Liouville the-
orem for dynamical systems focusing on its adaptation to the context of RDEs. In the
deterministic context, this result establishes that the density of the solution of a dynam-
ical system is an integral invariant of motion and satisfies a PDE, called Liouville-Gibbs
equation (also termed continuity equation in the context of Hydrodynamics) [4]. In the
probabilistic setting, we will see that this result can be interpreted as the PDE satisfied
for the 1-PDF of the solution stochastic process of a RDE. Specifically, in Section 2.1
we will derive the Liouville-Gibbs PDE in the context of random dynamical systems of
type (2.1), and then, in Section 2.2 we will obtain an explicit expression of its solution,
which represents the 1-PDF of the solution stochastic process to the random IVP (2.1).
Generalizing this same idea, in Chapter 3 we will see how we can build a PDE verified by
the 1-PDF of an arbitrary stochastic process. Furthermore, in Section 3.2 we will consider
the particular case of Itô SDEs and the Fokker-Planck PDE. Chapter 4 is devoted to study
several mathematical models with various type of uncertainties, formulated via differen-
tial equations, that appear in different scientific fields. By taking advantage of results
exhibited in Chapter 2 and 3, we will obtain explicit expressions of the 1-PDF of their
corresponding solution stochastic process. Then, we will carry out some numerical simu-
lations to illustrate the main theoretical results studied in previous chapters. Conclusions
are drawn in Chapter 5.

1.2 Preliminaries

For the sake of completeness, hereinafter we introduce some definitions, notations and
results that will be required throughout this project. To avoid an excess of information,
we will only introduce whatever is necessary and sufficient for the complete understanding
of this project. However, we assume certain basic knowledge on probability theory and
mathematical analysis. We will divide this section in two parts. The first one will focus
on the notions and definitions from mathematical analysis and the second one will focus
on those from probability theory.

1.2.1 Mathematical Analysis

The following definitions and properties are taken from [5]. Let us begin by defining the
normed function spaces of absolutely integrable functions (L1(Rn,R), ‖ · ‖L1), or simply
L1(Rn),

L1(Rn,R) = {f : Rn → R such that ‖f‖L1 :=

∫
Rn
|f(x)|dx <∞},

and (L2(Rn,R), ‖ · ‖L2)), or simply L2(Rn)

L2(Rn,R) = {f : Rn → R such that ‖f‖2L2 :=

∫
Rn
|f(x)|2 dx <∞}.

It must be noted that we have made use of the usual notation for the functions in these
spaces. However, the elements of these spaces are actually classes of functions, where
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two functions are related, or in the same class, if the are equal everywhere but in a zero-
measure set. We say, in that case, that two functions are equal almost everywhere. If
we take f ∈ L1(Rn), then we can actually take any function that is equal to f almost
everywhere.

As we will see in the following chapters, the notion of Fourier transform is a natural one
when dealing with statistical information of stochastic processes or random variables. We
define the Fourier transform of an absolutely integrable function f as

F [f(x)](v) =

∫
Rn

e−2πivTxf(x) dx, f ∈ L1(Rn),

where F denotes the Fourier transform operator, i =
√
−1 denotes the imaginary unit and

v = (v1, . . . , vn)T and x = (x1, . . . , xn)T are column vectors in Rn. Some basic and trivial
properties of the Fourier transform are its existence (well defined) and linearity. Now we
will state, without proof, some more interesting properties we will also need.

Note that we may use the multi-index or conventional notation for partial derivatives
and products throughout the project; that is, given a multi-index m = (m1, . . . ,mn) ∈ Nn,
we denote

∂mx f(x) =
∂|m|f(x)

∂xm1
1 . . . ∂xmnn

, xm = xm1
1 . . . xmnn ,

where f is a real valued function defined in Rn, and |m| =
∑n

j=1mj . Also, we will denote
‖x‖ as the Euclidean norm in Rn.

A basic and interesting property from the Fourier transform appears when we concate-
nate the operator:

F [F [f ]](x) = f(−x), a.e. x ∈ Rn,

whenever f, F [f ] are absolutely integrable functions (see [5, Prop. 18.2.1]). The following
two properties show how the Fourier transform changes differentiation with multiplication.

Theorem 1.1. ([5, Prop. 17.2.1 (ii)] and [6, Prop. 0.22]). Let f ∈ L1(Rn) be continu-
ously differentiable and assume that ∂mx f ∈ L1(Rn) for all multi-index m and lim‖x‖→∞ f(x) =
0, then

F [∂mx f(x)] (v) = (2πiv)mF [f(x)](v). (1.2)

Also, assume ‖xm f(x)‖ ∈ L1(Rn) for all multi-index m. Then F [f ](v) is smooth and

∂mv F [f ](v) = F [(−2πix)mf(x)](v). (1.3)

If we consider the change of variable: u = −2πv in the definition of the Fourier transform,
properties (1.2) and (1.3) can be written, respectively, as

F [∂mx f(x)] (u) = (−iu)mF [f(x)](u), (1.4)

and
∂mu F [f ](u) = F [(ix)mf(x)](v). (1.5)
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The following theorem is known as the inversion Fourier identity.

Theorem 1.2. ([5, Th. 18.1.1]). If f,F [f ] ∈ L1(Rn) and

F [f(v)](x) =

∫
Rn

e2πixTvf(v)dv,

then

F [F [f ]](x) = f(x),

almost everywhere; particularly, in every x ∈ Rn where f is continuous.

Now, let D(Rn) denote the space of test functions, that is

D(Rn) = {ϕ : Rn → R such that supp(ϕ) is compact},

where supp(ϕ) = {x ∈ Rn : ϕ(x) 6= 0}, that is, denotes the closure of the largest set where
ϕ does not vanish.

A distribution (see [5, Lessons 27, 28]) is a continuous linear functional with real or
complex values defined on the space of test functions. In particular, we will consider
distributions Tf given by

Tf (ϕ) = 〈f, ϕ〉 =

∫
Rn
f(x)ϕ(x)dx, ϕ ∈ D(Rn). (1.6)

Notice that this definition is consistent if f is, at least, integrable in every compact subset
of Rn (locally integrable, denoted by L1

loc). Distributions defined as (1.6) are called reg-
ular distributions.

There are also non-regular distributions. The only one we will consider is the Dirac
delta distribution, given by

〈δa, ϕ〉 = ϕ(a).

We can extend most properties (such as differentiability and Fourier transform) from
integrable functions to distributions, despite the function does not need to be differentiable.
Particularly, we define the following operations on distributions:

• Product of a distribution T with a smooth function g (see [5, S. 28.3]):

g T (ϕ) = T (g ϕ).

• Derivative of a distribution T (see [5, S. 28.4]):

∂mT (ϕ) = (−1)|m|T (∂mϕ),

for every multi-index m ∈ Nn.
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• Fourier Transform of a distribution T (see [5, S. 31.2]):

F [T ](ϕ) = T (F [ϕ]).

Let us see a particular case. Consider the Dirac delta distribution δa. Its Fourier transform
is

〈F [δa], ϕ〉 = 〈δa,F [ϕ]〉 = F [ϕ](a) =
1

(2π)n

∫
Rn

eiaTu ϕ(u) du,

therefore the distributional Fourier transform of the Dirac delta distribution is F [δa](u) =
1

(2π)n eiaTu, in the distribution sense. In the case a = 0, we have F [δ0](u) = 1
(2π)n , a

constant function.

It can be proven that Theorems 1.1 and 1.2 can be extended to distributions giving the
same property as in classical functions (see [5, Prop. 31.2.4]). Particularly, we have for
this case

F [∂mx δ0](u) =
1

(2π)n
(−iu)m,

in the distribution sense. Now, taking the Fourier transform on both sides,

1

(2π)n
F [(iu)m](x) = (−1)n∂mx δ0(x), (1.7)

in the distribution sense.

Note that we will make a clear distinction when referring to distributions as defined in
this section, and when talking about the distribution function of a random variable or
stochastic process. For further details on Fourier Analysis, distributions and its applica-
tions, see [7, 5, 6, 8, 9].

1.2.2 Probability theory

Let (Ω,F ,P) be a complete probability space. We will work in the Hilbert space of
random variables with a finite second order moment, denoted by (L2(Ω), 〈, 〉). Specifically,
its elements are real random variables X : Ω → R and the inner product is defined by
〈X,Y 〉 = E[XY ], X,Y ∈ L2(Ω), being E[·] =

∫
Ω ·dP(ω) the expectation operator. From

this inner product one derives the corresponding norm ‖X‖2 = (E[X2])1/2. Elements
in space L2(Ω) are termed second-order random variables and they have finite variance
(V[X] = E[X2] − (E[X])2 < ∞, since the finiteness of E[X2] entails E[X] < ∞ too). As
it was mentioned, L1 is a Hilbert Space and, therefore, its elements verify the Schwartz
inequality; that is

〈X,Y 〉2 = E[X Y ]2 ≤ E[X2]E[Y 2] = ‖X‖22‖Y ‖22, ∀X, Y ∈ L2(Ω). (1.8)

The convergence associated to ‖ · ‖2–norm is referred to as mean square (m.s.) conver-
gence and it is defined as follows. Let {Xn : n ≥ 0} be a sequence of random variables in
L2(Ω) and X ∈ L2(Ω), we say that Xn is m.s. convergent to X if and only if ‖Xn−X‖2 → 0
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as n → ∞. This fact is denoted by Xn
‖·‖2−−−→
n→∞

X. This stochastic convergence has the

following distinctive property [1, Th. 4.3.1]

Xn
‖·‖2−−−→
n→∞

X ⇒ E[Xn] −−−→
n→∞

E[X] and V[Xn] −−−→
n→∞

V[X]. (1.9)

A random function (or stochastic process), say X(t) ≡ {X(t) : t ∈ T ⊂ R}, defined
in the space L2(Ω) is such that X(t) ∈ L2(Ω) for each t ∈ T , i.e., X(t) is a 2-r.v., and
it is called a second-order stochastic process (2-stochastic process). The concept of m.s.
derivative of a 2-stochastic process, Ẋ(t), is defined in terms of m.s. convergence via the
incremental quotient

lim
h→0

∥∥∥∥X(t+ h)−X(t)

h
− Ẋ(t)

∥∥∥∥
2

= 0.

As a consequence of property (1.9) and the fact that m.s. derivatives are defined in terms
of m.s. limits, one gets that the expectation operator and the m.s. derivative commute
[1, p. 97], i.e.,

E[Ẋ(t)] =
d

dt
(E[X(t)]) . (1.10)

The previous scalar concepts can be straightforwardly extended to the multidimensional
scenario leading to the Banach space of second-order random vectors, (Ln2 (Ω), ‖·‖n), where

Ln2 (Ω) :=
{
X = (X1, . . . , Xn)T : Xj ∈ L2(Ω), 1 ≤ j ≤ n

}
,

‖X‖n := max
1≤j≤n

‖Xj‖2.

A very interesting and useful property when studying stochastic processes is the rela-
tionship between the PDF and the characteristic function of the stochastic process at a
fixed time. Let {X(t)}t∈T be a stochastic process and t ∈ T fixed. We have

Φ(u, t) =

∫
Rn

eiuTxf(x, t)dx = (2π)nF [f(x, t)](u, t).

This relationship will be particularly useful in Chapters 2 and 3.

A stochastic processes can be classified in two classes according to its regularity: sta-
tionary and non stationary. Most stochastic processes modeling physical phenomena
are non stationary, such as ground motion due to strong earthquakes, noise processes in
devices with starting transient, seasonal temperature variations and even epidemic models.
However, stationary stochastic processes also appear when modeling physical phenomena
such as the surface of the sea in spatial and time coordinates, noise in time electric circuits
under steady state operation, impurities in materials and media as functions of spatial co-
ordinates. Also, there is a large amount of mathematical machinery to deal with stationary
stochastic processes, which we will define below.
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Definition 1.3. (see [1, Pgs. 42, 43]). A stochastic process X(t), t ∈ T is said to be
stationary, or strictly stationary, if its collection of probability distributions stay
invariant under an arbitrary translation of the time parameter; that is, for each n and for
an arbitrary τ ,

Fn(x1, t1; . . . ; xn, tn) = Fn(x1, t1 + τ ; . . . ; xn, tn + τ), ∀(x1, . . . ,xn) ∈ Rn
2
,

where tj + τ ∈ T for all j. Also, Fn is the n-th joint distribution function.

Now, we say a stochastic process X(t), t ∈ T is wide sense stationary, weakly
stationary, or covariance stationary, if it verifies in every t ∈ T

|E[X(t)]| = constant <∞, ‖X(t)‖n <∞, E[X(t1)TX(t2)] =
n∑
i=1

Γi i(t1 − t2),

where t1, t2 ∈ T , the second inequality is true for all t ∈ T and Γi i is the correlation, or
cross-correlation function of the components Xi, Xj ; that is,

Γi j(t1, t2) = E[Xi(t1)Xj(t2)], Γi j(τ) := Γi j(t, t+ τ).

Now, we will consider the very special kind of stochastic processes called Gaussian
stochastic processes. Gaussian stochastic processes are most often encountered in practice,
since the central limit theorem guarantees its usefulness when the stochastic process
represents a sum of a very large number of small independent random effects at each
instant.

