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Abstract15

In this paper, we propose a new classification method for early differen-16

tiation of paroxysmal and persistent atrial fibrillation episodes, i.e. those17

which spontaneously or with external intervention will return to sinus rhythm18

within 7 days of onset from the ones where the arrhythmia is sustained for19

more than 7 days. Today, clinicians provide patients classification once the20

course of the arrhythmia has been disclosed. In this work we deal with this21

problem studying a sparse representation of surface electrocardiogram sig-22

nals by means of Gabor frames and applying a linear discriminant analysis23

afterwards. Thus, we provide an early discrimination, obtaining promising24

performances on a heterogeneous cohort of patients in terms of pharmacolog-25

ical treatment and state of progression of the arrhythmia: 95% sensitivity,26

82% specificity, 89% accuracy. In this manner, the proposed method can27
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help clinicians to choose the most appropriate treatment using the electro-28

cardiogram, which is a widely available and non-invasive technique. This29

early differentiation is clinically highly significant in order to choose optimal30

patients who may undergo catheter ablation with higher success rates.31

Keywords: Gabor frames, Atrial Fibrillation, Electrocardiogram32

1. Introduction33

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical34

practice, and affects up to 4.5 million people in Europe and 2.3 million adults35

in USA. Its prevalence increases with age, being less than 1% among adults36

younger than 60 years but about 9% for people older than 80. Indeed, it is37

likely to increase 2.5-fold by the year 2050 [1].38

AF is a supraventricular arrhythmia characterized by uncoordinated atrial39

activation and ineffective atrial contraction, which is reflected on the ECG40

by irregular heart beat intervals and absence of P-wave [2]. Clinical practice41

guidelines to manage patients with AF classify them by the duration of the42

AF episodes as paroxysmal (episodes which spontaneously or with external43

intervention return to sinus rhythm within seven days after their onset), per-44

sistent (patients in whom AF is sustained more than seven days and require45

pharmacological or electrical cardioversion to restore sinus rhythm), and per-46

manent (both the patient and clinician accept to stop further attempts to47

control rhythm) [3, 4, 5].48

Many references of the state-of-the-art have performed an analysis and49

3



classification of AF episodes, most of which have used the public AF termina-50

tion database of Physionet [6], that consists of one-minute ECGs of sustained51

or self-terminating AF after one second, one minute, or at least one hour of52

the end of the record.53

Thus, classification of AF episodes and their spontaneous termination by54

means of the surface ECG has been addressed in several works, mainly by55

means of the analysis of the dominant frequency of the atrial activity (AA)56

signal: by observing more likelihood to terminate AF when the dominant57

frequency decreases [7] and also to characterize the circadian rhythms of58

persistent atrial fibrillation [8]. Other references have used the modulus and59

phase information of several time-frequency transforms [9, 10] to perform the60

AF paroxysmal and persistent classification, or hidden Markov models to61

track the frequency changes along ECG signals to early detect AF episodes62

nearly to terminate [11]. Other authors also study other features, apart63

from the dominant atrial frequency, such as the amplitude and the waveform64

shape of the AA [12] or the average heart rate and the index of ventricular65

activity [13] as optimal discriminators between self-terminating and sustained66

episodes along 24 hours.67

Non-linear measures, such as sample entropy, have also been used to ob-68

serve differences between the AF episodes analyzing the main atrial wave [14],69

and using long-term ECG recordings [15, 16], or even intracardiac recordings70

[17].71

Regrettably, although manifold tools have been developed to aid clini-72
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cal decision recently, the validation across the broad range of AF patients is73

still incomplete [18]. In this paper we deal with the early discrimination of74

paroxysmal and persistent AF episodes classified according to current clin-75

ical guidelines [3, 4, 5]. We perform this clinical classification addressed in76

previous papers [9, 10] from a different point of view. We have extracted77

the coefficients of a sparse representation with respect to a Gabor frame,78

which have been calculated from the frequency spectrum information of the79

ECG signal, once ventricular activity has been canceled. Then, we use linear80

discriminant analysis for classification.81

Sparse representation of signals has been recently introduced for biomed-82

ical signal analysis. In particular, for ECG processing, it has been mainly83

used for signal compression [19, 20, 21] and beat classification [22]. Particu-84

larly, sparse dictionaries have been applied for ventricular and atrial activity85

estimation in patients suffering from AF in the works presented in [23, 24]. In86

this paper, we have applied sparse representation by means of Gabor frames87

on a cohort of signals acquired from real patients, providing good classifi-88

cation results. Moreover, one value-add of the current work is the diversity89

of patients included in the cohort under study, in terms of antiarrhythmic90

treatments and state of progression of the arrhythmia.91

The rest of the paper is organized as follows. The study population and92

its clinical characteristics are described in Section 2. Signal pre-processing93

and the feature extraction methods by means of the sparse representation are94

described in Sections 3.1-3.4. Next, experimental results and performances95
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are depicted in Section 4. Finally, discussion of results is presented in Section96

