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Abstract 

Singlet oxygen photosensitization (using time-resolved near infrared emission) 

and in vitro phototoxicity (by means of the 3T3 Neutral red uptake assay) have been 

investigated for the prodrugs fenofibrate (FFB), mycophenolate mofetil (MMP) and 

trifusal (TFS) as well as for their active metabolites fenofibric acid (FFA), mycophenolic 

acid (MPA) and 2-hydroxy-4-(trifluoromethyl)benzoic acid (HTB). The results show that 

FFB and its active metabolite FFA generate 1O2 with a quantum yield in the range 0.30-

0.40 and show a photo-irritation factor (PIF) higher than 40. By contrast, MMP/MPA 

and TFS/HTB are not photoactive in the employed assays. These results correlate well 

with the previously reported in vivo phototoxicity in treated patients. 



Introduction 

 The metabolic processes, achieved by the enzymatic machinery of living 

organisms, produce chemical modifications on drugs, which may lead to 

activation/deactivation and transformation into more hydrophilic derivatives that 

facilitate elimination from the body.[1] These changes are the result of phase I reactions 

(such as oxidations, reductions or hydrolysis) and/or phase II reactions (i. e. 

glucuronidation, sulfation, acetylation or methylation).[2]  

 The interaction of UV-radiation with drugs may result in photosensitization via a 

Type I or a Type II mechanism. The former is related to hydrogen abstraction or electron 

transfer and leads to production of radical species that can oxidize biomolecules, whereas 

the latter involves singlet oxygen (1O2) generation and its attack to biomolecules such as 

proteins, nucleic acids and lipids. [3] Although determination of the photosensitizing 

potential of drugs is an active field of research, much less has been done with metabolites, 

even if they might act as suitable photoactive compounds. Actually, most metabolites 

retain the main chromophore of the drug and hence their photosensitizing ability, which 

can even be enhanced after the chemical modifications occurring during the metabolic 

processes. Hence, identification of the phototoxic potential of metabolites is important, 

specially when they are the pharmacologically active compounds.  

 In this context, we have undertaken a systematic study on the prodrugs fenofibrate 

(FFB),[4] mycophenolate mofetil (MMP)[5] and trifusal (TFS)[6] as well as on their 

active metabolites fenofibric acid (FFA),[7] mycophenolic acid (MPA)[8] and 2-

hydroxy-4-(trifluoromethyl)benzoic acid (HTB)[9]. Their chemical structures are shown 

in Chart 1. The investigated drugs possess different pharmacological effects. Thus, while 

FFB is prescribed for the treatment of hyperlipidemia, MMP is employed for the 

prevention of organ transplant rejection and  TFS is an antiplatelet agent. In all cases, we 

have investigated the formation of 1O2 by time-resolved near infrared emission and the in 

vitro phototoxicity using the 3T3 neutral red uptake (NRU) assay.  
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Chart 1. Chemical structure of drugs and metabolites investigated in this work. 

 

Results 

 First, 1O2 production was studied in the polar non-protic solvent acetonitrile, taking 

advantage of the characteristic 1O2 near-infrared phosphorescence at 1270 nm and using 

phenalenone (PN) as standard for comparative purposes. Except TFS, which does not 

absorb at the laser excitation wavelength (355 nm), the other drugs and metabolites 

investigated were able to generate 1O2 upon exposure to UV radiation, although to 

different extent (Figure 1). The 1O2 quantum yield (Φ∆) and the rate constant for 1O2 

quenching by the drug or its metabolites (kq) are collected in Table 1. For FFA and FFB, 

the Φ∆ values were in the range from 0.30 to 0.40 (Figure 1A), similar to that of model 

benzophenone (Φ∆ = 0.35). [10] For the other compounds, Φ∆ were in the range 0.05-