Definition 1.4. (see [1, Pg. 66]). A stochastic process X(t), t ∈ T is called a Gaussian
stochastic process if, for any finite set t1, . . . , tn, the random vectors X(t1), . . . ,X(tn)
have the joint characteristic function

Φ(u1, t1; . . . ; un, tn) = exp

i

n∑
i=1

mT
i ui − 1

2

n∑
i, j=1

(ui)TΛi ju
j

 ,
where (ui)T = [ui1, . . . , u

i
n], mT

i = E[X(ti)]
T, and

Λi j = E[(X(ti)−mi)
T(X(tj)−mj)]

is the covariance matrix.

Gaussian stochastic processes play a fundamental role in the study of SDEs due to
the properties they satisfy. To name only a few, Gaussian stochastic processes remain
Gaussian under linear transformations, such as differentiation and integration (in the
mean square sense). Gaussian stochastic processes are completely determined by its mean
and covariance functions. Finally, a Gaussian stochastic process is stationary if and only if
it is wide-sense stationary. Now, we will define a very special Gaussian stochastic process,
named Wiener process, or also Brownian Motion. Although the properties that
we will use to define the Wiener process actually follow directly from the Kolmogorov
extension theorem (see [3, Th. 2.1.5]), it is a rather hard task to construct it directly
from this theorem.
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Definition 1.5. (see [3, Ch. 2]). Let B(t, ω) : [t0,+∞) × Ω → Rm, be a function such
that the following conditions hold:

1. P[{ω ∈ Ω : B(t0, ω) = b0}] = 1, and we say that the Wiener process starts at
(b0, t0).

2. The function t 7→ B(t, ω) is continuous for almost every ω ∈ Ω1.

3. B is a Gaussian process, and for all t, s ≥ t0,

E[B(t, ·)] = 0, E[B(t, ·)TB(s, ·)] = m min{t, s}, E[(B(t, ·)−B(s, ·))2] = m |t− s| .

From the last equality, we see that B(t, ·) − B(s, ·) is, in distribution, equal to
B(t − s, ·). Therefore they have the same expectation, variance, other higher order
moments and more important statistical information.

4. B(t, ·) has independent increments. That is,

B(t, ·)−B(r, ·), B(s, ·)−B(t, ·),

are independent for all t0 ≤ r < t < s.

We define the canonical Wiener process as any stochastic process verifying these four
conditions.

Let us reconsider something about Wiener processes. As we can see from the third
condition, B(t−s, ·) ∼ N(0,C), where C ∈ Rm×m is the covariance matrix, whose diagonal
is the vector whose components are all |t− s|. However, we can also consider the non-
canonical Wiener process. By rewriting the matrix C with components written as 2Di j ,
for i, j ∈ {1, . . . ,m} (that is, this value depends on the vector component, not the time at
which we consider the process), we can consider more general cases in which the variance
vector of the process is a multiple of the absolute value of the time distance. Specifically,
we will have in this case, E[Bi(t, ·)Bj(s, ·)] = 2Di j min{t, s} and, therefore

E[B(t, ·)TB(s, ·)] = 2 min{t, s}
m∑
i=1

Di i, E[(B(t, ·)−B(s, ·))2] = 2 |t− s|
m∑
i=1

Di i.

The Wiener process plays a fundamental role when describing random noise in a system.
The desirable properties of white noise cannot be satisfied by any “reasonable” stochastic
process. Let W(t) be the assumed stochastic process that describes noise. The properties
to be verified are

1. If t1 6= t2, then W(t1) and W(t2) are independent component-wise.

2. {W(t)}t≥t0 is strictly stationary.

1Following the most rigorous construction of the Wiener process, B(·, ) is not necessarily continuous.
However, it can be proven (by the Kolmogorov continuity theorem, see [3, Th. 2.2.3]) that a continuous
version of the Wiener process exists, having the same finite dimensional distributions.
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3. E[W(t)] = 0 for all t ≥ t0.

Although the white noise process can be represented as a generalized stochastic process
(the stochastic counterpart for distributions, or generalized functions) on the space of tem-
pered distributions in [t0,∞) (see [1, Ch. 3] and [9, Ch. 2]), we can also use the “derivative”
of the Wiener process, which verifies the previous conditions. That is, formally we have

dB

dt
(t, ω) := W(t, ω) = lim

h→0

1

h
(B(t+ h, ω)−B(t, ω)), t ≥ t0, ω ∈ Ω,

and define white noise as the process W(t, ω). We can easily see that white noise, as
defined above verifies the desired properties. However, the Wiener process does not have
differentiable trajectories (it has 1

2 -Hölder continuous trajectories (see [3, Ch. 2])), it is
not m.s. differentiable and it does not have finite variation. Therefore, we cannot define
its derivative nor its integral in the classical and usual m.s. sense. However, we will con-
sider the derivative of the Wiener process in a formal sense and will make use of all of its
statistical properties.

Also, a different type of integral must be defined: the Itô integral (for a rigorous con-
struction of the Itô integral, see [3, Ch. 3]). The multidimensional Itô integral is defined
as follows ∫ t

t0

X(t)T dB(t) :=
m.s.
lim
n→∞

n−1∑
k=0

X(tk)
T[B(tk+1)−B(tk)],

where
m.s.
lim
n→∞

denotes the limit in the mean square sense and {t0 < t1 < . . . < tn = t} is a

partition of the interval [t0, t].

For further details on stochastic processes and probability theory, see [1, Ch. 4], [10]
and/or [11].
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Chapter 2

Random Differential Equations

RDEs deal with differential equations where uncertainty enters the equation via random
variables in the coefficients, source terms and initial/boundary conditions. Equations of
this type form the basis of Liouville-Gibbs theory in statistical mechanics. Also, in pre-
flight analysis of space missions, it is necessary to use the minimum amount of fuel to reach
a certain target. However, due to small errors in fuel injection systems, orbit determina-
tion processes, atmospheric pressure variations during launch and other many factors, it
is extremely unlikely that our spacecraft will achieve its desired target without any orbital
corrective maneuvers. To take all these factors into consideration, one may use a random
description of initial conditions, coefficients and/or source terms in the differential equa-
tions that describe the flight dynamics.

In this context, the main approach to determine the 1-PDF of the solution of dynamical
systems with randomness is the random variable transformation technique. This method
has been successfully applied in dealing with random difference equations [12, 13], random
ODEs [14, 15] and random partial differential equations [16, 17]. As it can be checked
in these papers, the successful application of random variable transformation method re-
lies heavily on defining an appropriate invertible mapping based on the knowledge of an
explicit expression of the solution stochastic process and then computing its jacobian.
In this chapter, we study an alternative approach, based on the Liouville-Gibbs partial
differential equation (PDE) for dynamical systems, in order to determine the 1-PDF of
RDEs. The main advantage of this approach, with respect to the random variable trans-
formation method, is that it provides an explicit expression of the 1-PDF in terms of the
data avoiding the search of any ad-hoc invertible mapping as well as the computation of
its jacobian.

We are going to consider our model problem to be formulated via random initial value
problems (IVPs) of the form{

Ẋ(t) = g(t,X(t)), t ≥ t0,
X(t0) = X0,

(2.1)

where g : [t0,∞[×Rn 7→ Rn is a continuously differentiable function, X0 is an absolutely
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continuous random vector in Ln2 (Ω), X(t) is a 2-stochastic process defined in Ln2 (Ω), and
Ẋ(t) denotes the m.s. derivative with respect to time.

In the first section we will see the relationship between the 1-PDF of the solution stochas-
tic process of a random IVP and the Liouville-Gibbs, or continuity, equation. Afterwards,
in the following section, we will see when we can guarantee a solution to IVP (2.1) and
how to obtain it.

2.1 The Liouville-Gibbs Partial Differential Equation

In this section, we shall show that a PDF, f = f(t,x), associated to the solution stochastic
process of the random IVP (2.1) satisfies the following PDE

∂f

∂t
+

n∑
j=1

∂(fgj)

∂xj
= 0, (2.2)

where gj = gj(x1, . . . , xn), 1 ≤ j ≤ n, denotes the components of mapping g defining the
right-hand side of the RDE in (2.1). The equation (2.2) is called the Liouville-Gibbs PDE.

In order to derive this equation, let us fix t ∈ [t0,∞[ and consider the definition of
the characteristic function of the random vector X(t) = (X1(t), . . . , Xn(t))T (which corre-
sponds to the evaluation of the solution stochastic process to IVP (2.1) at the time instant
t ∈ [t0,∞[),

Φ(t,u) = E
[
eiuTX(t)

]
=

∫
Rn

eiuTxf(t,x) dx = (2π)nF [f(t,x)](u), (2.3)

where u = (u1, . . . , un)T ∈ Rn and F [·] is the Fourier Transform operator.

Now, we differentiate expression (2.3) with respect to t and apply the commutation
between the m.s. derivative and the expectation operator (see (1.10)). This yields

∂Φ(t,u)

∂t
=

∂

∂t
E
[
ei
∑n
k=1 ukXk(t)

]
= E

[
∂

∂t

(
ei
∑n
k=1 ukXk(t)

)]

= E

[
i

n∑
k=1

ukẊk(t)e
iuTX(t)

]
= i

n∑
k=1

ukE[Ẋk(t)e
iuTX(t)]

= i

n∑
k=1

ukE[gk(t,X(t))eiuTX(t)] =

n∑
k=1

iuk

∫
Rn

eiuTxgk(t,x)f(t,x) dx.

(2.4)

On the one hand, according to (1.4) and (2.3), each addend in the last sum can be
expressed in terms of the Fourier transform,

iuk

∫
Rn

eiuTxgk(t,x)f(t,x) dx = (2π)nF
[
− ∂

∂xk
(gk(t,x)f(t,x))

]
(u).
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Then using this latter representation together with the linearity of the Fourier transform
operator, expression (2.4) can be written as

∂Φ(t,u)

∂t
= (2π)nF

[
−

n∑
k=1

∂

∂xk
(gk(t,x)f(t,x))

]
(u). (2.5)

On the other hand, if we directly differentiate (2.3) under the integral sign with respect
to t, one gets

∂Φ(t,u)

∂t
=

∫
Rn

eiuTx∂f(t,x)

∂t
dx = (2π)nF

[
∂f(t,x)

∂t

]
(u). (2.6)

Finally, subtracting (2.5) and (2.6) and using Th. 1.2, i.e., the inversion Fourier trans-
formation, one obtains the Liouville-Gibbs equation

∂f(t,x)

∂t
+

n∑
k=1

∂

∂xk
(gk(t,x)f(t,x)) = 0. (2.7)

Remark. Notice that if we differentiate the product in (2.7), the Liouville-Gibbs equation
can be expressed equivalently in terms of the divergence operator of mapping g, i.e.,
∇x · g =

∑n
k=1

∂gk
∂xk

, leading to

∂f(t,x)

∂t
+

n∑
k=1

gk(t,x)
∂f(t,x)

∂xk
+ f(t,x)∇x · g(t,x) = 0.

2.2 Solving the Liouville-Gibbs equation

In the context of applications, it is assumed that the PDF, f0(x), of the absolutely con-
tinuous random initial condition, X0, of random IVP, (2.1), is known after sampling or
experimental measurements. So, our goal is to determine the solution of the following IVP
for the Liouville-Gibbs PDE,

∂f(t,x)

∂t
+

n∑
k=1

gk(t,x)
∂f(t,x)

∂xk
=−f(t,x)∇x ·g(t,x), t > t0, x ∈ Rn,

f(t0,x) = f0(x), x ∈ S0,

(2.8)

where S0 denotes the interior of the support of f0, which is assumed to be a C1 hypersur-
face.

We can prove that there exists a unique solution to the IVP (2.8), we will use the
following theorem.

Theorem 2.1. ([6, Th. 1.10]). Let S be a C1 hypersurface in Rn. Consider the following
IVP 

n∑
k=1

ak(x, u)
∂u

∂xk
(x) = b(x, u), x ∈ Rn,

u(x) = ψ(x), x ∈ S,
(2.9)
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where ak, b and ψ are C1 real-valued functions. Additionally, suppose that the vector

(a1(x, ψ(x)), . . . , an(x, ψ(x)))

is not tangent to S at any point. Then, there exists a neighborhood Ω of S in Rn such that
there exists a unique solution u ∈ C1(Ω) of the IVP (2.9).

Remark. It is well known that hypotheses can be weakened in certain cases to prove the
existence and uniqueness of weak solutions for the continuity equation (see [8, S. 3.4]).
However, we will use this theorem due to the fact that the examples considered in this
project verify the hypotheses and gives the existence of a strong solution.

Let us check that IVP (2.8) verifies the hypotheses of Th. 2.1. We define S := {(t0,x) :
x ∈ S0}, which is a smooth hypersurface parametrically given by

σ : S0 −→ Rn+1, σ(s) := (σ1(s), . . . , σn+1(s)) = (t0, s),

where s = (s1, . . . , sn) ∈ S0 ⊂ Rn. Let us see that (1, g1(t0, f0(x)), . . . , gn(t0, f0(x))) is not
tangent to S at any (t0,x) ∈ S. Using the previous parametrization we obtain,

det


∂σ1(s)
∂s1

· · · ∂σ1(s)
∂sn

1
∂σ2(s)
∂s1

· · · ∂σ2(s)
∂sn

g1(t0, f0(s))
...