5 and conclusions are drawn in Section 6.97

2. Materials98

The population of this retrospective study consists of 186 consecutive99

unselected patients who were suffering from paroxysmal or persistent atrial100

fibrillation. They were attended in a specific arrhythmia clinic of a tertiary101

center (La Fe Hospital, Valencia), where the bipolar lead II was registered for102

five seconds and stored in PDF format by using the Philips PageWriter TC50103

electrocardiograph. Corresponding original raw data was extracted from the104

PDF file by using the application presented in [25]. Lead II was analysed105

since it is the rhythm strip regularly registered by default in this tertiary106

centre, due to the easy visualization of the presence/absence of P-waves.107

There were 41 paroxysmal and 145 persistent patients, whose AF cat-108

egorization was defined according to the current guidelines [3, 4, 5]. This109

cohort results in a study different from the several references which have110

studied the AF termination and differentiation based on the Physionet AF111

Termination Database [6] and Long-Term AF Database [7], which consider112

paroxysmal patients (as those with self-terminating short episodes) and sus-113

tained AF when it lasts for more than 24 hours, most of which correspond114

to permanent AF.115

Furthermore, as the number of subjects included in each group is clearly116

unbalanced (since the number of paroxysmal patients is about a quarter of117
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the total number of persistent subjects), we have divided the patients into118

two different data sets: 40 patients (20 paroxysmal and 20 persistent) to train119

the classifier, and 146 patients (21 paroxysmal and 125 persistent) to be used120

as the test dataset. This dataset includes a huge variety of patients who are121

under different antiarrhythmic drugs, some who have undergone catheter122

ablation, some who present other comorbidities, and with different state123

of progression of the arrhythmia (including first AF episodes and recurrent124

ones). Thus, this dataset diversity is similar to the patients heterogeneity125

that clinicians must deal with in their daily activity. Clinical characteristics126

of the subjects included in the present study are shown in Table 1.127

3. Methods128

3.1. Signal preprocessing129

The first step when processing the ECG signal was to remove the baseline130

and powerline noise. Then, we upsampled the signal to 1000Hz so as to131

the R peak detection [26] and their alignment were more accurate for the132

subsequent QRST complex subtraction [27]. Next, we took advantage of the133

uncoupling of atrial and ventricular activities during AF, and we extracted134

atrial activity by suppressing the QRST complexes of the ECG signal using135

the method presented in [28], since the average beat subtraction is the most136

widely used method when single-lead information is available.137

Thus, we canceled the ventricular activity of the ECG signal prior to138

processing the Fast Fourier Transform (FFT) [29]. Afterwards, the respective139
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coefficients of sparse representations with respect to a Gabor frame calculated140

for FFT modulus and phase values are obtained, as it is detailed in the141

subsequent sections. Henceforth, for the sake of simplicity, we will refer to142

them as sparse coefficients.143

Table 1: Statistical summaries of the database (n,%). Hypertension was defined as a
systolic blood pressure ≥ 140mmHg, a diastolic blood pressure ≥ 90mmHg, or if the
patient was prescribed antihypertensive medication(s). Diabetes mellitus was defined as
serum fasting glucose ≥ 7.0mmol/L or on medications. Hypercholesterolemia was defined
as cholesterol ≥ 6.4mmol/L or treatment with lipid-lowering drugs. Structural heart
disease is defined as LV hypertrophy > 15mm, LV EF < 50%, moderate or greater degrees
of valvulopathy, prior myocardial infarction, significant coronary artery disease or the
presence of primary myocardial diseases. AF: Atrial fibrillation. LV: left ventricle. Parox:
paroxysmal, Pers: persistent, according to current clinical guidelines.

