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1 BACKGROUND

Synthetic biology aims at the targeted design or redesign and
construction of new biological and bio-based parts, devices,
and systems to perform desired functions [11, 13]. Not only is
going up in this hierarchy (DNA, part, device, and system) the
final objective of synthetic biology but also its main challenge
[3]. To successfully accomplish it, engineering principles and
methodologies are to be used. The design-build-test-learn
(DBTL) cycle is the common paradigm used in any engineer-
ing discipline where the design is made from the bottom by
combining basic biological parts into devices and these into
systems [8]. Essential for the success of this inherently mod-
ular approach of bottom-up synthetic biology is the need of
starting from well-characterized parts [9]. Currently, there is
still a gap between the possibility of designing a system and
its real implementation in the lab. This gap can be partially
attributed to both the lack of repeatable and standardized
measurements, and the absence of well-characterized biologi-
cal parts [17]. On the one hand, calibration of equipment and
standardization of units is a challenge. We cannot compare
two systems in terms of measurements if they have not been
created with the same methodology or they can not be taken
into the same domain [2]. Luckily, there are many works
from this community dealing with this issue [4, 6, 14, 16].
On the other hand, the characterization of biological parts
understood as estimation of its model parameters is still a
bottleneck in Synthetic Biology. Though the isolated char-
acterization of the steady-state response of basic parts (e.g.
promoters) can be performed by means of relatively simple
experiments, their behavior when integrated within more
complex circuits will be affected by the circuit context [15].
Therefore, in situ estimation of the parameters of each ba-
sic part in the circuit is carried out to account for context.
However, estimating the parameters associated to biological
parts embedded in a nonlinear dynamic model of a synthetic
gene circuit remains a challenging inverse problem. Non-
convexity, ill-conditioning caused by over-parametrization,
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experimental measurement errors, data scarcity, and uncer-
tainty are the main difficulties [12]. The multiobjective op-
timization design (MOOD) framework to perform model
parameter estimation has been successfully used for the op-
timal design of gene networks [5], or closed-loop genetic
circuit identification [7], as it allows to address problems
often found in synthetic gene networks that are difficult
to tackle using single or weighted-objective optimization
approaches.

2 METHODS

In [6] we propose a methodology combining measurement
calibration with MOOD that is used to characterize the RBS
strength of several genetic constructs. In this work, we pro-
pose an extended approach (see Figure 1) to solve the problem
of biological parts characterization and fill the gap existing in
the DBTL cycle based on multiobjective objective optimiza-
tion that allows us to include uncertainty in the estimation
and also to simultaneously include different scenarios and a
set or library of genetic circuits or devices (which may have
common parts and different parts).

The starting point (Figure 1.-1) is comprised of both the
mathematical model and the set of biological parts to char-
acterize (the model has to be one of those parts). From there
we need to perform experiments to measure the desired mag-
nitude (fluorescence of the reporter) and to calibrate the
measurements (Figure 1.0) to obtain MEFL/Particle [1, 6].
Experimental data in this unit can be compared with math-
ematical models in molecules/cell. Also, it is necessary to
define initial intervals for the model parameters to be es-
timated (and values for the parameters we don’t want to
estimate).

Once the prerequisites and the data preprocessing is per-
formed, the actual methodology can be applied to character-
ize the selected parts. In the first step (Figure 1.1), we need
to define the cost function for the optimization problem. In
this case, we use a model for guaranteed simulations [10]
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Figure 1: Schematic of the methodology. Prerequisites, data preprocesing, cost function definition, multiobjective optimization

and multi-criteria decision making steps.

@
o o
«
3 7i¥sfsissziases
s}
Ed 18
o
& 2[ ¢ Experimental data J23106 §
= Guaranteed simulation E
8 >
0
0 2 4 6 8

Time (hours)

Figure 2: Example of simulation and experimental data to
be used with the proposed methodology.

to obtain an interval solution (Figure 2) and in the objec-
tive function, we compare this interval solution with the
calibrated measurements (including the measurement un-
certainty). Then, we perform the optimization in the second
step (Figure 1.2) to minimize the discrepancy between the
experimental data and the simulation. The solution of the
optimization is a pareto front (with the values of the objec-
tives functions for the solutions) and the pareto set with the
values of the parameters corresponding to those solutions.
The last step (Figure 1.3) is to select a desired solution from
the pareto front and set corresponding to the part we wanted
to characterize.
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