. . .
...

...
∂σn+1(s)
∂s1

· · · ∂σn+1(s)
∂sn

gn(t0, f0(s))



= det


0 · · · 0 1

g1(t0, f0(s))

In
...

gn(t0, f0(s))

 = (−1)n+1 6= 0, ∀s ∈ S0,

where In denotes the identity matrix of size n. Therefore, IVP (2.8) verifies the hypothe-
sis of Th. 2.1 and we can guarantee the local existence and uniqueness of solution for the
Liouville-Gibbs IVP (2.8).

To calculate its solution, first we apply the Lagrange-Charpit technique [18], that leads
to the following set of differential equations

dt

1
=

df

−f∇x · g
=

dx1

g1
= . . . =

dxn
gn

. (2.10)

Secondly, we apply the method of characteristics [19] for the above equations involv-
ing the variables t, x1, . . . , xn. This allow us to establish the following set of differential
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equations formulated in terms of the auxiliary variables s and r = (r1, . . . , rn),

dt

ds
(s, r) = 1, t(0, r) = 0,

dx1

ds
(s, r) = g1(t,x), x1(0, r) = r1,

...
...

dxn
ds

(s, r) = gn(t,x), xn(0, r) = rn.

Solving these ODEs, we obtain a parametrization of the variables t = t(s, r) and x =
x(s, r). Now, using the equation that relates variables t and f in the chain of equations
given in (2.10), one obtains the following ODE,

∂f

∂s
(s, r) = −f(t,x)∇x · g(t,x), f(0, r) = f0(r),

which has a well-known solution,

f(s, r) = f0(r) exp

{
−
∫ s

0
∇x · g(σ, r) dσ

}
. (2.11)

To express the solution in terms of the original variables, we use the fact that our initial
conditions verify the hypotheses of Th. 2.1. This result guarantees that we can invert the
parametrization, hence obtaining the functions s(t,x) and r(t,x) that we can substitute,
respectively, into expression (2.11). Therefore, the solution can be written as

f(t,x) = f0(r(t,x)) exp

{
−
∫ t

t0

∇x · g(s(τ,x), r(τ,x)) dτ

}
. (2.12)

It is interesting to note that the function r(t,x) is actually the function we would obtain
when solving the IVP (2.1), say X(t) = h(t,X0), and then solving for X0. With the
corresponding notation this writes as r(t,x) = h−1(t,x) = x0. As a consequence, the
1-PDF given in (2.12) can be finally expressed in terms of the data

f(t,x) =

(
f0(x0) exp

{
−
∫ t

t0

∇x · g(τ,x = h(τ,x0)) dτ

}) ∣∣∣
x0=h−1(t,x)

. (2.13)

So far we have dealt with the case where randomness appears through initial conditions
only. Observe that the expression (2.13) is given in terms of the PDF, f0, of the random
initial condition X0. Now, we extend this result to the general case where the RDE also
depends on a finite number of random variables, represented by the absolutely continuous
random vector A = (A1, . . . , Am), i.e.,{

Ẋ(t) = g(t,X(t),A), t > t0,

X(t0) = X0,
(2.14)
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where g : [t0,∞[×Ln2 ([t0,+∞)× Ω)× Lm2 (Ω) 7→ Ln2 ([t0,+∞)× Ω). These kind of random
IVPs involving a finite number of random variables (in this case n+m random variables)
are usually called IVPs with a finite degree of randomness [1, Ch. 3]. Henceforth, the PDF,
f0(x0,a), of the random vector made up of all random inputs (X0,A) is assumed to be
known. Below, we shall show how to obtain a similar expression to (2.13) to the random
IVP (2.14), i.e., when uncertainties appear in initial condition and in the differential
equation. To achieve this goal, the strategy will consist of transforming the random IVP
(2.14) into another random IVP (having higher dimension) where randomness only appears
through the initial condition, and then we will apply (2.13). To this end, let us consider
the extended random IVP {

Ẏ(t) = G(t,Y(t)),

Y(t0) = Y0,
(2.15)

where Y(t) = (X(t),A) = (X1(t), . . . , Xn(t), A1, . . . , Am), Y0 = (X0,A) and G(t,Y(t)) =
(g(t,X(t)),0) ∈ Ln+m

2 (Ω) is continuously differentiable. With this new reformulation of
IVP (2.14), randomness only appears via the initial condition Y0, and then the results
shown in the first part of this section are applicable. Therefore, according to (2.7), the
Liouville-Gibbs PDE to the random IVP (2.15) is given by

∂f(t,y)

∂t
+
n+m∑
k=1

∂

∂yk
(Gk(t,y)f(t,y)) = 0. (2.16)

Notice that Gk(t,y) = gk(t,y), 1 ≤ k ≤ n, and Gk(t,y) = 0, n + 1 ≤ k ≤ n + m.
Therefore, taking into account that y = (x,a) ∈ Rn+m, PDE (2.16) can be written as

∂f(t,x; a)

∂t
+

n∑
k=1

∂

∂xk
(gk(t,x,a)f(t,x; a)) = 0, t > t0,

f(t0,x; a) = f0(x0,a),

where we have included the initial condition, f0(x0,a), corresponding to the PDF of the
random initial vector (X0,A). Then, the solution of this IVP turns straightforwardly out

f(t,x; a) = f0(x0,a) exp

{
−
∫ t

t0

∇x · g(τ,x = h(τ,x0,a),a) dτ

} ∣∣∣
x0=h−1(t,x,a)

, (2.17)

where h(t,X0,A) = X(t). Finally, the 1-PDF of the solution stochastic process to random
IVP (2.14) is derived by marginalizing f(t,x; a) with respect to random vector A,

f(t,x) =

∫
Rm

f(t,x; a) da. (2.18)

2.3 Example

It is known that dynamics governing several physical systems, such as linear oscillators,
can be characterized by a homogeneous second-order linear differential equation. For the
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sake of generality, we will derive the 1-PDF of the solution stochastic process of n-th order
homogeneous differential equations of the form

n∑
j=0

aj(t)X
(j)(t) = 0,

X(0) = X0, . . . , X(n−1)(0) = Xn−1,

(2.19)

where X(j)(t) =
djX

dtj
(t). We assume an(t) 6= 0, ∀t ≥ 0, and X0, . . . , Xn−1 are ran-

dom variables. Also, we assume that the joint PDF of the initial random vector X0 =
(X0, X1, . . . , Xn−1)T, denoted by f0, is known. In order to take advantage of the results
obtained in this chapter, we write (2.19) as n-dimensional first-order matrix ODE To this
end, we first divide by an(t) in (2.19)

X(n)(t) = −
n−1∑
j=0

aj(t)

an(t)
X(j)(t),

secondly, we put X(t) = (X(t), X ′(t), . . . , X(n−1)(t))T, and then we obtain

Ẋ(t) = A(t)X(t), A(t) :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

− a0(t)
an(t) − a1(t)

an(t) − a2(t)
an(t) . . . −an−1(t)

an(t)

 , X(0) = X0.

(2.20)
It corresponds to the random IVP (2.1) by taking t0 = 0, g(t,X(t)) = A(t)X(t). For

t > 0 arbitrary but fixed, write X(t) = x = (x1, . . . , xn), then X(j)(t) = xj+1, j ∈
{0, . . . , n− 1} and

gj(t,x) = xj+1, gn(t,x) = −
n−1∑
j=0

aj(t)

an(t)
xj+1.

Therefore,

∂gj(t,x)

∂xj
= 0, ∀j ∈ {0, . . . , n− 1}, ∂gn(t,x)

∂xn
= −an−1(t)

an(t)
,

and, as a consequence,

∇x · g(t,x) = −an−1(t)

an(t)
.

Now we apply (2.13) to give an explicit expression of the 1-PDF of the solution stochastic
process to the random IVP (2.19)

f(t,x) = f0(x0 = h−1(t,x)) exp

{∫ t

0

an−1(s)

an(s)
ds

}
, (2.21)
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where h−1(t,x) = e−
∫ t
0 A(s) dsx, where A(s) is defined in (2.20).

To conclude this chapter we want to emphasize that the Liouville-Gibbs method is
exact in the sense of providing a closed-form expression for the PDF of the solution
stochastic process in terms of an integral (see expressions (2.13) and (2.17)–(2.18)) that
can be exactly computable in some cases (otherwise accurate quadrature rules can be
applied). An alternative exact method that can also be used is the so-called random
variable transformation technique [1, Ch. 3], however its application requires defining an
ad-hoc injective mapping having non-zero Jacobian that could become difficult to find in
some situations. This fact may limit the use of random variable transformation against
the Liouville-Gibbs approach in some models. On the other hand, there exist alternate
approaches like Monte Carlo simulations, but they only provide approximations in spite
of eventually an exact solution is available. Furthermore, using the Monte Carlo method
usually requires carrying out many simulations to obtain good approximations since its
rate of convergence is slow [20] and this may become prohibitively demanding. All these
comments will be pointed out in the forthcoming examples to inform the reader about
the advantages of Liouville-Gibbs method against alternate approaches in the models that
will be presented later.
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Chapter 3

Stochastic Differential Equations

In this chapter, based in [1, Ch. 7, 8] and [3, Ch. 7], we are going to consider the more
general case of differential equations where randomness appears, not only as random vari-
ables/vectors, but as stochastic processes. These equations are useful when modeling
systems where uncertainty evolves over space and time. For example, when taking ob-
servations of an experiment, or receiving an electromagnetic signal, we usually obtain a
“noisy pattern” of values; that is, we get a disturbed version of the expected values. This
noise offsets our signal or observation in a different way at every time instant. How can
we clean up the signal, or observations, in an optimal way? This is known as the filtering
problem, and it is the very basis of modern telecommunications, where hundreds of books
on filters and optimal filtering have been written. Also, it is widely used in aeronautics
and aerospace engineering where feedback controllers are of such great importance for
human pilots, as well as unmanned ships. It is obvious that a clean feedback is absolutely
necessary for clear communications and optimal flights and missions.

SDEs have a drift term, which indicates the expected evolution of the system, and the
noise term, which will indicate the intensity and structure of the uncertainty in the sys-
tem. The most important, or influential, kind of SDEs are those in which uncertainty
appears as white noise. Contrarily to RDEs, SDEs are much harder to solve. Dealing
with SDEs requires a special kind of calculus, the Itô calculus, which is based on the
Itô integral and the properties arising from this integral. It is not a natural extension
of the deterministic theory as the m.s. calculus used in RDEs. As in the case of RDEs,
we can obtain ODEs verified by the mean, covariance or cross-covariance (the covariance
of the components of a multidimensional stochastic process at the same time instant) of
the solution stochastic process. Most research papers dealing with SDEs in mathematical
modeling study these two important functions of the solution stochastic process. How-
ever, we can obtain a PDE that will make available, not only the mean, covariance and
cross-covariance of the solution, but any moment of the solution and confidence intervals,
to say some.
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In general, SDEs can be written as
dX

dt
(t) = g(X(t), t) + Y(t), t > t0,

X(0) = X0,
(3.1)

where g = (g1 . . . , gn) is a C1(Rn×[t0,+∞),Rn) deterministic function and X(t, ·), Y(t, ·) ∈
Ln2 (Ω,Rn) for all t ∈ [t0,+∞). The initial condition X0 can be taken as a second order
random variable/vector or a deterministic constant. Questions and results about existence
and uniqueness of solutions of Eq. (3.1) can be found in [1, Ch. 7] and [3, Ch. 5].

This chapter is organized as follows. Section 3.1 shows a very useful property when
studying the PDF of an arbitrary stochastic process. In Section 3.2, we will deal with the
particular and well known case of Gaussian white noise in the form of an Itô diffusion.

3.1 The Kinetic Equation

We are going to do the following reasoning in the scalar case. Its extension to the vector
case is trivial, but much longer. Let {X(t)}t≥t0 be a stochastic process, and f(x, t) its first
PDF at a time t. Let us assume f is analytic and the characteristic function Φ is analytic
in a neighborhood of u = 0. The integral form of Bayes’ theorem reads

f(x, t+ ∆t) =

∫
R
f(x, t+ ∆t |x′, t) f(x′, t) dx′, (3.2)

where f(x, t + ∆t |x′, t) denotes the conditional density function of the r.v. X(t + ∆t)
given X(t) = x′. If we denote by Φ(u, t + ∆t |x′, t) the characteristic function of the r.v.
∆X(t) = X(t+ ∆t)−X(t) given X(t) = x′, that is

Φ(u, t+ ∆t |x′, t) = E[eiu∆X(t) |x′, t]

=

∫
R

eiu(x−x′) f(x, t+ ∆t |x′, t) dx.

Therefore, taking the inverse Fourier transform, which is guaranteed because of the inte-
grability of both f and Φ, we obtain

f(x, t+ ∆t |x′, t) =
1

2π

∫
R

e−iu(x−x′) Φ(u, t+ ∆t |x′, t) du. (3.3)

Now, let us assume Φ is analytic in R. Taking the Taylor expansion about u = 0 we obtain

Φ(u, t+ ∆t |x′, t) =
∞∑
k=0

∂kuΦ(0, t+ ∆t |x′, t)
k!

uk.