Parox. AF Pers. AF Overall p-value
(n=41) (n=145) (n=186)

Age (mean, range) 59 (30-92) 65 (39-84) 63 (30-92) 0.043

Male (n,%) 22 (54%) 90 (62%) 112 (60%) 0.429

Hypertension 23 (56%) 91 (63%) 114 (61%) 0.554

Diabetes 5 (12%) 46 (32%) 51 (27%) 0.023

Hypercholesterolemia 12 (29%) 55 (38%) 67 (36%) 0.403

Any structural heart disease 12 (29%) 84 (58%) 96 (52%) 0.002

Valvular heart disease 7 (17%) 53 (37%) 59 (32%) 0.030

Impaired LV function 5 (12%) 34 (23%) 39 (21%) 0.174

Previous electric cardioversion 2 (5%) 16 (11%) 18 (10%) 0.380

Previous AF ablation 0 (0%) 11 (8%) 11 (6%) 0.149

Left Atrium dilatation 6 (15%) 48 (33%) 54 (29%) 0.035

Antiarrhythmic drugs 15 (37%) 51 (35%) 66 (35%) 1

Betablockers 14 (34%) 73 (50%) 87 (47%) 0.097

Digoxin 2 (5%) 22 (15%) 24 (13%) 0.141

Calcium channel antagonists 1 (2%) 10 (7%) 11 (6%) 0.488
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3.2. Frames144

We index the components of a signal vector f in CL by {0, 1, . . . , L− 1}145

and we write f(k) for the k-th component of f , so that f = [f(0), f(1), ..., f(L−146

1)]. Moreover, we identify each vector f in C
L with an L-periodic sequence147

indexed in Z. In what follows 〈· , ·〉 denotes the usual inner product in CL
148

and || · || is the euclidean norm.149

A family of vectors (ϕj)
J−1

j=0
in CL is called a frame for CL if there exist

constants 0 < K1 ≤ K2 such that

K1||f ||
2 ≤

J−1∑

j=0

|〈f, ϕj〉|
2 ≤ K2||f ||

2 for all f ∈ C
L.

The numbers 〈f, ϕj〉, 0 ≤ j ≤ J − 1, are called the frame coefficients of

f. Associated to any family of vectors (ϕj)
J−1

j=0
in CL one has the analysis

operator

A : CL → C
J defined as A(f) = (〈f, ϕj〉)

J−1

j=0

and its adjoint the synthesis operator

A∗ : CJ → C
L, A∗(γ) =

J−1∑

j=0

γ(j)ϕj, where γ = [γ(0), γ(1), ...γ(J − 1)].

Hence, the family (ϕj)
J−1

j=0
is a frame for CL if and only if A is injective or150

equivalently, if and only if A∗ is surjective. Thus, (ϕj)
J−1

j=0
is a frame for CL if151

and only if each signal vector f in CL can be expressed as a linear combination152

of vectors {ϕ0, ϕ1, ..., ϕJ−1}. Frames in CL consisting of L elements are in153
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fact bases. Frames with J > L elements are called redundant. In the case154

that the family (ϕj)
J−1

j=0
is a frame for CL the operator A∗A is called the frame155

operator. It is a self-adjoint, positive and invertible operator. This means156

that each vector f can be reconstructed from its frame coefficients.157

For a discrete non-zero window g ∈ CL and 0 ≤ k, ℓ ≤ L − 1 we write158

(πk,ℓg)(n) = g(n − k)e−2πiℓn/L. Then, πk,ℓg represents a translation and159

modulation of the window g. The Gabor transform Vg : CL → CL×L with160

respect to the window g is the injective and linear map defined by161

Vgf(k, ℓ) = 〈f, πk,ℓ g〉 =
L−1∑

n=0

f(n)g(n− k)e2πiℓn/L.

The Gabor system generated by the window g and Λ ⊂ {0, 1, . . . , L −162

1} × {0, 1, . . . , L− 1} is the set of vectors {πk,ℓ g : (k, ℓ) ∈ Λ}. If the Gabor163

system is a frame, we call it a Gabor frame.164

A typical choice of Λ is as follows: for a, b ∈ N and N,M with Na =

Mb = L we let

Λ := {(na,mb) : n = 0, . . . , N − 1, m = 0, . . . ,M − 1}.

The parameters a and b represent time and frequency sampling intervals. In165

order to have a frame, ab ≤ L. The case ab = L is referred as the critically166

sampled Gabor transform and the case ab < L yields an oversampled Gabor167

transform. For detailed information about finite frames see the book [30] and168

the references therein.169
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In previous work, we analyzed and classified AF episodes by means of170

the discrete Stockwell transform. Now our approach is different, we rather171

concentrate on the synthesis operator associated to a Gabor frame. Since172

the frames we use are redundant, each signal f admits many different repre-173

sentations174

f =
∑

m,n

γ(n,m)πna,mb g

with the degree of freedom identified with the dimension of the null-space of

A∗. We seek for the sparsest representation of a signal as a linear combination

of the atoms of a Gabor frame. More precisely, for a signal f ∈ CL and a

Gabor frame {πna,mb g, n = 0, . . . , N−1, m = 0, . . . ,M−1} whereMN >> L

we look for the coefficient vector γ ∈ C
M×N solving the convex optimization

problem

Minimize
∑

n,m

|γ(n,m)| , subject to f =
∑

m,n

γ(n,m)πna,mb g.