0.10 (Figures 1B, C). The kinetics of 1O2 showed the characteristic rise and decay profile 

of reactive intermediates. Except for HTB, the 1O2 decay lifetime (τ∆) was noticeably 

shorter than the accepted value for neat acetonitrile (81 µs),[11] indicating that the 

compounds are good 1O2 quenchers (Figures 1D-F). Analysis of τ∆ dependence with 

drug/metabolite concentration allowed us to calculate kq; the quenching was remarkable 

for MPA and MMP (kq in the range of 107 M-1s-1), which is in agreement with the 

presence of phenolic rings in their chemical structure [12] and, to a lesser extent, for FFA 

and FFB. Generation of 1O2 by the more hydrophilic active metabolites was studied also 



in d-PBS, using sodium 1H-phenalen-1-one-2-sulphonate (PNS) as standard. A clear 

decrease of Φ∆ was observed for all compounds (Figures 1G-I), but particularly for FFA; 

this is likely the result of the competition between energy transfer to oxygen and 

decarboxylation. [13] 

 

Figure 1: A-C: Determination of 1O2 quantum yields (Φ∆).  Absorbance dependence of the 1O2 
phosphorescence intensity (S0) for the drugs and PN in acetonitrile; λexc = 355 nm. Inset: kinetic 
traces for 1O2 phosphorescence signals. D-F: Drug concentration effect on the 1O2 lifetime (τ∆). 
G-I: 1O2 phosphorescence signals in d-PBS for optically matched solutions of the drugs and PNS. 
Colour codes: PN/PNS: black; FFA: red; FFB: blue; MPA: green; MMP: magenta, and HTB: 
brown.  

 

 

 

 

 

 

 



Table 1: Quantum yield of 1O2 production (Φ∆) and rate constant for 1O2 quenching (kq) for  

drugs and metabolites. 

Compound Φ∆
a  kq (M-1s-1)a Φ∆

b 

FFB 0.40 ± 0.04 (1.5 ± 0.3) × 106 - 

FFA 0.30 ± 0.03 (3.9 ± 0.2) × 106 0.016 ± 0.002 

MMP 0.050 ± 0.005 (4.3 ± 0.1) × 107 - 

MPA 0.055 ± 0.005 (6.4 ± 0.4) × 107 0.009 ± 0.001 

HTBc 0.09 ± 0.01 < 1 × 105 0.052 ± 0.005 
 

aIn CH3CN; bin d-PBS, only for the metabolites, due to the scarce solubility of the drugs in 
aqueous media; c TFS was not measured because it does not absorb at the excitation wavelength 
(355 nm). 

In another series of experiments, cell viability upon exposure to all compounds, 

in combination with UVA irradiation was evaluated by the in vitro 3T3 neutral red uptake 

(NRU) phototoxicity assay. [14] Hence, cytotoxicity profiles of BALB/c 3T3 fibroblasts 

treated with FFB, FFA, MMP, MPA, TFS and HTB were measured, using neutral red 

as vital dye, both in the dark and under UVA irradiation (Figure 2). The IC50 values were 

determined from dose-response curves for cell viability of cell treated under conditions 

described above (more details are provided in Experimental Section). 



 

Figure 2. Dose-Response curves for cell viability of 3T3 cells treated with compounds 
drugs and metabolites by using NRU assay in the presence (□) or absence (■) of 5 J/cm2 
UVA radiation. Data represent Mean ± SD from four independent experiments. 
 

The main goal of NRU test is to calculate the photo-irritation factor (PIF), which 

corresponds to the ratio of the IC50 under dark and light conditions for each compound. 

As inferred from the data in Figure 3, FFB and FFA resulted to be potentially phototoxic 

with a PIF value >40, whereas all other compounds were basically non-phototoxic (PIF 

~ 1). 
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Figure 3. Phototoxicity of drugs and metabolites in the 3T3 NRU assay. Data represent 
mean ± SD from four independent experiments and asterisks denote significant 
differences relative to the IC50 Dark by the TStudent test (***p ≥ 0.001).  

 

Discussion 

 Overall, the results obtained in the two types of experiments indicate that the 

benzophenone chromophore present in FFB and FFA is the only significant active moiety 

as regards 1O2 production and phototoxicity within the investigated series of compounds. 