Now, using the definition of Φ, and by direct calculation, each component of the sum is

∂kuΦ(0, t+ ∆t |x′, t) = ikE[∆Xk(t) |X(t) = x′].
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Now, using this equality and the Taylor expansion expression back in (3.3) and assuming
uniform convergence of the series in R, we obtain

f(x, t+ ∆t |x′, t) =

∞∑
k=0

1

k!

ak(x′,t)︷ ︸︸ ︷
E[∆Xk(t) |X(t) = x′]

1

2π

∫
R

e−iu(x−x′) (iu)k du. (3.4)

It is clear that the last integral expression in Equation (3.4) does not exist in the classical
sense of a function. But it does exist as a distribution (see Chapter 1.2). Particularly
Equation (1.7) gives

1

2π

∫
R

e−iu(x−x′) (iu)k du = (−1)kδ(k)(x− x′),

in the sense of distributions, where δ denotes the Dirac delta function. Now, putting
everything together with Equation (3.2) we get

f(x, t+ ∆t) =

∫
R
f(x, t+ ∆t |x′, t) f(x′, t) dx′,

=
∞∑
k=0

1

k!

∫
R
ak(x

′, t)δ(k)(x− x′) f(x′, t) dx′

=
∞∑
k=0

(−1)k

k!
∂kx{ak(x, t) f(x, t)} = f(x, t) +

∞∑
k=1

(−1)k

k!
∂kx{ak(x, t) f(x, t)}.

(3.5)
If we substract f(x, t) in both sides and divide by ∆t in both sides, Equation (3.5) reads:

f(x, t+ ∆t)− f(x, t)

∆t
=

∞∑
k=1

(−1)k

k!
∂kx

{
ak(x, t)

∆t
f(x, t)

}
.

All that remains is to take limits when ∆t→ 0 and we get

∂tf(x, t) +
∞∑
k=1

(−1)k+1

k!
∂kx {αk(x, t) f(x, t)} = 0, (3.6)

where αk(x, t) = lim∆t→0
ak(x,t)

∆t , if it exists. Equation (3.6) is known as the Kinetic
Equation (see [1, SS. 7.2.3]), Kramers-Moyal expansion (see [21]), or generalized
Fokker-Planck Equation (see [22]) of the stochastic process X(t).

We have, for the vector case, the following expression

∂tf(x, t) +
∞∑
k=1

(−1)k+1

k!

∑
|a|=k

∂ax {αa(x, t) f(x, t)} = 0, (3.7)
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where a = (a1, . . . , an) ∈ Nn is a multi-index and

αa(x, t) = lim
∆t→0

1

∆t
E [∆Xa(t) |X(t) = x] .

Equation (3.7) can be obtained easily using the multidimensional Taylor expansion of the
characteristic function and applying the same steps as in the previous reasoning for the
scalar case.

Remark. Although we have imposed (very) strong assumptions on the differentiability of
the density function and the characteristic function, the proof is also valid on any region
where conditions are satisfied. Hence, if there are discontinuities in the PDF, Equation
(3.7) will be verified in the weak sense1 over Rn (assuming it has weak derivatives of any
order), and will be verified in the strong sense in the regions of continuity.

Equation (3.7) gives a possible solution of f ; in other words, it is a necessary condition,
not a sufficient condition. We have obtained a tool in the form of a PDE to study and
obtain the expression of the first PDF of an arbitrary stochastic process X(t), in certain
cases. Furthermore, as it can be seen in [1, SS 7.2.3], an analogous reasoning can be
applied to obtain any density function (second, third, etc.) of the stochastic process X(t).

Now, despite we have found a way to obtain information about the first PDF of the
stochastic process X(t), having an infinite order PDE is not very useful. However, the
following theorem can be extremely helpful, at least in the scalar case.

Theorem 3.1. (See [1, Th. 7.2.1]) If αk(x, t), defined as in Equation (3.6), exists ∀k
and there is k0 ∈ N such that αk0(x, t) = 0, then αk(x, t) = 0, ∀k ≥ 3.

Proof. Let k ≥ 3 and odd. We consider

αk(x, t)
2 =

(
lim

∆t→0

1

∆t
E
[
∆X(t)

k−1
2 ∆X(t)

k+1
2 |X(t) = x

])2

≤ lim
∆t→0

1

∆t2
E
[
∆X(t)k−1 |X(t) = x

]
E
[
∆X(t)k+1 |X(t) = x

]
= αk−1(x, t)αk+1(x, t),

where the second inequality was obtained due to the Schwartz’s inequality (Equation
(1.8)).

Now, using the same idea for αk for k ≥ 4 and even,we obtain

αk(x, t)
2 ≤ αk−2(x, t)αk+2(x, t).

1We say that a PDE is verified in the weak sense if it is verified in the sense of distributions. Contrarily,
a PDE is verified in the strong sense if the solution has the sufficient degree of continuous differentiability
and it verified in every point.
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Now, taknig r = k0, we obtain the following system of inequalities

αr+1(x, t)2 ≤ αr(x, t)αr+2(x, t), r ≥ 2,
αr−1(x, t)2 ≤ αr−2(x, t)αr(x, t), r ≥ 4,
αr+2(x, t)2 ≤ αr(x, t)αr+4(x, t), r ≥ 2,
αr−2(x, t)2 ≤ αr−4(x, t)αr(x, t), r ≥ 6.

(3.8)

Now, since αk0 = 0, Equations (3.8) imply that αk = 0 for all k > r ≥ 3 and that αk = 0
for all 3 ≤ k < r.

Basically, this theorem (given by Robert Pawula in his Ph.D. thesis, see [23]) states that
either we have infinite non-zero terms in Equation (3.6), or we have only the two first
terms; there is no in-between case. However, even in the case when there are infinite non-
zero terms, we may obtain valuable information from truncating Equation (3.7) (see [21,
Sec. 4.6]). The case where only the two first terms appear is known as the Fokker-Planck
(forward) Equation (see [1, SS. 7.3.1]), and it has the form

∂tf(x, t) = −∂x{α1(x, t) f(x, t)}+
1

2
∂2
x{α2(x, t) f(x, t)}

in the scalar case. As we shall see in the next section, this equation is of vital importance
in the study of a special case of SDEs.

Remark. By rewriting the previous equation as

∂tf(x, t) + ∂x{α1(x, t) f(x, t)} =
∞∑
k=2

(−1)k

k!
∂kx {αk(x, t) f(x, t)} , (3.9)

we can see, by applying the Equation (3.6) to the stochastic process defined as the solution
of SDE (3.1), that its first PDF is in the form of a conservation law (see [8, S. 3.4]), such as
the Liouville-Gibbs, or continuity equation for an RDE (see Section 2.1), but with an added
term that acts as a diffusion in the system. We will explore this idea deeper in the next
section. Pawula [23] actually proves that, if the “noise” term Y(t) is a m.s. differentiable,
stationary Gaussian process, then the right-hand-side of Equation (3.9) vanishes.

3.2 Itô Diffusions

Diffusion processes have been successfully applied in mathematical modeling problems
arising in many areas such as electronic and electrical engineering, theoretical and applied
physics, biology, chemistry and economics due to the fact that they verify very interesting
mathematical properties, such as being Gaussian and Markovian (see [3, Ch. 7] for the
basics on Itô diffusions and Markovian processes).

Diffusion processes may be written in the following way{
dX(t) = g(X(t), t)dt+ G(X(t), t)dB(t), t > t0,

X(t0) = X0,
(3.10)
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where g ∈ C1(Rn× [t0,+∞),Rn), G ∈ C1(Rn× [t0,+∞),Rn×m) and B : [t0,∞)→ Rm is
an m−dimensional Wiener process. We recall that its components, Bj(t), j ∈ {1, . . . ,m},
have the properties (see Def. 1.5){

E[∆Bj(t)] = E[Bj(t+ ∆t)−Bj(t)] = 0, t ≥ t0,
E[∆Bj(t)∆Bi(t)] = 2Dij∆t, i, j = 1, . . . ,m, t ≥ t0.

Our main goal is to calculate the transition density function, denoted by f(x, t |x0, t0) =:
fx0(x, t), given the initial density f(x, t0) = ψ(x). It can be easily seen that all αa = 0
for |a| ≥ 3, therefore, we will calculate αa for |a| ≤ 2. For the sake of clarity, hereinafter
we will drop the multi-index notation and use the usual subindex notation.

3.2.1 Fokker-Planck Equation

By rewriting Equation (3.10) in difference, or incremental, form, we get for each component
i ∈ {1, . . . , n}

∆Xi(t) = Xi(t+ ∆t)−Xi(t)

= gi(X(t), t)∆t+
m∑
k=1

Gik(X(t), t)∆Bk(t) + o(∆t),

where o(∆t) represents the terms such that o(∆t)
∆t

∆t→0−−−−→ 0.

Also, we have for i, j ∈ {1, . . . , n}

∆Xi(t)∆Xj(t) = gi(X(t), t)gj(X(t), t)∆t2

+ gi(X(t), t)∆t

m∑
k=1

Gjk(X(t), t)∆Bk(t)

+ gj(X(t), t)∆t

m∑
k=1

Gik(X(t), t)∆Bk(t)

+

m∑
k, l=1

Gjk(X(t), t)Gil(X(t), t)∆Bk(t)∆Bl(t) + o(∆t).

(3.11)

Using the fact that ∆B(t) in independent of X(t), we obtain on the one hand

αi(x, t) = lim
∆t→0

1

∆t
E[∆Xi(t) |X(t) = x]

= lim
∆t→0

1

∆t
(gi(X(t), t)∆t+

m∑
k=1

Gik(X(t), t)

=0︷ ︸︸ ︷
E[∆Bk(t)] +o(∆t))

= gi(X(t), t).

(3.12)
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On the other hand, taking into account the calculations from Equation (3.11), we see
clearly that the first three terms of the sum will end up being 0, due to the limit and the
definition of the Wiener process. Therefore, we see in the last term

αij(x, t) = lim
∆t→0

1

∆t
E[∆Xi(t)∆Xj(t) |X(t) = x]

= lim
∆t→0

1

∆t

m∑
k, l=1

Gjk(X(t), t)Gil(X(t), t)E[∆Bk(t)∆Bl(t)]︸ ︷︷ ︸
2Dkl∆t

+o(∆t)

= 2
m∑

k, l=1

Gjk(X(t), t)Gil(X(t), t)Dkl = 2(GDGT)ij ,

(3.13)

where D is an m×m matrix, usually called the diffusion tensor. Therefore, the Fokker-
Planck equation verified by the density of the solution stochastic process of the SDE (3.10)
is

∂tfx0(x, t) +
n∑
i=1

∂xi{gi(x, t) fx0(x, t)} − 1

2

n∑
i, j=1

∂2
xi xj{(GDGT)ij(x, t) fx0(x, t)} = 0.

(3.14)
Furthermore, assuming known the density of the initial condition in our stochastic IVP
(3.10) and imposing boundary conditions such as lim‖x‖→∞ fx0(x, t) = 0 for all t ≥ t0, we
obtain a boundary value problem with initial condition. Precisely we have


∂tfx0(x, t) +

n∑
i=1

∂xi{gi(x, t) fx0(x, t)} −
n∑

i, j=1

∂2
xi xj{(GDGT)ij(x, t) fx0(x, t)} = 0,

fx0(±∞, t) := lim
‖x‖→∞

fx0(x, t) = 0, t ≥ t0

fx0(x, t0) = f0(x), x ∈ Rn.
(3.15)

This problem, formed by a second order parabolic PDE, is very hard to solve explicitly
and will need of numerical approximation in most practical cases. Furthermore, we do
not have a general solution form, as we did in Liouville-Gibbs’ equation. However, the
examples discussed in the present project will be simple and instructive to give an idea of
the usefulness of this equation.

3.2.2 Stationary and Moment Equations

We can also use the Fokker-Planck equation to compute the stationary density, that is, the
density of the solution stochastic process when t→ +∞. When the SDE (3.10) is time-
homogeneous (see [3, Ch. 7]), that is, if g(X(t), t) = g(X(t)) and G(X(t), t) = G(X(t)),
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the stationary density, denoted by fs, can be found by solving

n∑
i=1

∂xi{gi(x) fs(x)} −
n∑

i, j=1

∂2
xi xj{(GDGT)ij(x) fs(x)} = 0,

fs(±∞) := lim
‖x‖→∞

fs(x) = 0, t ≥ t0∫
Rn
fs(x)dx = 1,

(3.16)

whenever the solution exists. [3, Th. 8.4.3] shows that, under certain hypotheses, the non-
homogeneous case can be changed by a time-homogeneous case with the same probability
law.

Finally, we can calculate the moments of our SDE using the Fokker-Planck equation
(3.14) ([1, Ch. 7]). This is very important due to the fact that solution stochastic pro-
cesses of the SDE problem (3.10) are Gaussian, whose moments are determined by the
mean and variance, or the first and centered second moments, respectively. However, the
equation we are going to study now permits to access the k-th moment of the stochastic
process without calculating the first and second moments previously. Let X(t) be the
solution vector stochastic process of the Itô diffusion problem (3.10).

Let us consider an arbitrary function h depending on X(t) and t, that is, h(X, t), which
is C2 over any finite interval of X and t. Now, let us consider a finite forward increment
over time

∆h := h(X + ∆X, t+ ∆t)− h(X, t).