The implementation to obtain the sparse coefficients has been made by using175

the LTFAT toolbox. For detailed information about the methods see [31].176

3.3. Principal Component Analysis177

Principal Component Analysis (PCA) provides a new coordinate system178

such that the new axes point into the directions of highest variance of the179

data [32]. Each new variable (called principal component) is obtained as a180
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linear combination of the original variables, so that each principal component181

is orthogonal to the rest. In this manner, redundant information can be182

suppressed and the number of features that feed the classifier can also be183

reduced.184

To that end, each axis is chosen consecutively in the direction where the185

variance of the original data is maximum. These are the eigenvectors of the186

covariance matrix of the data, which correspond to the respective eigenval-187

ues once they have been decreasingly ordered. Then, the new variables are188

obtained by projecting the original ones on the new axis.189

We have performed PCA on the sparse coefficients in order to reduce the190

number of significant features by keeping most of its relevant information.191

3.4. Feature extraction192

Once the modulus and phase of the FFT input are processed to obtain the193

sparse coefficients, we apply PCA analysis to each subset after their linear194

normalization to the range [0,1]. This way, PCA helps to reduce the number195

of features to be considered. In addition, we also calculate the logarithm of196

the energy entropy for each group of the sparse coefficients, which is defined197

as:198

E(s) =
∑

i

log(s2i ) (1)

with the convention log(0) = 0, where si refers to each element of the repre-199

sentation of the sparse coefficients in the principal component space. These200

features will measure the degree of complexity of the sparse coefficients of201
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the frame.202

Below, the flowchart shown in Figure 1 depicts the steps of the proposed203

method, where the classifier is feeded with:204

• Entropy of the sparse coefficients of the modulus of the FFT in the205

principal component space, Em.206

• Entropy of the sparse coefficients of the phase of the FFT in the prin-207

cipal component space, Ep.208

• The first four principal components of the sparse coefficients of the209

modulus of the FFT input Smk
, k = 1, · · · , 4.210

• The first two principal components of the sparse coefficients of the211

phase of the FFT input Spk , k = 1, 2.212

• Average of distance between R peaks in the ECG signal RRmean.213

Classifier details are described in Section 3.5.214

Figure 1: Flowchart of proposed features extraction method.
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3.5. Classification215

We have used linear discriminant analysis (LDA) for classifying patients,216

which is an efficient and low computational cost method [33]. LDA’s objective217

is to reduce the dimensionality of the data and also to preserve most of the218

class discriminatory information by means of a model which assumes that219

both classes are linearly separable. Thus, if we assume that patients are220

classified into two classes, Fisher’s linear discriminant [34] pursues to obtain221

the optimal hyperplane that maximises the separability of the feature vectors222

x. In order to find it, it is necessary to define a measure of separation between223

the projections, which should maximise the differences between the means224

projected on the hyperplane while also minimise the scatter (or variance)225

within classes.226

In this study the LDA classifier was trained with 20 paroxysmal and 20227

persistent AF episode signals, which were chosen by clinicians as those cor-228

responding to patients who behave as ‘clinical models’ for each class (parox-229

ysmal and persistent), in which AF patients are sorted according to current230

clinical guidelines. Given the unbalanced number of paroxysmal and persis-231

tent AF subjects that form the population under study, the use of jackknifing232

or leaving-one-out techniques was not a suitable option, since they produced233

biased results. We have carried out bootstrap analysis [35] with different234

number of training samples in order to choose their optimal size. It was235

observed that performances progressively increased as long as the number of236

samples used to train the classifier grew up to 40 training samples, meanwhile237
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thereafter there was little or no-significant average increment in performance238

figures. Thus, we chose to train our classifier with 20 paroxysmal and 20239

persistent subjects.240

4. Results241

4.1. Performance measures242

Sensitivity and specificity are defined as the ratio of paroxysmal or per-243

sistent AF patients correctly classified to the total number of paroxysmal or244

persistent patients, respectively:245

Sensitivity =
TPparoxysmal

TPparoxysmal + FPpersistent
(2)