This is in agreement with the case reports on the appearance of phototoxic reactions 

experienced after administration of the drugs to a number of patients.[15]  

 Upon 355 nm excitation of both FFB and FFA in acetonitrile, 1O2 is generated 

with Φ∆ in the range 0.30-0.40, whereas in neutral aqueous medium the Φ∆ value of FFA 

is ca. 20 times lower. This can be attributed to the different photochemical behavior 

previously reported for the free carboxylic acid and the carboxylate salt. Thus, the latter 

is much more reactive from its triplet excited state, giving rise to decarboxylation 

products. [16] Interestingly, the phototoxicity (as quantified by the PIF value) does not 

differ significantly from FFB to FFA. This suggests that in the cellular medium, both the 

drug and its metabolite are mainly located in a hydrophobic environment, probably the 

cell membrane. Moreover, under the steady-state irradiation conditions employed in the 
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in vitro assay, the FFA photoproducts that can be formed retain the benzophenone 

chromophore and are also expected to be phototoxic.[17]  

 In the case of the MMP/MPA pair, both 1O2 production and phototoxicity are 

very low, consistently with the lack of clinical data on in vivo phototoxicity found in 

treated patients. Interestingly, MMP and MPA may even behave as scavengers of 1O2, 

owing to the high rate constants determined for the quenching of this reactive oxygen 

species.  

 Finally, TFS and its active metabolite HTB are also inefficient in the 1O2 as well 

as in the phototoxicity measurements. It is noteworthy that this drug has been reported to 

elicit photosensitivity disorders; however, these side effects appear to be photoallergic 

rather than phototoxic in nature. Photoallergy is accepted to involve the immunological 

system and is triggered by photohaptenation of a protein through irreversible covalent 

photobinding to specific amino acid residues. Actually, HTB photoreacts with the ε-

amino group of Lys residues, not only in the free amino acid, but also in poly-Lys models 

and in the whole proteins. [18] 

Conclusions 

Within the series of compounds investigated in the present work, 1O2 production 

correlates well with the in vitro phototoxicity assessed by the 3T3 NRU phototoxicity 

test. Thus, fenofibrate and its active metabolite fenofibric acid generate 1O2 with a 

quantum yield ranging from 0.30 to 0.40 and show a photo-irritation factor (PIF) higher 

than 40. By contrast, mycophenolate mofetil /mycophenolic acid and triflusal/2-hydroxy-

4-(trifluoromethyl)benzoic acid are not photoactive in the employed assays. This 

correlates well with the previously reported in vivo phototoxicity. A special case is trifusal 

that gives rise to photosensitivity disorders of photoallergic nature, whose detection 

should be anticipated following a different experimental approach. 

 
Experimental Section 

Chemicals. Acetonitrile, deuterium oxide, phenalenone, all drugs and metabolites 

(except HTB, which was from Wako) as well as neutral red-based in vitro toxicology test kit, 

were purchased from Sigma-Aldrich and used as received. Phosphate buffered saline solution was 



prepared dissolving the required amount of a PBS tablet (Sigma) in deuterium oxide or deionized 

water. Sodium 1H-phenalen-1-one-2-sulphonate was synthesized as described previously.[19] 

Singlet Oxygen Experiments. Production of 1O2 was studied by time-resolved near-

infrared phosphorescence using a setup described in details elsewhere.[20] Briefly, a pulsed 

Nd:YAG laser (FTSS355-Q, Crystal Laser,) working at 1 kHz repetition rate at 355 nm (third 

harmonic; 0.5 μJ per pulse) was used for sample excitation. A 1064 nm rugate notch filter 

(Edmund Optics) and an uncoated SKG-5 filter (CVI Laser Corporation) were placed at the exit 

port of the laser to remove any residual component of its fundamental emission in the near-

infrared region. The luminescence exiting from the sample was filtered by a 1100 nm long-pass 

filter (Edmund Optics) and a narrow bandpass filter at 1275 nm (BK-1270-70-B, bk 

Interferenzoptik). A thermoelectric-cooled near-infrared sensitive photomultiplier tube assembly 

(H9170-45, Hamamatsu Photonics) was used as detector. Photon counting was achieved with a 

multichannel scaler (NanoHarp 250, PicoQuant). The time dependence of the 1O2 

phosphorescence with the signal intensity S(t) is described by Eq. 1, where τT and τ∆ are the 

lifetimes of the photosensitizer triplet state and of 1O2, respectively, and S(0) is a quantity 

proportional to Φ∆ as  shown in Eq. 2;  κ is a proportionality constant, which includes electronic 

and geometric factors, kR is the 1O2 radiative rate constant, E is the incident laser energy and A is 

the sample absorbance at 355 nm. 