The Taylor expansion around (X, t), up to second order, is

∆h = ∂th∆t+

n∑
i=1

∂xjh∆Xj +
1

2

n∑
i,j=1

∂2
xi xjh∆Xi ∆Xj + o(∆X∆XT) + o(∆t). (3.17)

We have shown that

E[∆Xi |X] = gi(X, t)∆t+ o(∆t),
E[∆Xi ∆Xj |X] = 2(GDGT)i j∆t+ o(∆t).

Therefore, taking the expectation in Equation (3.17), conditioned to X(t) = x, we obtain:

E[∆h |X(t)] = ∂th∆t+

n∑
j=1

gj(X(t), t)∂xjh∆t+

n∑
i,j=1

(GDGT)i j∂
2
xi xjh∆t+ o(∆t).

Now, we use the well-known fact that, for any two random variables, E[E[Y |X]] = E[Y].
Therefore, applying the expectation operator to the previous equation, dividing by ∆t,
taking the limits when ∆t → 0, and interchanging the differentiation and expectation
operators, we obtain:

dE[h]

dt
= E[∂th] +

n∑
j=1

E[gj(X(t), t)∂xjh] +

n∑
i,j=1

E[(GDGT)i j∂
2
xi xjh]. (3.18)
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Now, if we set h(X, t) = Xk1
1 . . . Xkn

n , Equation (3.18) will be the moment equation,
which is very useful when studying nonlinear SDEs, or when the Fokker Planck equation
is too difficult to study without numerical simulations.

3.3 Example

In order to illustrate the use of the Fokker-Planck equation, we will study a SDE where
the drift term g and the diffusion term G are given in the following way

gj(x, t) = ajxj , G(x, t) = I ∈ Rn×n,

respectively. In this case, Equation (3.14) has the form

∂tfx0(x, t) = −
n∑
i=1

ai∂xi{xifx0(x, t)}+
n∑

i j=1

Di j ∂
2
xi xjfx0(x, t). (3.19)

Now, the solution must verify the initial condition

fx0(x, t0) =
n∏
j=1

δ(xj − xj 0),

where δ denotes the Dirac delta distribution; and vanishing boundary conditions at infinity,
that is,

lim
‖x‖→0

fx0(x, t) = 0.

Equation (3.19) is a parabolic PDE with n+ 1 independent variables. We are going to
take the Fourier transform in the spatial variables and use its relationship to the charac-
teristic function in order to lower the order of the PDE and obtain a general, explicit form
of the solution of this class of Fokker-Planck equations.

It is easy to show, using the relation between the characteristic function of a stochastic
process and its Fourier transform, that

F [∂tf ](u) = ∂tΦ, F [∂xj (xjf)](u) = −uj∂ujΦ, F [∂2
xj xif ](u) = −ujuiΦ.

Applying these relations to Equation (3.19), we obtain the following first-order PDE

∂tΦ(u, t) =
n∑
i=1

ai ui ∂uiΦ(u, t)−
n∑

i, j=1

Di j uj ui Φ(u, t).

As we did in Chapter 2, when solving the Liouville-Gibbs equation, we can make use of
the characteristic equations to obtain the solution. In particular, we have the following
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system
dt

ds
(r, s) = 1, t(r, 0) = t0,

du1

ds
(r, s) = −a1 u1, ui(r, 0) = r1,

du2

ds
(r, s) = −a2 u2, u2(r, 0) = r2,

...
dun
ds

(r, s) = −an un, un(r, 0) = rn,

whose solutions are easily computed. They are, for each i ∈ {1, . . . , n},

ui(r, s) = rie
−ai s, (3.20)

where (r, s) are the local coordinates in the characteristic equations. However, as we can
see they are easily solved for. Moving to the last equation of the characteristic equations
system

dΦ

ds
(r, s) = −

n∑
i, j=1

Di j uj ui Φ(u, t) = −Φ(u, t)

n∑
i, j=1

Di jrirje
−(ai+aj) s. (3.21)

Let us denote I = {(i, j) ∈ {1, . . . , n}2 | ai + aj 6= 0}. For i, j /∈ I, let us consider the
limit of ai + aj + ε = ε, when ε→ 0. Now, solving the ODE by separation of variables we
obtain

Φ(r, s) exp

− n∑
i, j=1

(i, j)∈I

Di jui uj
1

ai + aj
− lim
ε→0

1

ε

n∑
i, j=1

(i, j)/∈I

Di juiuj

 = c̃(r),

where ui = ui(r, s) are given in (3.20), and c̃ is a constant (respect to s) of integration
that appears in solving Equation (3.21)2. Now, solving for the characteristic coordinates
in every equation, we get

Φ(u, t) = ψ (u1ea1 τ , . . . , unean τ ) exp

 n∑
i, j=1

(i, j)∈I

Di jui uj
1

ai + aj
+ lim
ε→0

1

ε

n∑
i, j=1

(i, j)/∈I

Di juiuj

 ,
where τ := (t− t0). Now, the initial condition for Equation (3.21) is

Φ(u, t0) = ei
∑n
i=1 uj xj 0 .

2The integral when solving the ODE and the limit can be changed by the monotone convergence
theorem.
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Therefore,

ψ(u1, . . . , un) = exp

− n∑
i, j=1

(i, j)∈I

Di jui uj
1

ai + aj
− lim
ε→0

1

ε

n∑
i, j=1

(i, j)/∈I

Di juiuj + i
n∑
i=1

uj xj 0

.
Finally, we obtain Φ(u, t) =

exp

i

n∑
j=1

uje
aj τ xj 0 +

n∑
i, j=1

(i, j)∈I

ui uj
Di j

ai + aj

(
1− e(ai+aj) τ

)
+ lim
ε→0

n∑
i, j=1

(i, j)/∈I

Di juiuj
ε

(1− eε τ )

.
This function clearly defines an n-dimensional Gaussian stochastic process, provided its
covariance matrix function is definite positive3. Therefore, the solution fx0(x, t), which
can be obtained by taking the inverse Fourier transform, can also be obtained by the
following relation

fx0(x, t) =
1√

(2π)n det Λ
exp

[
−1

2
(x−m)TΛ−1(x−m)

]
,

where the components of m and Λ are, respectively,

mj = xj 0eaj(t−t0), Λi j =


− 2Di j

ai + aj

(
1− e(ai+aj) (t−t0)

)
, (i, j) ∈ I,

− lim
ε→0

2Di j

ε

(
1− eε (t−t0)

)
, (i, j) /∈ I,

As we will see in the following chapter, this example is applicable in linear SDEs, although
the calculations in practical cases may be quite tedious.

To conclude, we want to emphasize the applicability of the System (3.8) since, as in the
case of the Liouville-Gibbs Equation (2.8), even when the explicit form of the solution
stochastic process is not available, a great amount of information about the stochastic
process is obtainable. Also, by following an analogous reasoning to the last part of Section
2.2, we can see that Equation (3.7), and Equation (3.14) in the particular case of Itô diffu-
sions, are applicable in the case of having random coefficients and even general stochastic
processes in the drift term of the SDE (see [1, Example 7.3]).

3That is, it has real, positive eigenvalues.
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Chapter 4

Applications

This chapter is addressed to showcase some relevant models, formulated via differential
equations with uncertainty, that appear in different scientific realms. As in practice model
parameters are usually fixed using sampling and/or measurements, so containing uncer-
tainties, we will assume that they are random variables instead of deterministic constants.
This approach leads to formulate such models by means of RDEs. Also, when a system
cannot be completely isolated from external influences, the non-determined forces or ef-
fects can be modeled as noise; that is, a random fluctuation varying in time and/or space.
This fact leads to the formulation of SDEs. Then, we will take advantage of the main
results exhibited in Chapter 2 and 3 to determine an explicit expression to the 1-PDF of
the solution stochastic process of each randomized model, and afterwards we will compute
the mean and the variance of the solution by integrating the corresponding 1-PDF using
expression (1.1).

To show a full overview of the different scenarios treated in Chapter 2, first we will deal
with the case that randomness only appears via the initial condition (see Sections 4.1
and 4.2) where formula (2.13) applies. Secondly, we shall consider the general scenario
where uncertainties appear in both initial conditions and coefficients (see Section 4.3). In
this case, we will take advantage of expressions (2.17)–(2.18). Furthermore, one of the
examples is original work, to be published soon.

Finally, we will consider two interesting cases dealing with real models with a stochastic
forcing term given by a white noise process (see Chapter 3). Our goal is to use, and solve,
the Fokker Planck Equation (4.24) in these particular cases. In particular, we will consider
a case in which we will be able to compare between the case with random parameters and
identically zero force term, and one with deterministic parameters but with a white noise
process force term.
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4.1 Undamped Oscillator with Random Parameters

Certain physical processes, such as the dynamics of a mass-spring system or an electric
current in a LC (Inductor-Capacitor) electronic circuit, can be modeled by a second-order
ODE with initial conditions. In the mass-spring system, initial conditions represent the
initial position and velocity of the mass. In most physical experiments, parameters are
measured directly in the system and measurement errors appear often. Therefore, it is
more natural to treat the initial conditions as random variables rather than deterministic
constants. Analogously, the initial electric current and voltage in a LC circuit model can
be treated as random variables.

Let us consider the IVP modeling the dynamics of an undamped linear oscillator{
Ẍ(t) + ω2X(t) = 0,

X(0) = X0, Ẋ(0) = Ẋ0,
(4.1)

where X0, Ẋ0 are random variables. We will assume that the joint PDF of the initial
conditions, f0(x0, ẋ0), is known. The (deterministic) parameter ω2 > 0 represents the
frequency of the oscillator.

To take advantage of the results shown in Chapter 2, we introduce the change of variable
X(t) = (X1(t), X2(t))T = (X(t), Ẋ(t))T to transform model (4.1) into the following first-
order random IVP, Ẋ(t) = AX(t), A =

[
0 1

−ω2 0

]
,

X(0) = X0.

Observe that according to (2.1), g(t,X(t)) = AX(t), g = (g1, g2), being g1(t,x) = x2

and g2(t,x) = −ω2x1, x = (x1, x2), and X0 := (X0, Ẋ0)T. Therefore

∇x · g(t,x) =
∂g1(t,x)

∂x1
+
∂g2(t,x)

∂x2
= 0, ∀(t,x) ∈]0,∞[×R2.

As a consequence, the corresponding Liouville-Gibbs PDE becomes
∂f(t,x)

∂t
+ x2

∂f(t,x)

∂x1
− ω2x1

∂f(t,x)

∂x2
= 0,

f(0,x) = f0(x0, ẋ0).
(4.2)

To compute f(t,x) = f(t, x, ẋ), we first solve the random IVP obtaining X(t) = eAtX0,
and then we solve for the random initial condition,

X0 = e−AtX(t) =

[
X0

Ẋ0

]
=

[
cos(ωt) − 1

ω sin(ωt)
ω sin(ωt) cos(ωt)

] [
X(t)

Ẋ(t)

]
.

Therefore, according to (2.13) the solution of Liouville-Gibbs IVP (4.1) writes

f(t, x, ẋ) = f0(x0, ẋ0)e−
∫ t
0 0 ds

= f0

(
x cos(ωt)− ẋ

ω sin(ωt), ωx sin(ωt) + ẋ cos(ωt)
)
.

(4.3)
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Notice that by integrating this later expression, we can compute the 1-PDF for the
position and the velocity

f(t, x) =

∫ +∞

−∞
f(t, x, ẋ) dẋ, f(t, ẋ) =

∫ +∞

−∞
f(t, x, ẋ) dx, (4.4)

respectively.

In order to perform numerical simulations, we have chosen ω = 2 and the following Gaus-
sian distributions for the initial conditions, X0 ∼ N(0; 1) and Ẋ0 ∼ N(−1; 1). Assuming
that they are independent, and if fX0(x0) and fẊ0

(ẋ0) denote their respective PDF’s, we
know that

f0(x0, ẋ0) = fX0(x0)fẊ0
(ẋ0) =

1

2π
e−

1
2(x20+(ẋ0+1)2).

Then, according to (4.3)

f(t, x, ẋ) = f0

(
x cos(ωt)− ẋ

ω sin(ωt), ωx sin(ωt) + ẋ cos(ωt)
)

= 1
2π e
− 1

2

(
x cos(tω)− ẋ sin(tω)

ω

)2
− 1

2
(xω sin(tω)+ẋ cos(tω)+1)2

.