Specificity =
TPpersistent

TPpersistent + FPparoxysmal
(3)

where TP (true positives) refers to the number of patients correctly classi-246

fied according to its AF subtype, and FP (false positives) is the number of247

paroxysmal or persistent patients misclassified.248

In addition, global accuracy is measured by means of average accuracy249

(4), in order to eliminate the influence of the unbalanced test dataset with250

the number of persistent patients being about 4 times larger than the number251

of paroxysmal subjects:252

Average accuracy =
Sensitivity + Specificity

2
(4)
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Classification performance has also been measured by means of the re-253

ceiver operating characteristic (ROC) curve, which plots sensitivity against254

(1-specificity), and by the area under the ROC curve.255

4.2. Experimental results256

This section contains the classification performances obtained for the pro-257

posed method (first row of Table 2), and a comparison with several recent258

references of the state-of-the-art that address the analysis of spontaneous259

self-termination AF, or sustained and permanent AF.260

In the proposed method, both sparse representations of modulus and261

phase information were with respect to Gabor frames, whose parameters have262

been iteratively adjusted, in order to maximise the average accuracy when263

classifying the training dataset. Length of each analysed signal was 4096264

samples, whereas the number of shifts N and the number of modulations M265

were experimentally set in both frames to 64 and 256, respectively.266

Table 2 shows that the proposed method outperforms other recent refer-267

ences (addressed to study selt-terminating and sustained AF) when classify-268

ing the patients included in our database, obtaining about 89% of average269

accuracy, and sensitivity and specificity performances about 95% and 82%,270

respectively. These values represent an improvement of global accuracy about271

5-10% with respect to the other two works that perform best [10]-[13]. These272

results can also be observed in Figure 2, which displays the Receiver Oper-273

ating Characteristic (ROC) curve for the proposed classification method, as274
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well as the respective ROC curves for other relevant references. The values275

of the areas under convergence (AUC) for each ROC curve are also detailed,276

which additionally support results indicated in Table 2.277

Nevertheless, this comparison should be carefully evaluated, since the278

clinical AF classification problem is not equivalent, and clinical databases are279

different indeed. Discussion about this remark will be enlarged in Section 5.280

Table 2: Classification results for the test dataset (146 patients: 21 paroxysmal and 125
persistent). LDA classifier has been trained with 20 paroxysmal and 20 persistent AF
patients. Results for the proposed method are also compared on the same test dataset
with relevant references of the state-of-the-art which analyse AF.

Features Sensitivity Specificity
Average
accuracy

Proposed 0.9524 0.8240 0.8882

Dominant frequency of AA [7] 0.2857 0.7440 0.5149

Dominant frequency of AA, heart rate
1 0.672 0.836

distance between R peaks [13]

Sample entropy [15] 0.3810 0.6480 0.5145

Phase variations of GFT [10] 0.8095 0.7840 0.7877
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Figure 2: Receiver operating characteristic curves for the proposed method and several
recent references. ROC curves have been obtained for the test dataset (146 patients: 21
paroxysmal, 125 persistent). Corresponding areas under ROC curves are: 0.8953 for the
proposed method, 0.5168 for [7], 0.8360 for [13], 0.5109 for [15], and 0.8154 for [10].
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5. Discussion281

In this paper, classification of paroxysmal and persistent AF episodes282

according to current clinical guidelines has been studied by means of frame283

analysis. Good performances have been obtained, which may be of great284

utility in order to provide clinical assessment to help clinicians to choose the285

most suitable and effective treatment for patients under AF.286

The lack of access to Holter recordings of patients included in the ret-287

rospective study was a major drawback, as the common duration of ECG288

recordings stored at the tertiary centre where the research was conducted289

was 5 seconds of length. Therefore, this study aimed for classification of AF290

episodes by processing very short ECG segments. Although this difficulty291

was overcome and good results were obtained (details on Table 2 and Figure292

2), even including patients with multiple pathologies and different state of293

progression of the arrhythmia (Table 1), the comparison with other methods294

which have studied AF termination should be carefully evaluated by two main295

reasons. First, because the clinical problem presented in this paper is not296

exactly the same as the one proposed in other references, such as [13, 15, 14]:297

most of them study spontaneous self-termination of AF versus sustained AF298

for 24 hours based on Physionet AF Termination and Long-Term databases299

[6, 7] whereas we have proposed the classification between paroxysmal and300

persistent AF episodes according to current guidelines [3, 4, 5]. Second, some301