𝑆𝑆(𝑡𝑡) = 𝑆𝑆(0)
𝜏𝜏𝛥𝛥

𝜏𝜏𝛥𝛥 − 𝜏𝜏𝑇𝑇
�𝑒𝑒

−𝑡𝑡
𝜏𝜏𝛥𝛥 − 𝑒𝑒

−𝑡𝑡
𝜏𝜏𝑇𝑇�        𝐸𝐸𝐸𝐸. 1 

𝑆𝑆(0) = 𝜅𝜅𝑘𝑘𝑟𝑟ф∆𝐸𝐸(1 − 10−𝐴𝐴)     𝐸𝐸𝐸𝐸. 2 

In acetonitrile, the procedure for determining Φ∆ involved measuring S(0) value for a 

series of solutions of increasing absorbance and then plotting S(0) versus the sample absorption 

factor (1-10-A), which yielded linear plots. Then Φ∆ was obtained by comparison of the slopes of 

such plots for a suitable reference (PN, Φ∆ = 1.00 ± 0.03) [21] and the drug, using Eq. 3. 

ф∆,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
ф∆,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      𝐸𝐸𝐸𝐸. 3 

In deuterated-PBS, Φ∆ was determined by comparing the S(0) values of optically-matched 

solutions of the drug and the reference (PNS, Φ∆ = 0.97 ± 0.06) [22] at 355 nm as described by 

Eq.4. 

ф∆,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑆𝑆(0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑆𝑆(0)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
ф∆,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟       𝐸𝐸𝐸𝐸. 4 

 



In Vitro 3T3 Neutral Red Uptake (NRU) Phototoxicity Test. The fibroblast cell 

line BALB/c 3T3 was grown in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10 % Fetal Bovine Serum (FBS), 4 mM glutamine and 1% 

penicillin/streptomycin and maintained twice a week in exponential growth in 75 cm2 

plastic flasks in a humidified incubator at 37 ºC under 5 % CO2 atmosphere. The NRU 

was performed as previously described by the OECD guideline 432 [14] with minor 

modifications. In brief, for each compound two 96-wells plates were seeded (2.5×104 

cells/well). Cells were incubated with test compounds at eight concentrations ranging 

from 0.5 μM to 1000 μM for 1 h. After that, one plate was irradiated on ice for 11 min to 

reach a dose of UVA equivalent to 5 J/cm2, whereas the other plate was kept in a dark 

box. For this purpose, a photoreactor model LZC-4 (Luzchem, Canada) equipped with 14 

UVA lamps for top and side irradiation (λmax = 350 nm, Gaussian distribution) was 

employed as the light source. All irradiations were carried out through the lid of the plates 

and the temperature was maintained by ventilation during the irradiation step. The 

viability of UVA-treated control cells in the absence of test compounds was higher than 

90% of those kept in the dark, demonstrating the suitability of the UVA dose. Next, the 

compound solutions were replaced with DMEM medium, and plates were incubated 

overnight. After this time, neutral red solution (50 µg/mL) was added into each well and 

incubated for 2 h. Cells were washed with PBS and neutral red was extracted in 100 µL 

with the desorbs solution (water 49 % (v / v), ethanol 50 % (v / v) and acetic acid 1 % (v 

/ v). With a Multiskan Ex microplate reader, the absorbance was measured at 550 nm. 

Dose-response curves were developed for each compound in order to determine the 

concentration of compound that causes a 50% decrease in neutral red uptake (IC50) in the 

absence and in the presence of irradiation. As a final point, the Photo Irritation Factor 

(PIF) was calculated by means of Eq. 5 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
 IC50 DARK 

IC50 UVA LIGHT        𝐸𝐸𝐸𝐸. 5 

A compound is labelled as phototoxic if PIF > 5, probably phototoxic when 5 > 

PIF > 2, and non phototoxic when PIF < 2, according to the OECD Test Guideline.[14] 

Chlorpromazine and sodium dodecyl sulphate were used as positive and negative 

controls, respectively.  
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