(4.5)

By applying (4.4), we obtain the 1-PDF of position,

f(t, x) =
exp

(
− (aω+sin(tω))2

(ω2−1) cos(2tω)+ω2+1

)
√

2π

√
sin2(tω)
ω2 + cos2(tω)

. (4.6)

Fig. 4.1 shows its graphical representation. We can observe that the peaks in the 1-PDF
correspond to maximum amplitude in the oscillations. In the right panel of this plot, we
show the approximations of the 1-PDF obtained after applying Monte Carlo simulations
with 10, 000 simulations. The superiority of the Liouville-Gibbs method is clear because
it provides more accurate results. Although theoretically similar results may be obtained
using Monte Carlo at expense of increasing the number of simulations, this approach is
demanding and the computational burden becomes unaffordable in comparison with the
use of the Liouville-Gibbs approach. At this point, it is convenient to point out that this
same model has been studied in [1, Ch. 6 (Example 6.1)], but using the random variable
transformation method. However, the advantage of using the Liouville-Gibbs technique
relies upon the fact that we do not need to look for an appropriate injective transformation
whose Jacobian is distinct from zero to calculate the 1-PDF

Fig. 4.2 shows the joint 1-PDF of position and velocity in the phase space for fixed values
of time, t = 0 and t = 1.3. They have been computed by expression (4.5). The red curve
shows the orbit corresponding to the mean of the solution. The black dot corresponds, in
each case, with the point of the orbit at t = 0 and t = 1.3. Notice that the mean in the
phase diagram (position, X(t), and velocity, Ẋ(t)) can be computed via

E[X(t)] =

∫ +∞

−∞
xf(t, x) dx, E[Ẋ(t)] =

∫ +∞

−∞
xf(t, ẋ) dẋ,
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where f(t, x) and f(t, ẋ) are given by (4.4), or directly,

E[X(t)] = eAtE[X0] =

 1
2e−itω + 1

2eitω ie−itω

2ω − ieitω

2ω

1
2 ieitωω − 1

2 ie−itωω 1
2e−itω + 1

2eitω

[ E[X0]

E[Ẋ0]

]

=

 − ie−itω

2ω + ieitω

2ω

−1
2e−itω − 1

2eitω

 =

[
E[X(t)]

E[Ẋ(t)]

]
,

(4.7)

where we have substituted E[X0] = 0 and E[Ẋ0] = −1.
Finally, observe that in this example the solution stochastic process can be expressed

as X(t) = M(t)X0, where M(t) = eAt and X0 = (X0, Ẋ0)T ∼ N(µµµX0 ; ΣX0) being µµµX0 =
[0,−1]T and ΣX0 = I2 (identity matrix of size 2, sinceX0 and Ẋ0 are independent Gaussian
random variables having each of them unit variance). Then, according to the well-known
properties of a linear transformation of a Gaussian random vector, the solution stochastic
process is also Gaussian (specifically it corresponds to a binormal distribution), X(t) ∼
N(µµµX(t); ΣX(t)), where

µµµX(t) = M(t)

[
0
−1

]
= eAt

[
0
−1

]
=

[
− ie−itω

2ω + ieitω

2ω
−1

2e−itω − 1
2eitω

]
and

ΣX(t) = M(t)I2M(t)T =

 ω2+(ω2−1) cos(2tω)+1

2ω2 −(ω2−1) sin(2tω)

2ω

−(ω2−1) sin(2tω)

2ω
1
2

(
ω2 −

(
ω2 − 1

)
cos(2tω) + 1

)
 .

As a consequence, although initially both position and velocity are independent they
become statistically dependent as time goes on. These features are also observed in the
shape of the phase diagram depicted in Fig. 4.2.

4.2 Damped Oscillator with Random Parameters

As an application of the result for the n-order linear ODE with randomness in the initial
conditions seen at the end of Chapter 2, we will study the damped linear oscillator assum-
ing that both its initial position and velocity are random variables. Specifically, we will
consider the following random IVP{

mẌ(t) + cẊ(t) + kX(t) = 0, t > 0,

X(0) = X0, Ẋ(0) = Ẋ0,
(4.8)

where m is the mass of the oscillator, c is called the viscous damping coefficient and k is
a constant that depends on the oscillator, [24, Sec. 6.1]. We will denote by f0 the joint
PDF of the initial random vector (X0, Ẋ0). Using the same classical reasoning exhibited
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Figure 4.1: Both plots correspond to the random IVP (4.1) taking ω = 2, which implies
an oscillation period of T = π units of time. Left panel: 1-PDF, f(t, x) given by (4.6),
obtained by applying (4.4) to expression (4.3). Observe that the maxima of PDF’s are
reached at the points (π2k,±

1
2), k = 0, 1, 2, . . ., which correspond when the oscillator

reaches the maximum amplitude in its oscillations. Right panel: Approximation to the
1-PDF given by a histogram (black bars) obtained by Monte Carlo sampling in the initial
conditions of IVP (4.1). We have taken 10,000 simulations using the built-in random
sampling tools by software Mathematica R©. The solution in the right panel is overlayed
to make the comparison easier. The superiority of Liouville-Gibbs approach is apparent
against Monte Carlo simulations. Example of the random linear oscillator developed in
Section 4.1.

in the analysis of the damped linear oscillator, the IVP (4.8) can be written in the form
(2.1) where g(t,X(t)) = AX(t) being

A =

[
0 1

− k
m
− c

m

]
, (4.9)

X(t) = (X1(t), X2(t))T = (X(t), Ẋ(t))T. As a consequence, g = (g1, g2), with g1(t,x) = x2

and g2(t,x) = − k
mx1 − c

mx2, , x = (x1, x2), and X0 := (X0, Ẋ0)T. Therefore, now

∇x · g(t,x) =
∂g1(t,x)

∂x1
+
∂g2(t,x)

∂x2
= − c

m
, ∀(t,x) ∈ [0,∞[×R2,

and then the Liouville-Gibbs PDE can be written as
∂f(t,x)

∂t
+ x2

∂f(t,x)

∂x1
−
(
k

m
x1 +

c

m
x2

)
∂f(t,x)

∂x2
=

c

m
f(t,x),

f(0,x) = f0(x0, ẋ0).

It is well-known that the solution of this model, X(t) = eAtX0, can be expressed in

different forms depending on the eigenvalues λ1 = −c+
√
c2−4km

2m , λ2 = −c−
√
c2−4km

2m of matrix
A defined in (4.9). It leads to three different physical behaviours of the oscillator, namely,

1. If c2 > 4km, the oscillator will be overdamped. In such case, 0 > λ1 > λ2. The
system returns to its steady state (equilibrium state) without oscillating.

39



Figure 4.2: Left: Joint PDF of position and velocity at t = 0. Right: Joint PDF of position
and velocity at t = 1.3. As we can see, the fact that the level curves of the random IVP
(4.1) are ellipses, is in full agreement with properties of a binormal distribution. In both
panels, the red curve represents the mean curve of the solution which is given by (4.7).
Example of the random linear oscillator developed in Section 4.1.

2. If c2 = 4km, the oscillator will be critically damped. In such case, 0 > λ1 = λ2 =
− c

2m . The system returns to its equilibrium state as quickly as possible without
oscillating, although overshoot (1 oscillation) may occur.

3. If c2 < 4km, the oscillator will be underdamped. In such case, we will have two
conjugate complex roots. The system oscillates, but the amplitude gradually decays
to 0.

For illustrative purposes only, hereinafter, we will consider the third case which is usually
referred to as the damped linear oscillator. In such a case the solution is given by Y(t) =
eAtY0 and then

Y0 = e−AtY(t)

=


e
ct
m

cos
(√

4km−c2t
m

)
−

c sin

(√
4km−c2t
m

)
√

4km−c2

 −
e
ct
mm sin

(√
4km−c2t
m

)
√

4km−c2

e
ct
m k sin

(√
4km−c2t
m

)
√

4km−c2 e
ct
m cos

(√
4km−c2t
m

)
Y(t).

Therefore, using (2.21), and identifying an(t) = m, an−1(t) = c and an−2(t) = k in (2.19)
(with n = 2), we obtain the 1-PDF of the solution stochastic process after re-substituting
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(y1, y2) = (x, ẋ)

f0

xe
ct
m

cos
(
t
√

4km−c2
m

)
−

c sin

(
t
√

4km−c2
m

)
√

4km−c2

− ẋme
ct
m sin

(
t
√

4km−c2
m

)
√

4km−c2 ,

x
ke
ct
m sin

(
t
√

4km−c2
m

)
√

4km−c2 + ẋe
ct
m cos

(
t
√

4km−c2
m

) e
ct
m = f(t, x, ẋ).

(4.10)

To carry out numerical simulations, we will assume that the initial conditions are in-
dependent Gaussian random variables, X0 ∼ N(0; 0.0625), Ẋ0 ∼ N(−1; 0.25). Also,
m = 1.4, k = 5 and c = 0.3. In Fig. 4.3, we show the marginal 1-PDF of position,
f(t, x), on the time interval t ∈ [0, 10], using

f(t, x) =

∫ +∞

−∞
f(t, x, ẋ) dẋ, (4.11)

where f(t, x, ẋ) is given by (4.10).

Figure 4.3: Level curves of the 1-PDF of position, f(t, x) for t ∈ [0, 10]. For each t,
we see that the PDF takes its highest values when the oscillator reaches its maximum
amplitude and that the amplitude gradually decreases. This is a different, but equivalent
representation to Fig. 4.1 in our new setting oscillator model. Example of the random
damped linear oscillator in Section 4.2. Function f(t, x) has been computed using the
“Global Adaptive” built-in integration method by software Mathematica R©.
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4.3 The random logistic model

In this section, which is original work accepted to be published in the book Computational
Mathematics and Applications (Springer), we study the randomized version of the logistic
differential equation, which plays a very important role in modeling systems whose behav-
ior is characterized by a first stage with rapid growth followed by a slower growth until
reaching stabilization. Particularly, this model is very useful in biology when describing
the dynamics of a population whose individuals have limited available resources. The lo-
gistic model has also been used to describe the diffusion (demand) of a certain technology
(mobile phones, use of electronic commerce, etc.) characterized by a fast initial growth
and whose long-term growth is slow down due to the extensive use of the given technology
by all the individuals of the population, saturating its demand. Here, we will consider a
fully randomized formulation of the logistic model via the following IVP{

X ′(t) = X(t)(A−BX(t)), t > t0,

X(t0) = X0,
(4.12)

where X0, A and B are assumed to be absolutely continuous r.v’s. Here, A denotes
the random reproductive parameter of the population (also termed growth rate), B is
the ratio between the growth rate A and the maximum, or asymptotic, population (also
termed random carrying capacity) and X0 the initial number of individuals. For the sake of
generality, in our subsequent theoretical analysis we assume that the initial input random
vector (X0, A,B) has a joint PDF, f0(x0, a, b), which is assumed to be known. According to
the notation introduced for the extended IVP (2.15), in this case n = 1 and m = 2, being
Y(t) = (X(t),A) = (X(t), A,B), G(t,Y(t)) = (g(t,X(t)), 0, 0) and X0 = (X0,A) =
(X0, A,B). Besides, observe that g(t, x) = x(a − bx), thus ∇x · g(t, x, a, b) = a − 2bx .
Therefore, the Liouville-Gibbs PDE (2.16) becomes

∂f(t, x)

∂t
+ x(a− bx)

∂f(t, x)

∂x
= −(a− 2bx)f(t, x), t > t0,

f(t0, x) = f0(x0, a, b).

On the other hand, it is well known that the solution of random IVP (4.12) is given by

X(t) =
A
BX0

X0 + e−A(t−t0)(AB −X0)
= h(t,X0,A). (4.13)

Let us fix t > t0 and denote X(t) = X. Solving (4.13) for X0, that is, obtaining the
inverse of h as a function of X0 gives

X0 =
A
BX

X + eA(t−t0)(AB −X)
= h−1(t,X,A).

In order to apply expression (2.17), we first need to calculate the following integral∫ t

t0

∇x · g(s, h(t, x0,a)) ds =

∫ t

t0

∇x · g(s, h(t, x0, a, b)) ds

= −a(t− t0) + ln

(
a2

(bx0 + ea(t−t0)(a− bx0))2

)
.
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Now, using (2.17), we obtain

f(t, x; a) = f(t, x; a, b) = f0

( a
bx

x+ ea(t−t0)(ab − x)
, a, b

)
a2ea(t−t0)

(bx+ ea(t−t0)(a− bx))2
. (4.14)

Finally, we marginalize with respect to A = (A,B) using (2.18), and we then obtain the
1-PDF of the solution stochastic process of random IVP (4.12)

f(t, x) =

∫ +∞

−∞

∫ +∞

−∞
f(t, x; a, b) da db. (4.15)

To illustrate our previous theoretical conclusions, we will assume the following distribu-
tions for the random inputs: X0 ∼ N|[0,1](0.05, 0.0001) (a Gaussian distribution truncated
on the interval [0, 1]), and Uniform distributions for A and B, specifically A ∼ Un(0.3, 0.5)
and B ∼ Un(2, 3). Assuming that X0, A and B are independent, the factor f0 in (4.14)
can be expressed as

f0

( a
bx

x+ ea(t−t0)(ab − x)
, a, b

)
= fX0

( a
bx

x+ ea(t−t0)(ab − x)

)
fA(a)fB(b), (4.16)

being fX0 , fA and fB the PDF’s of X0, A and B, respectively. In Fig. 4.4, we show the
1-PDF of the solution X(t) for different values of t. This graphic has been performed
using expressions (4.14)–(4.16). We can observe as the value of the mean and the variance
increase until stabilization. This behaviour is in full agreement with the graphical repre-
sentation shown in Fig. 4.5. Table 4.1 collects the values of the mean and the variance of
the solution stochastic process, E[X(t)], at the same instants t = 0, 1, 5, 10, 20, 40 shown
in Fig. 4.4. These figures have been calculated by expression (1.1) (with k = 1) and
applying (4.14)–(4.16). Observe that these numerical values agree with the ones observed
in Fig. 4.4 and Fig. 4.5. As we can see in Table 4.1, the limit of the mean of the solution
stochastic process converges to 0.1624 approximately. This fact can be rigorously checked
in a different way. From (4.13), observe that X(t) −−−→

t→∞
A/B, and applying the random

variable transformation method [1, Ch. 2] it can be seen that the PDF of the limit r.v.,
Z := A/B, is given by

fZ(z) =

∫ +∞

−∞
fA(ξz)fB(ξ) dξ,

then

E[A/B] = E[Z] =

∫ +∞

−∞
zfZ(z) dz.