references in Table 2 may not perform optimally and offer poorer results due302

to the short length of the recordings used in this retrospective study. Doubt-303
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less, they would have performed more properly if we had had long recordings304

on the same dataset, which unfortunately is not possible currently.305

Another limitation of the cohort of consecutive unselected patients was306

that AF subtypes were unbalanced in number: there were about four times307

more persistent than paroxysmal AF patients. Moreover, it is important308

to remark that the clinical cost of misclassification is higher for paroxysmal309

patients than for those persistent. This is due to the fact that an early parox-310

ysmal atrial fibrillation detection allows a preventive AF treatment against311

recurrence, such as pulmonary vein isolation, which has been proved to be one312

of the best options to stop AF progression. Despite the unbalanced dataset,313

the proposed method obtains not only unbiased results (89% of average ac-314

curacy), but also about 95% of paroxysmal subjects properly classified.315

Regarding feature extraction, along the study we tried to characterize316

the AF subtypes features by using several types of frame, but Gabor frames317

were the ones which provided the best classification results. For AF analy-318

sis and spontaneous self-termination prediction, most of the state-of-the-art319

references have hitherto included Fourier analysis, time-frequency analysis320

or even non-linear measures of the atrial activity. As previous works have321

pointed out [10], patients suffering from a paroxysmal AF episode present322

lower phase variations when studying both the time and frequency domains323

of the ECG signal. From a physiological point of view, this is explained by the324

fact that paroxysmal atrial fibrillation patients have lower levels of atrial fi-325

brosis when compared with persistent atrial fibrillation patients. These lower326
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levels of fibrosis are translated into a faster and more homogeneous electrical327

conduction in the atrium of patients with paroxysmal atrial fibrillation which328

may be expressed by lower phase variations.329

This idea is also related with the results presented in this work. The330

representation of a signal obtained by the different time-frequency transforms331

is related with the concrete representation that can be obtained by means332

of the frame coefficients of the signal with respect to a particular frame.333

However, if the frame is highly redundant (as it is proposed in this paper),334

we can obtain many representations of the signal as linear combinations of335

the frame atoms. Thus, the choice of the sparsest representation fulfilled in336

this paper has allowed us to improve classification performances by choosing337

the most suitable representation in that frame. In this manner, presented338

results reveal that Gabor frames are an efficient and excellent alternative to339

the aforementioned tools for signal analysis. This different point of view has340

been successfully applied to ECG compression [20, 21] and atrial activity341

extraction [24] but, to our knowledge, this is the first attempt to use it342

for early differentiation of AF episodes, with a significant improvement with343

respect to previous references that have addressed this classification problem.344

With regard to clinical implications, it is highly significant to notice the345

importance of an early differentiation of the nature of the AF episode to346

which clinicians have to face with. The standard therapy for paroxysmal AF347

patients who present recurrences despite the antiarrhythmic drug treatment348

is the catheter ablation procedure implying pulmonary vein isolation. In this349
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context, ablation offers success rates at one year of 70-80%. On the con-350

trary, success rates of pulmonary vein isolation in persistent AF patients are351

much worse, around 45-60% at best. The efficacy of ablation in persistent352

AF patients can be improved by performing additional ablation lines (in the353

left atrial roof, mitral isthmus or posterior wall), or by ablation of complex354

fractional atrial electrograms (CFAEs) besides the pulmonary vein isolation.355

This is why the early knowledge of the type of the arrhythmia of each pa-356

tient may have vital therapeutic implications, such as the modification and357

individualization of the therapy to be administered to each patient. Fur-358

thermore, the proposed method achieves this goal using a widely available359

resource in daily clinical practice (the ECG), and with no need of any further360

exploration to the ones which are routinely carried out in these patients.361

6. Conclusions362

A new classification method of paroxysmal and persistent AF episodes363

has been presented. It is based on extracting the coefficients of a sparse364

representation with respect to a Gabor frame, which have been obtained from365

the frequency spectrum of the atrial activity of short ECG segments. Then,366

extracted features pass through an LDA classifier, which has been trained367

to maximise both sensitivity and specificity measures. Good results on real368

ECG recordings are achieved, which is important to remark as a value-add369

of the study, specially taking into account that they are obtained on a cohort370

of patients who present different states of AF progression, are under different371

22



antiarrhythmic treatments, and some of which present multiple pathologies.372

Future work will focus on enlarging the dataset and analyse results on a373

prospective study with long recordings.374
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