One of the most useful applications of determining an expression of the 1-PDF, f(t, x),
is the computation of confidence intervals for a specific confidence level (1−α)×100% for
each fixed time t̂. These intervals are computed by determining a suitable value kt̂ > 0
such that

1− α = P
[
{ω ∈ Ω : X(t̂, ω) ∈ [L(t̂), U(t̂)]}

]
=

∫ U(t̂)

L(t̂)
f(t̂, x) dx, (4.17)
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t = 0 t = 2 t = 20 t = 40 t = 100

E[X(t)] 0.05 0.0802289 0.162014 0.162117 0.162383

V[X(t)] 9.93× 10−5 2.05× 10−4 9.17× 10−4 9.13× 10−4 9.13× 10−4

Table 4.1: Mean and variance of the solution stochastic process of IVP (4.12) at different
time instants. We observe that the mean tends to 0.1624 while the variance stabilizes
around 9.13 × 10−4. Example of the random logistic differential equation developed in
Section 4.3.

being L(t̂) := µX(t̂) − kt̂ σX(t̂), U(t̂) := µX(t̂) + kt̂ σX(t̂), and µX(t̂) = E[X(t̂)] and

σX(t̂) =
√

V[X(t̂)] the mean and the standard deviation, respectively.

In our computations, we have taken α = 0.05 to construct 95% confidence intervals.
Results are shown in Fig. 4.5. In this plot we can observe that the diameters of the
confidence intervals tend to stabilize as t→∞. This feature is in full agreement with the
stabilization of variance previously shown.

Figure 4.4: Time evolution of the 1-PDF of the solution stochastic process of random
logistic equation (4.12) for different time instants. It can be seen how variance grows until
it stabilizes. In fact, the difference between the PDF corresponding to t = 20 and t = 40
is barely observable because both PDF’s overlap having as mean value 0.1624. Example
of the random logistic differential equation developed in Section 4.3. Function f(t, x),
given by Equation (4.15), has been computed using the “Multidimensional Rule” built-in
method by software Mathematica R©.
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Figure 4.5: Time evolution of the mean, µX(t), and the confidence interval, µX(t) ±
ktσX(t), where kt > 0 and σX(t) is the standard deviation of the solution stochastic process
X(t). The coefficient kt > 0 has been determined, for each t > 0, so that the confidence
interval captures 95% of probability according to (4.17). Example of the random logistic
differential equation developed in Section 4.3. We have obtained the values kt by solving
the non-linear equations that appear in (4.17) using the numerical root finder tool and
the “Multidimensional Rule” built-in integration method by software Mathematica R©.

4.4 Damped Oscillator with White Noise Excitation

In this case, we are going to study the linear damped oscillator with deterministic pa-
rameters, but with a random excitation input. The equation of motion of the damped
mass-spring oscillator with a white noise stochastic excitation is{

Ẍ(t) + 2βẊ(t) + ω2
0X(t) = W (t), t > 0,

X(0) = x0, Ẋ(0) = ẋ0,
(4.18)

where W (t) is a Gaussian white noise process with mean zero and correlation function
given by Γ(t, s) = 2D δ(t− s); and 0 < β2 < ω2

0. This equation has an explicit form for its
solution stochastic process, which can be obtained adapting the theory of deterministic
linear ODEs as we did in the previous problems. The solution is quite complicated and,
since we are focused on obtaining and solving the Fokker-Planck Equation, we will not
consider the explicit form of its solution. Let us build the Fokker-Planck Equation for
this problem. In this problem, we will take t0 = 0, x0 = 0, ẋ0 = −1. In vector form, the
equation in (4.18) is

dX(t) =

[
0 1
−ω2

0 −2β

]
X(t) + dB(t), (4.19)

where dB(t) = (0,dB(t))T and X(t) = (X(t), Ẋ(t))T. Therefore, by choosing B(t) ∼
N(0, t), we easily identify

G =

[
1 0
0 1

]
, D =

[
0 0
0 1

2

]
,

therefore, the corresponding coefficients for the Fokker-Planck equation are

α1(x, ẋ, t) = ẋ, α2(x, ẋ, t) = −ω2
0 x− 2βẋ, α11 = α12 = α21 = 0, α22 = 1.
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The Fokker-Planck equation reads

∂tf(x0,ẋ0) = −ẋ ∂xf(x0,ẋ0) + ∂ẋ{(ω2
0 x− 2βẋ) f(x0,ẋ0)}+

1

2
∂2
ẋf(x0,ẋ0),

where f(x0,ẋ0)(x, ẋ, t) := f(x, ẋ, t |x0, ẋ0, 0). Now, we can make a change of variables such
that the Fokker Planck equation is of the type seen in Example 3.3 and use the result
obtained in that section in order to make calculations easier.

We can express the values of α1 and α2 as a bilinear form in the {x, ẋ} base. That is,[
α1

α2

]
=

[
0 1
−ω2

0 −2β

]
︸ ︷︷ ︸

A

[
x
ẋ

]
.

However, in order to use what we saw in 3.3, we must find a new basis formed by the
eigenvalues of matrix A. That is, we must find an invertible matrix C such that[

y1

y2

]
= C

[
x
ẋ

]
⇒
[
β1

β2

]
:= C

[
α1

α2

]
= CAC−1

[
y1

y2

]
=

[
λ1 0
0 λ2

] [
y1

y2

]
,

where λ1 and λ2 are the eigenvalues of matrix A, and (y1, y2)T denotes the base formed by
eigenvectors. It is easily checked that the eigenvalues and their corresponding eigenvectors
are, respectively

λ1 = −β + i
√
ω2

0 − β2, λ2 = −β − i
√
ω2

0 − β2, v1 =

[
1
λ1

]
, v2 =

[
1
λ2

]
,

where i denotes the imaginary unit and vi is the eigenvector corresponding to the eigen-
value λi, i = 1, 2. Now, we can obtain our matrices C, C−1, which are given by

C−1 =

[
1 1
λ1 λ2

]
, C =

1

λ2 − λ1

[
λ2 −1
−λ1 1

]
After rewriting the Fokker-Planck equation in the new variables, we obtain

∂tfy0(y1, y2, t) = −
2∑
i=1

λi ∂yi(yi fy0(y1, y2, t)) +
2∑

i, j=1

σi j∂
2
yi,yjfy0(y1, y2, t),

where

[σi j ] = C

[
α11 α12

α21 α22

]
CT =

1

4(β2 − ω2
0)

[
1 −1
−1 1

]
.

The associated initial condition is

fy0(y1, y2, 0) = δ(y1 − y1 0)δ(y2 − y2 0),

[
y1 0

y2 0

]
= C

[
x0

ẋ0

]
,
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and the boundary conditions are

fy0(y1,±∞, t) = 0, fy0(±∞, y2, t) = 0.

Now we can use the result obtained in Section 3.3. Let us calculate the mean and covariance
matrices with respect to the y1, y2 variables. We have

m̃ = (y1 0eλ1t, y2 0eλ2t)T, Λ̃i j = − σi j
λi + λj

(1− e(λi+λj)t),

Now, by taking the inverse transformation, and using initial conditions, we obtain

m = C−1

[
y1 0eλ1t

y2 0eλ2t

]
.

The explicit expression of the mean vector function could have also been obtained if we
had solved the moment equation of (4.18).

Also, the covariance matrix is given by

[Λij ] = C−1Λ̃ij(C
−1)T.

Finally, the joint PDF of the solution stochastic process of (4.19) is given by

fx0(x, ẋ, t) =
1

2π
√

det Λ
e−

1
2

(x−m)TΛ−1(x−m), (4.20)

where m and Λ = [Λij ] are obtained following the previous calculations.

Also, we can obtain the marginal densities at any time. To obtain the marginal PDF of
position, we integrate with respect to the velocity variable. To obtain the PDF of velocity,
we integrate with respect to the position variable; that is

fx0(x, t) =

∫ +∞

−∞
fx0(x, ẋ, t)dẋ, fx0(ẋ, t) =

∫ +∞

−∞
fx0(x, ẋ, t)dx. (4.21)

The explicit, general expression of the solution is extremely complicated and tedious
even in this case, where the diffusion tensor D is a very simple, constant matrix. Also,
it does not add any important information aside of the information that can be visually
seen in the graphs of the solution. Therefore, we have decided not to include the explicit
expression.

For the numerical simulations, we are going to consider the following values for the
parameters of the SDE (4.18)

x0 = 0, ẋ0 = −1, β = 0.214286, ω0 = 1.88982.
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These values were chosen so that the oscillator under study has the same parameters as
the one studied in Section 4.2, that is ω0 = k

m = 1.88982, β = c
m = 0.214286. This implies

that it is an underdamped oscillator. The mean vector is given by

m(t) =


−
e−βt sin

(
t
√
ω2
0−β2

)
√
ω2
0−β2

−e−βt
(

cos
(
t
√
ω2

0 − β2
)
−

β sin
(
t
√
ω2
0−β2

)
√
ω2
0−β2

)


=

[
−0.532585 e−0.214286 t sin(1.87763 t)

−e−0.214286 t(cos(1.87763t)− 0.114125 sin(1.87763 t))

]
.

(4.22)

It is interesting to note that, although at the beginning of the system t = 0, the position
and velocity stochastic processes are independent, and have zero variance, their diffusion
grows monotonically over time and after a while it stabilizes. However, their dependence
is an oscillatory function decaying to 0. Figures 4.6a-4.6b show the marginal densities
of the solution PDF (4.20), Figure 4.7 shows the evolution of variance and covariance of
position and velocity stochastic processes and Figures 4.8a-4.8d show the dynamics of the
joint PDF.

Due to the fact that the solution stochastic process of (4.19) is a Gaussian process,
its covariance and/or correlation shows the dependency of the position with respect to
velocity, and vice versa. In particular, Figure 4.7 shows 2 important facts. The first fact
is that the variance of both position and velocity tend to stabilize. The second fact is
that, for large times, position and velocity are completely independent. This allows for
the computation of the stationary state of the system. By using the explicit expression of
the mean vector function (4.22), we conclude that the stationary state of the undamped
stochastic oscillator system (4.19) is a random variable Z, following the distribution

Z ∼ N

([
0
0

]
,

[
0.326667 0

0 1.16667

])
.

Another interesting and important fact is that, although the white noise process in
this problem has mean 0, the dynamics of the damped stochastic oscillator (4.19) is very
different from the one with identically null excitation and random parameters. We recall
that we are dealing with an underdamped oscillator. Therefore, its oscillation amplitude
should become smaller until it eventually stops in a point (the equilibrium point). However,
the white noise excitation adds diffusion to the oscillator faster than it stabilizes, although
the mean dynamics do tend to stabilize in the equilibrium point. This fact can be deduced
from Figures 4.6a, 4.6b and 4.7. Compare with Figure 4.3.
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(a) Marginal PDF of space. (b) Marginal PDF of velocity.

Figure 4.6: Marginal densities given by the left and right equations of (4.21), respectively,
in the interval (0,8]. As said before, variance grows monotonically, but then appears to sta-
bilize at time t = 3, approximately. Calculations have been performed by Mathematica R©.

Figure 4.7: Time evolution in the [0,18] time interval of the variance function of position
(blue, dotted) and velocity (black, dashed), given by the first and second diagonal elements
of matrix Λ, respectively; as well as the covariance function, given by the elements Λ12 =
Λ21 (red, solid). This plot shows what was said in the previous figure. Both variances
stabilize at 0.326667 for position and 1.16667 for velocity from t = 10 and beyond. Also
the position and velocity become independent. Calculations performed by Mathematica R©.
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(a) Joint PDF of the solution stochastic pro-
cess X, of (4.19), at time t = 0.23. We can
observe there are some instabilities in the up-
per part of the contour. For lower times the
program does not give a reliable graph.

(b) Joint PDF of the solution stochastic pro-
cess X, of (4.19), at time t = 0.8.

(c) Joint PDF of the solution stochastic pro-
cess X, of (4.19), at time t = 1.5.

(d) Joint PDF of the solution stochastic pro-
cess X, of (4.19), at time t = 3.

Figure 4.8: The figures above show the dynamics of the joint PDF of the solution stochastic
process X over time. The horizontal axis corresponds to position, X; whereas the vertical
axis corresponds to velocity, Ẋ. The red curve is the mean vector function, given in
(4.22), and the black dot is the point of the curve at the respective time values. We
can see a big difference with the random case: The base of the PDF gets wider as time
goes by. This fact can also be seen in the increase of variance with respect to time in
both space and velocity. We can see there is a monotonic increase in the diffusion of the
density of probability (that is, the function gets wider as it turns) while in the random case
there was an overall conservation of the density (it turned, but the shape was conserved).
Calculations have been performed by Mathematica R©.
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4.5 Bang-Bang Stochastic Controller

A bang-bang controller is a feedback controller that changes abruptly between two states.
Some well known examples of bang-bang controllers are water heaters or some air con-
ditioners. By setting a desired temperature, the controller will run at maximum power
until the desired temperature is reached. Then it will turn off until temperature is slightly
below our target before turning on again at maximum power. However, there are many
factors that may act as “noise” for the sensors of a bang-bang controller. For example if
room temperature is very close to the desired temperature, any thermal change such as
rapidly opening and closing a window or coughing could make the controller go on and off
several times in a brief period of time.

Let us consider the mathematical description of a bang-bang controller with a white
noise excitation. {

dX(t) = −β sign(X(t))dt+ dB(t), t > 0,
X(0) = x0,

(4.23)

where sign(·) denotes the sign function, β is a positive real value and we assume our
Wiener process to be

B(t) ∼ N(0, 2D t),

where D > 0 represents the diffusion strength of the Wiener process. The Fokker Planck
System of the Bang-Bang controller (4.23) is

∂tfx0(x, t) = β∂x{sign(x)fx0(x, t)}+D∂2
xfx0(x, t), t > 0, x ∈ [−M,M ],

fx0(x, 0) = δ(x− x0), x ∈ [−M,M ],
fx0(±M, t) = 0, t ≥ 0,

(4.24)

where x0 is the initial state of the system and |M | > |x0| is an arbitrary constant. We
will use the method of separation of variables. Let

fx0(x, t) = Y (x)T (t).

Substituting in the PDE of (4.24) and ordering properly, we have

1

D

T ′(t)

T (t)
= −λ, β sign(x)

D

Y ′(x)

Y (x)
+
Y ′′(x)

Y (x)
= −λ. (4.25)

The first equation can be easily solved. We obtain

T (t) = c e−λD t,

where c is an integration constant. Now, let us use the definition of the sign function.
That is, the equation for Y is given by the two following equations

Y ′′(x) + β
DY

′(x) + λY (x) = 0, x > 0,

Y ′′(x)− β
DY

′(x) + λY (x) = 0, x < 0.

(4.26)
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Also, at the origin we force continuity by the condition

Y (0+) = lim
x→0+

Y (x) = lim
x→0−

Y (x) = Y (0−).

Now, for the derivative condition, we integrate the right equation of (4.25) in a small
interval around the origin, and then take the limit, obtaining

Ẏ (0+) +
β

D
Y (0+) = Ẏ (0−)− β

D
Y (0−). (4.27)

Now, the general solution of Equation (4.26) is

Y (x) =

{
aeλ̃x−

β x
2D + be−λ̃x−

β x
2D , x > 0

ceλ̃x+β x
2D + de−λ̃x+β x

2D , x < 0,

where

λ̃ =

√
β2

4D2
− λ = i

√
λ− β2

4D2
.

We have assumed that it is an imaginary number because all the values we will obtain for
λ as eigenvalues for the problem will make the inside of the square root a negative num-
ber, except for the first one. However, as we will see, we can still use the same reasoning.
Figure 4.9 gives more graphical insight about this fact.

Now, using the imposed continuity condition, the derivative condition (4.27) and the
boundary condition from (4.24), we obtain the following values for the integration con-
stants

a+ b = c+ d,

a = −b e−2λ̃M , d = −c e−2λ̃M ,

b(1− e−2λ̃M ) = c(1− e−2λ̃M ),

(a− b− c+ d)λ̃ = − β
2D (a+ b+ c+ d).

(4.28)

Now, two cases must be taken into account. First, let us assume (1 − e−2λ̃M ) 6= 0. This
clearly implies b = c and, as a consequence, a = d. Therefore, we can rewrite the last of
the equations in (4.28), obtaining

λ̃ =
β

2D
tanh (λ̃M), (4.29)

where tanh (·) denotes the hyperbolic tangent. This equation cannot be solved explicitly.
However, we will be able to obtain numerical approximations of its solutions, yielding the

values for λ in this case, which we will denote as λ
(1)
k . Figure 4.9 shows the real and

imaginary part of Equation (4.29). We can now write down the solution Y in the first
case, denoted by Y (1)

Y (1)(x) = g(λ
(1)
k )e−

β|x|
2D sin

(
(|x| −M)

√
λ

(1)
k −

β2

4D2

)
. (4.30)
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Figure 4.9: Plots of the real and imaginary parts of Equation (4.29), along with the line
given by the inside of the square root that defines λ̃, as functions of λ. Values used are
β = D = 1, M = 10. Roots are given by the intersection of the yellow, dash-dotted,
non-vertical (imaginary part, continuity region) curves and the blue curve (real part).
Also, this graphs shows why it is worth to consider λ̃ as a purely imaginary number. All
eigenvalues for the first case are obtained when λ > β

2D , except for the eigenvalue λ = 0.
However, this won’t be a problem due to the relationship between the sine of an imaginary
number and its hyperbolic sine. Graphics and calculations done by Mathematica R©.

Note that the functions ψ
(1)
k (x) := sin

(
(|x| −M)

√
λ

(1)
k −

β2

4D2

)
form an orthogonal set

over the interval [−M,M ], whose L2−norm is

‖ψ(1)
k ‖

2
L2 = M −

sin

(
2M

√
λ

(1)
k −

β2

4D2

)
2

√
λ

(1)
k −

β2

4D2

.

Let us now consider the second case, where (1− e−2λ̃M ) = 0. Then, taking into account
that λ̃ is zero or purely imaginary,

λ̃ = ikπ, ⇐⇒ λ
(2)
k =

β2

4D2
+

(
k

M
π

)2

, k ∈ Z.

In this case, the values for a , b , c and d and the respective eigenfunctions are easily com-
puted:

a = −b c = −d, ψ
(2)
k (x) = sin

(
M

√
λ

(2)
k −

β2

4D2

)
, ‖ψ(2)

k ‖
2
L2 = M.

Therefore, the solution of Y in this case, denoted by Y (2), is given by

Y (2)(x) = h(λ
(1)
k )e−

β|x|
2D sin

(
x

√
λ

(2)
k −

β2

4D2

)
. (4.31)
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We can finally write down the explicit expression of the Fokker-Planck Equation

fx0(x, t) = e−
β|x|
2D

[ ∞∑
k=1

gke
−λ(1)k Dt sin

(
(|x| −M)

√
λ

(1)
k −

β2

4D2

)

+

∞∑
k=1

hke
−λ(2)k Dt sin

(
x

√
λ

(2)
k −

β2

4D2

)]
.

(4.32)

All that is left is to calculate the coefficients {gk}k, {hk}k, given by the L2-projection of

the solution into each ψ
(1)
k and ψ

(2)
k . Note that

∫M
−M ψ

(1)
k ψ

(2)
j dx = 0, because of the parity

of the functions.

To calculate the first set of coefficients, {gk}k, we consider the solution of (4.24) at time

t = 0, multiply both sides of the equation by ψ
(1)
k , integrate over the interval [−M,M ]

and use the orthogonality condition, obtaining∫ M

−M
fx0(x, 0)e

β|x|
2D ψ

(1)
k (x)dx = e

β|x0|
2D ψ

(1)
k (x0) = gk‖ψ

(1)
k ‖

2
L2 ,

therefore,

gk = e
β|x0|
2D

ψ
(1)
k (x0)

‖ψ(1)
k ‖2L2

, ψ
(1)
k (x0) = sin

(
(|x0| −M)

√
λ

(1)
k −

β2

4D2

)
.

Using the same idea, we can calculate the {hk}k coefficients, obtaining

hk = e
β|x0|
2D

ψ
(2)
k

‖ψ(2)
k ‖2L2

, ψ
(2)
k (x0) = sin

(
x0

√
λ

(2)
k −

β2

4D2

)
.

For the numerical simulations, let us take D = 1, β = 1, M = 10 and x0 = 0. The first
10 eigenvalues for the first case are

λ
(1)
1 = 0, λ

(1)
2 = 0.393658, λ

(1)
3 = 0.775661, λ

(1)
4 = 1.3638, λ

(1)
5 = 2.15145,

λ
(1)
6 = 3.13748, λ

(1)
7 = 4.32129, λ

(1)
8 = 5.7027, λ

(1)
9 = 7.2816, λ

(1)
10 = 9.05.

Since we chose x0 = 0, all eigenfunctions for the second case are zero, and, therefore,
there is no need to calculate its eigenvalues. Figure 4.10 shows the solution PDF, given by
Equation (4.32), for several time instants. Also, it is easily seen that, by taking the limit
when t→∞, the only “surviving” summand of Equation (4.32) is the one corresponding

to λ
(1)
0 = 0, which is the PDF of the stationary state of the Bang-Bang controller (4.23).
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Figure 4.10: Graphs of the PDF, given by Equation (4.32), of the solution stochastic
process of Problem (4.23). f∞ denotes the stationary solution of (4.24). It is seen that
the PDFs gradually decay to the stationary solution, with a faster decay at the beginning.
Graphics and calculations done with Mathematica R©.

It is interesting to note that we cannot assure any kind of convergence of the right-hand
side of (4.32) to the true solution due to the fact that the Dirac delta “function”, taken
as an initial condition, is not really a function. If we substitute the Dirac delta function
for a very narrow base normalized rectangular function, such as the PDF of a uniformly
distributed random variable on an interval [−ε, ε], we can obtain a solution in the form of
a series that converges uniformly (because of homogeneous boundary conditions) to the
unique solution of the problem. Then, by taking the limit in ε we will obtain the solution
for our initial problem. This is a consequence of the Hilbert-Schmidt theorem (see [7,
Th. 5.1]), which assures convergence in the L2 norm in general, and uniform convergence in
the homogeneous boundary condition case. However, the final solution obtained by taking
the rectangular normalized function in [−ε, ε] is equal to the one obtained by following
the steps above in almost every point (see [1, Pg. 196]). Therefore, although we cannot
assure its convergence, we can assure that the solution can be written as (4.32). Also,
integrating the solution (4.32) for several values of time gives a comforting fact: they all
integrate 1. If they did not integrate 1, the solution obtained would not be valid since all
PDFs must integrate 1 over its domain.
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Chapter 5

Conclusion

Throughout this project, we have seen the theory behind the relationship between the so-
lution stochastic process of differential equations with uncertainty and its first probability
density function. In particular, we have studied the case of random differential equations,
where uncertainty appears as time-constant random variables; and also the case of Itô
stochastic differential equations, where randomness appears as a white noise stochastic
process forcing term. Both cases are a particular case of the Kinetic Equation, which
gives a partial differential equation verified by the first probability density function of an
arbitrary stochastic process. To do so, we have relied heavily in the relationship between
the characteristic function of a stochastic process and its first probability function.

Mathematical modeling has grown rapidly to become a very active research area, and it
will still grow due to lightning-paced advance of technology and computation in, basically,
every realm of science and engineering. Therefore, due to the measurements involved in
engineering devices and the uncertainty inherent to measurements, among other factors,
uncertainty quantification plays a fundamental role when studying real models with real
data. For this reason this topic was chosen for this project. It is my hope that I can con-
tinue my studies with the writing of a Ph.D. thesis and work in mathematical modeling
with uncertainty. I have already been introduced into mathematical modeling research
with my tutors and their colleagues and, consequently have been published as coauthor
twice; in an article and in a chapter of the Uncertainties 2020 congress proceedings book
(see [25, 26], respectively). Also, I am a coauthor in the book to be published in late 2020,
mentioned in Section 4.3. Furthermore, I have presented original work in two international
mathematics congresses: BYMAT 2019 and Modeling for Engineering and Human Behav-
ior 2019 (see [27]), organized by the Instituto de Matemática Multidisciplinar (UPV).

We can see how most of the subjects studied throughout the InvestMat master’s degree
have been used and implemented in this project. Specifically, the concepts and results
from the subject Random Differential Equations and Applications have been used, and
extended, to study the important problem of determining the first probability density
function. Moreover, as I said before, I would like to write a Ph.D. thesis on the theory and
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applications of ordinary and partial differential equations with uncertainty appearing in
real models and dealing with real data. Other subjects such as Fundamentals of Advanced
Mathematics, Mathematical Analysis and Applications will be fundamental to deal with
the theory of these models. Also, subjects such as Neural Networks and Genetic Algo-
rithms, Fuzzy Topology and Applied Mathematics Seminar will be of great importance
when dealing with the real data used in the models, as well as computing and simulating
solutions of the problems.

To conclude, I would like to mention that one of the most outstanding aspects of this
project is that it can be seen how some of the most abstract and profound areas of
mathematics, such as probability theory and mathematical analysis, can be united with
state-of-the-art methods in computational mathematics and statistics to create both a
rigorous mathematical theory and a useful and applicable set of methods to study real
models and systems, taking into account the inherent uncertainty.
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Glossary

IVP Initial Value Problem. 5, 6, 15–21, 29, 36, 38–40, 42–44

ODE Ordinary Differential Equation. 15, 19, 21, 23, 32, 36, 38, 45

PDE Partial Differential Equation. 6, 15–17, 20, 23, 26, 29, 31, 36, 39, 42, 51

PDF Probability Density Function. 5, 6, 10, 15–17, 19–22, 24, 26, 27, 35–44, 47–50, 54,
55

RDE Random Differential Equation. 5, 6, 15, 16, 19, 23, 27, 35

SDE Stochastic Differential Equation. 5, 6, 11, 23, 24, 27, 29–31, 33, 35, 47
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